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ABSTRACT- Population coverage error estimates for 
the 1990 Decennial Census were based on Dual System 
Estimation (DSE) where one system was the census 
enumeration and the second system was an enumeration 
for a sample of the population as part of the Post 
Enumeration Survey (PES). Population coverage error 
estimates were based on 357 poststrata. Results from 
PES poststrata estimation indicated that differential 
undercounts existed across race and ethnic groups, 
renters, and rural residents. Iterative proportional fitting, 
or raking, will be used for the Census 2000 Dress 
Rehearsal to produce acceptable site-level estimates The 
raking method corrects initial phase estimates by 
controlling to dual system estimates. Earlier research 
shows that increasing the number of poststrata and 
allowing multiple dimensions in the raking matrix yields 
more accurate coverage probabilities than DSE without 
raking. Our research focuses on constructing the best 
raking matrix for obtaining an accurate population 
estimate. We use logistic regression models to determine 
the optimal marginal, or control, variables. We then 
decide the dimensions and the placement of the variables 
on the raking matrix. Finally, we compare the 
performance of alternative raking matrices using 
coverage factor coefficients of variation and mean square 
errors. 

I. Introduction 

The 1990 PES collected information from randomly 
selected block clusters across the United States. The 
census enumerations in these block clusters comprise the 
E sample. The P sample is an independent listing of the 
chosen block clusters. The E sample is used to estimate 
erroneous inclusions in the census while the P sample is 
used to estimate the number of persons not captured in 
the census. Using these two samples and the census, 
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direct and synthetic estimates of the population coverage 
error were constructed under DSE assumptions based on 

357 poststrata (Mulry et al. 1997). Poststrata were 
defined by region, race, tenure, age/sex, and urbanizatiort 

Currently, there are two planned phases for Census 
2000. The initial phase enumerates persons via mail and 
personal visits while the second phase consists of the 
Integrated Coverage Measurement (ICM) quality check 
survey. The ICM survey, which presently consists of 
approximately750,000 housing units, corrects the initial 
phase census estimate for coverage errors. An ICM 
sample is selected from each individual state in order to 
satisfy the requirement that state population estimates are 
based only on that state's data. According to Schindler 
and Griffin (1997), acceptable state estimates can be 
produced for approximately thirty poststrata per state 
under current sample size restrictions using DSE without 
raking. 

In order to control on more variables without 
increasing the variance of the estimates (due to additional 
poststrata), a new poststratification was proposed for 
producing census population estimates. The proposed 
poststratification uses iterative proportional fitting, or 
raking, to account for persons not captured in the initial 
phase of the census. Raking has been used in past 
censuses to weight long form data to produce sample item 
estimates. Raking is typically used in survey work to 
adjust the results of a survey to match decennial census 
marginal counts which include adjustments for births, 
deaths, immigration, and emigration. However, if raking 
is used in Census 2000, it would correct initial phase 
estimates to match dual system estimates. Schindler and 
Griffin (1997) show that allowing a greater number of 
poststrata and/or multiple dimensions in the raking matrix 
yields more accurate coverage probabilities than the 
traditional DSE. 

II. General Methodology 

The objective of this paper is to compare the results 
of raking using proposed marginal variables (marginals) 
to raking results using variables derived from logistic 
regression models. Logistic regression modeling is a 
mechanism for determining variables which explain 
inclusion in the initial phase of the census. We also 
compare raking results to poststratification without 
raking. Different sets of marginals are evaluated based 
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on their coverage factor coefficients of variation (CVs) 
and mean square errors. A coverage factor, which is the 
ratio of the DSE to the initial phase estimate at the 
poststratum level, is produced for each interior cell of the 
raking matrix. Multiplying the coverage factor by the 
initial phase estimate at the block level yields a synthetic 
estimate which corrects for coverage. 

Raking methodology entails calculating a DSE for 
each interior cell. Summing the DSEs over rows and 
columns yields marginal controls. The initial phase 
estimates are then raked to the marginal controls. Direct 
DSEs are not calculated for the marginals because it leads 
to high correlation bias. For example, a DSE for black 
males age 18-29 groups both owners and renters together. 

State and substate estimates are produced using 
California data from the 1990 PES. American Indians 
living on reservations are excluded from our study 
because sampling and estimation procedures for the 1990 
and 2000 censuses differ for this population (Schindler 
and Griff'm 1997). California was selected for this study 
because its 1990 PES sample size is approximately equal 
to the ICM sample size for a typical small state in Census 
2000. 

The approach used to assess alternative raking 
control variables is summarized as follows. First, 
potential raking variables are identified. Alternative 
logistic regression models are developed using the 
proposed raking variables. Once significant model 
variables are selected, they are combined to form a 
raking matrix. The same set of variables could lead to 
raking matrices with different sizes and dimensions. 
Next, raking is implemented which adjusts the 1990 
census counts to match the 1990 DSEs based on the given 
marginals. Coverage factors are calculated for each 
alternative model at the state and substate level. The 
mean and range of the coverage factor CVs are compared 
to determine the best marginal variables. The jackknife 
procedure is used to produce standard errors of the 
coverage factors. One block cluster is removed at a time 
and the full raking process is repeated. 

IlL Description of Methodology 

A. Variable Definitions 

An assortment of variables are considered as inputs 
to the logistic regression model. The explanatory 
variables used to rake population estimates are those most 
highly correlated with whether or not a person is 
enumerated in the initial phase of the census. Known 
correlates such as race, hispanic origin, age, sex, and 
tenure are proposed as well as variables not previously 
considered. Specifically, we consider the following 

variables: race/hispanic origin, age/sex, tenure, family 
stability, urbanicity, family composition, percent non- 
owner, mail response rate, percent minority, vacancy rate, 
household size, and relationship. The intercept is always 
included in the logistic regression models. Following is 
a description of each independent variable. 

Race/HispanicOrigin: (1) non-Hispanic white or other, 
(2) black, (3) Hispanic white or other, (4) American 
Indians not on reservations, and (5) Asians and Pacific 
Islanders. 

Age/Sex: (1) under 18, (2) male 18-29, (3) female 18-29, 
(4) male 30-49, (5) female 30-49, (6) male 50+, and (7) 
female 50+. 

Tenure: (1) owner and (2) renter. 

Family Stability: (1) stable and (2) not stable. A 
household is "stable" if either (1) there is only one 
resident and that resident is over age 50, or (2) there are 
two to seven residents, the first two residents are over age 
30 and are of the opposite sex, and any additional 
residents are under age 18. Households with more than 
seven residents or with any resident between 18 and 29 
are never deemed "stable." 

Urbanicity: (1) non-urban area and (2) urban area. 

Family Composition: (1) spousal and (2) non-spousal. 
A household is considered "spousal" if one of two 
conditions are met: (1) the second person listed on the 
census form is the spouse of the householder or (2) the 
unit is occupied by exactly one person and that one 
person is over the age of 50. 

Percent Non-Owner: (1) high and (2) other. Percent 
non-owner is a block-level variable. High percent non- 
owner blocks are those with greater than 65.73 °A (75th 
percentile) non-owners. 

Mail Response Rate: (1) low and (2) other. A block- 
level variable def'med as the proportion of households in 
the 1990 mail universe which completed their 1990 
Census form without the aid of an enumerator. Low mail 
response rate blocks are those with a mail response rate 
less than 53.25 % (25th percentile). 

Percent Minority: (1) high and (2) other. Percent 
minority is a block-levelvariable. High percent minority 
blocks are those with greater than 79.17 % (75th 
percentile) minorities. 
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Vacancy Rate: (1) high and (2) other. Vacancy rate is a 
block-level variable. A block vacancy rate is high if it is 
greater than 6 %. This rate is not based on quartiles 
because of the small range of vacancy rates. A natural 
cutoff rate of 6 % occurred in the data. 

Household Size: (1) one and (2) two or more. 

Relationship: (1) related to person 1 and (2) not related 
to person 1. This distinction is made for all persons listed 
on the census form. 

The dependent variable in the logistic regression 
model is a person-level indicator for inclusion in the E (or 
P) sample. For the E sample model, each E sample 
person is classified into one of three categories. If an E 
sample person matches a person in the P sample, the case 
is called a match and the dependent variable is assigned 
the value 1. If a person is found in the P sample but does 
not match any record in the E sample, the dependent 
variable is assigned the value 0. This case is called a P 
sample nonmatch. Finally, an E sample nonmatch case 
occurs when a person is in the E sample but does not 
match any record in the P sample. The value 1 is 
assigned to the dependent variable in this case. Similar 
definitions exist for the P sample model. We can view 
the results of the E and P sample models as two 
independent assessments of the population. 

B. Model Development 

Much work has been done over the years to identify 
characteristics of persons not enumerated in the census. 
Since the majority of the nation is enumerated using a 
mail census, a large body of literature exists on 
nonresponse to the census mail questionnaire. The E 
sample model focuses on correlates of being captured in 
the census, or E sample, since the dichotomous capture 
variable is the dependent variable in the logistic 
regression model. 

Alho et al. (1993) develop logistic regression models 
of capture probabilities which allow person-, household-, 
and block- level characteristics as explanatory variables 
in addition to geographic factors such as urbanization. 
The logistic approach permits the use of continuous 
explanatory variables. The E and P samples are used to 
identify those persons captured only in the E sample, only 
in the P sample, and in both samples. Categorizing 
persons in this manner was a major challenge in the 1990 
PES since it was not designed to provide this type of 
information at the person level (Alho et al. 1993). 

The logistic regression approach to obtaining 

correlates of capture is complicated by the presence of 
unresolved cases since their match status could not be 
determined. For this reason, Alho et al. (1993) exclude 
unresolved cases and develop models based only on 
resolved cases. This does not introduce bias provided the 
probability of being captured is not significantly different 
between resolved and unresolved cases for a given model. 

Mulry, Davis, and Hill (1997) use similar logistic 
regression models to estimate the capture probabilities of 
persons in the 1990 Census. Their paper studies the 
feasibility of using estimated probabilities to model 
heterogeneity in census coverage error for small areas. 
They examine several main effects and two-factor 
interactions not considered by Alho et al. (1993). 

To determine the most appropriate estimation design, 
we compare poststratification estimates to a number of 
raked estimates using various potential raking variables. 
Our study and the Census 2000 Dress Rehearsal model 
define poststrata by race, hispanic origin, age, sex, and 
tenure. Our study utilizes a 35x2 raking matrix which 
cross-classifies race/hispanic origin and age/sex on one 
margin while tenure is on the other margin. The raking 
matrix for the Census 2000 Dress Rehearsal is 42x2 
because the race variable has been expanded to six 
categories. Historically, these variables are highly 
significant and will most likely remain in the final raking 
matrix for Census 2000. 

With this in mind, alternative raking models are 
formed by adding one additional variable to those already 
deemed significant. In this case, logistic regression 
modeling identifies another variable to include in the 
model already containing race/hispanic origin, age/sex, 
and tenure. The odds ratio and a Wald chi-square test 
statistic are used to determine which explanatory variable 
to include in the model. The odds ratio for a given 
explanatory variable is computed by exponentiating the 
parameter estimate. The Wald chi-square test statistic is 
computed as the square of the value obtained by dividing 
the model parameter estimate by its standard error. The 
significan ce level used in this study is a = 0.10 or 90 
percent significance. Model results are obtained using 
SAS PROC LOGISTIC which assumes the data are 
produced using simple random sampling. As a result, the 
chi-square critical value for a = 0.10 and 1 degree of 
freedom is multiplied by a design effect (DEFF) of 20.2 
which accounts for the complex sample design of the PES 
when estimating standard errors. The DEFF used for this 
study is the ratio of the variance of the 1990 Census 
population undercount percentage under the PES design 
and the variance of that statistic assuming simple random 
sampling. The variance of the undercount based on the 
complex PES sample design and jackknife replication 
variance estimation methodology is the square of the 
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standard error (i.e., the square of 0.45%). The variance 
for the undercountrate estimate of 0.04 assuming simple 
random sampling is approximately 1.0 x 10E-6. Thus, 
the ratio of the variances (DEFF) is approximately 20.2 
while the ratio of the standard errors (DEFT) is 
approximately 4.5. The three best variables based on 
logistic regression modeling are relationship, urbanicity, 
and mail response rate. 

Given alternative sets of raking marginals, we must 
decide how to place the variables on the raking matrix. 
That is, how will variables be grouped on each of two or 
more raking margins? Ideally, marginal variables which 
are correlated will be cross-classified within the same 
dimension. Three-(or more) dimensional raking is 
possible. Increasing the number of dimensions is 
expected to result in better direct estimates for the 
marginals, but collapsing to eliminate cells with little or 
no sample cases becomes much more difficult (Schindler 
and Griffin 1997). For each alternative model, it is 
possible to propose several configurations of the raking 
matrix. 

C. Model Comparisons 

Coverage factor estimates and their standard errors 
are computed using jackknife replication variance 

estimation methodology. One of the 383 Califomia PES 
block clusters is dropped at a time to form each 
subsample. The estimate of interest is calculated from the 
full sample as well as from each subsample. The 
variation among the subsample estimates is then used to 
estimate the variance for the full sample. The form of the 
jackknife variance estimator is a constant times the sum 
of squared differences between the estimator based on the 
full sample and each subsample. We ignore the constant 
because it has value 382/383 = 0.9974. 

IV. Results 

Schindler and Griffin (1997) present notation for 
calculating raking coverage factors and their standard 
errors. Each poststratum is def'med by the demographic 
subgroup represented by the corresponding cell of the 
raking matrix. Coverage factors are calculated for each 
interior cell of the raking matrix. Alternative raking 
models are evaluated by computing the CV of each 
interior cell coverage factor and then averaging the 
coverage factor CVs over all nonempty interior cells. 

Table 1 compares the average, minimum, and 
maximum coverage factor CVs for both poststratifiedand 
raked estimates for six models. The first model is the 
proposed 35x2 model while the other five models are 

Table 1: Coverage Factor CV Estimates for Poststratification and Raking for Altemative Models 

Matrix Poststratified Estimates Raked Estimates 
(number of nonzero cells in parentheses) " "" 

Average Min Max I Average Min Max 

Race/Orig X Age/Sex by Tenure X Urban (108) 

Race/Orig X Age/Sex by Tenure X % MRR (116) 

Race/Orig X Age/Sex by Tenure X Rel (116) 

Race/Orig X Tenure by Age X Tenure X Rel (79) 

Race/Orig X Tenure by Sex X Tenure X Rel (40) 

0.141 

0.073 

0.162 

0.111 

0.073 

0.000 1.332 0.041 0.006 0.079 

0.006 0.6591 0.034 0.006 0.066 

0.000 1.388 0.059 0.006 0.212 

0.000 0.999 ! 0.054 0.004 0.134 

0.000 0.258 0.044 0.005 0.079 

alternatives based on logistic regression. The proposed 
35x2 raking model has the smallest average coverage 
factor CV for both poststratified and raked estimates, 
though the other model averages are not substantially 
higher for raked estimates. In all cases, the average 
coverage factor CV for the raked estimates are lower than 
those for the poststratifiedestimates. In order to compare 
each model's overall effectiveness in reducing the mean 

square error of the population estimates, we consider each 
model's contribution to bias. The primary advantage of 
raking is to reduce the variance of the population 
estimates without substantially increasing the bias. Thus, 
we may be willing to accept a model with biased 
estimates if it yields a reduction in variance. 

Table 2 displays the square root of the average 
coverage factor mean square error for poststratified and 
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raked estimates for the six models. For variance and bias 
estimates, we assume that the direct poststratified DSE is 
unbiased at the poststratum level. An estimate of the 
MSE of the raked coverage factor for poststratum p is 
given by (CF p, rake-  CF p, direct) 2 - SE2(CF p, r a k e -  CF p, direct) 

+ SEE( CF p, rake )" The square root of the weighted and 
unweighted poststratum average is presented in Table 2. 
Our study uses the weight (CENp2 / ~ CENp 2 ) where 
CEN is the census count and the summation is over all p 
poststrata. The weighted estimator prevents poststrata 
with small sample sizes from having a disproportionate 

effect. Assuming an unbiased DSE at the poststratum 
level ignores model bias, correlation bias, and the ratio 
estimation bias inherent in dual system estimation. As a 
result, we are measuring bias caused primarily by the 
raking procedure. The asterisks (*) in the raked bias 
columns indicate a negative estimate of squared bias. 
Bias estimates are not def'med for these cases. Although 
bias sometimes exists in the raked estimates, the raked 
MSEs are always lower than the poststratified MSEs. 
This is true for both weighted and unweighted estimates. 

Table 2: Square Root of Average Coverage Factor MSE for Poststratification and Raking for Alternative Models 

Raking Matrix Weighted 

(number of nonzero cells in parentheses) 
Post- Raked 

stratified MSE 
MSE 

Raked 
Bias 

Unweighted 

Post- 

stratified 
MSE 

Raked Raked 
MSE Bias 

. . . . . . . . .  ~ . . . .  

Race/Orig X Age/Sex by Tenure X Urban (108) 

Race/Orig X Age/Sex by Tenure X % MRR (116) 

Race/Orig X Age/Sex by Tenure X Rel (116) 

Race/Orig X Tenure by Age X Tenure X Rel (79) 

Race/Orig X Tenure by Sex X Tenure X Rel (40) 

0.0257 

0.0262 

0.0282 

0.0195 

0.0150 

0.0194 

0.0148 

0.0175 

0.0134 

0.0128 

0.0049 2.3197 

0.1308 

0.6073 

0.4298 

0.1377 

1.6227 1.6219 

0.0078 * 

0.3032 0.2917 

0.2552 0.2419 

0.0595 * 

Table 3 presents estimates for the total population 
coverage factor CVs over 383 block clusters in the 
California PES. Poststratified and raked estimates are 
compared based on the average, minimum, and maximum 
CV of the total population coverage factor. For each 
model, we compute coverage factors for all nonempty 
interior cells. Synthetic estimates and coverage factors 
are then calculated for each block cluster. Jackknife 
standard errors are calculated for the coverage factors by 
removing one block cluster at a time. Finally, the 
coverage factor CVs are averaged over all 383 PES block 
clusters in California. 

Table 3 shows that the proposed 35x2 model with 
raking yields the smallest average total population 
coverage factor CV, although the corresponding estimates 

for the other models are not much higher. The mean of 
the raked estimates is less than or equal to that of the 
poststratified estimates for each model. 

For each raking matrix, direct synthetic and raked 
estimates are compared to a target estimate. The target 
used in our example is constructed by combining all E 
and P sample people but removing the matches and 
erroneous enumerations. The average relative root mean 
square errors (RRMSEs) for the poststratified and raked 
estimates are given in Table 4 where the average is taken 
over all 383 block clusters. In general, the average 
RRMSE for the raked estimates are lower than those for 
the poststratified estimates, although they are very 
similar. This relationship does not hold for the last model 
where the raking average RRMSE is slightly higher. 
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Table 3: Total Population Coverage Factor CVs for Poststratification and Raking Over 383 Block Clusters 

Raking Matrix 
(state level coverage factor CV in parentheses) 

Race/Orig X Age/Sex BY Ten X Urban (0.0043) 

Race/Orig X Age/Sex BY Ten X % MRR (0.0045) 

Race/Orig X Age/Sex BY Ten X Rel (0.0049) 

Race/Orig X Tenure BY Age X Ten X Rel (0.0044) 

Race/Orig X Tenure BY Sex X Ten X Rel (0.0045) 

Poststratified Estimates 

Average 

0.015 

0.015 

0.014 

0.011 

0.010 

Raked Estimates 

Min Max Average • Min Max 

0.000 0.330 I 0.011 0.000 0.049 

0.000 0.069 0.011 0.000 0.039 

0.000 0.070 0.010 0.000 0.050 

0.000 0.060 0.010 0.000 0.044 

0.000 0.055 0.010 0.000 0.058 

Table 4: Average Relative Root Mean Square Error for Poststratification and Raking Over 383 Block Clusters 

Race/Orig X Age/Sex BY Ten X Urban 

Race/Orig X Age/Sex BY Ten X % MRR 

Race/Orig X Age/Sex BY Ten X Rel 

Race/Orig X Tenure BY Age X Ten X Rel 

Race/Orig X Tenure BY Sex X Ten X Rel I 
I 00584 II 00567 

I 0.0604 I! 00 96 

I 0.0600 II 0.0603 

The raking procedure allows consideration of a large 
number of poststrata without increasing the variance of 
the estimates. Although raking is useful for decreasing 
the variance of our estimates without substantially 
increasing the bias, raking yields only slightly better 
results than poststratification. We conclude that the 
Census 2000 Dress Rehearsal model is the best model 
based on the 1990 California PES data. Our goal is to 
implement this modeling procedure for all states in order 
to determine the best raking models for Census 2000. 
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