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1. I n t r o d u c t i o n  

If the Census Bureau uses sampling for integrated 
coverage measurement (ICM), it will need to esti- 
mate population size adjustment factors at state and 
sub-state levels. In many demographic groups and 
geographic locales, sample sizes will not be large 
enough to provide direct estimates with tolerable 
variances. In such small area problems, statisticians 
can improve estimation accuracy by smoothing the 
direct estimates across areas. For example, the ad- 
justment factors can be smoothed with a hierarchical 
regression model that pools data across states. 

Experience from Census 1990 suggests that the 
Census Bureau's clients view models that pool data 
across states with suspicion. Thus, to avoid contro- 
versy in Census 2000, the Census Bureau has ex- 
pressed the desire to avoid explicitly pooling data 
across states [1, 2]. Nonetheless, there may be 
across-state information that, if somehow tapped, 
could improve the accuracy of the within-state esti- 
mates. This paper presents several ways of teasing 
out this across-state information without estimating 
adjustment factors by explicit data pooling. 

External constraints that prohibit explicit data 
pooling potentially exist in many settings outside of 
Census 2000. For example, when sampling is used 
to audit or assess several groups, the groups may re- 
ject explicit data pooling if they fear it will shrink 
their direct estimates in a way that makes them look 
worse. Constraints could also exist when: (1) clients 
do not allow the explicit use of prior years' data; 
(2) statisticians cannot release data from one group 
to another; and, (3) statisticians want to avoid ex- 
plaining hierarchical models to their clients. The 
techniques in this paper may be useful in addressing 
these constrained estimation problems. 

This research was funded through a contract from the 
United States Census Bureau. The author thanks Donald 
Rubin, David van Dyk, Alan Zaslavsky, John Barnard, and 
Ann Vacca. 

2.  P o t e n t i a l  S o l u t i o n s "  I n f o r m a t i o n  

P o o l i n g  

By explicit data pooling, I mean using a model in 
which multiple groups' (e.g., states) data enter di- 
rectly into the formulas used to estimate any of 
the parameters ultimately included in each group's 
model. Thus, a hierarchical model is an example of 
explicit data pooling. 

Explicit data pooling is one technique in a more 
general class of approaches to improving prediction 
accuracy, namely information pooling. I define in- 
formation pooling to be using both a group's data 
and knowledge not contained in that group's data 
to make estimates in that group. This is a broad 
definition, and nearly every statistical analysis em- 
ploys some form of information pooling. For exam- 
ple, an essential form of information pooling is rely- 
ing on past experience to design the data collection 
mechanism and to build the statistical models for an 
estimation task. Two ongoing applications of this 
information pooling strategy that will improve the 
estimates in Census 2000 are: 1) using the collec- 
tive knowledge of the Census Bureau to design the 
ICM sampling scheme; and, 2) performing simula- 
tion studies with previous census data from many 
states to determine which statistical techniques best 
predict population sizes. Another form of informa- 
tion pooling- and one that is a focus of this paper-  is 
to use the estimates of parameters in multiple groups 
to help identify the predictors that should be in- 
cluded in each group's model. This form of informa- 
tion pooling is not explicit data pooling if, once the 
statistician specifies the model in each group, mul- 
tiple groups' data are not used to estimate the pa- 
rameters that are ultimately included in each group's 
model. 

Information pooling techniques exist conceptually 
on a continuum ordered by how directly the tech- 
niques rely on multiple groups' data to make esti- 
mates in each group. At one extreme of the con- 
tinuum is solely using past experience, which I call 
minimal information pooling. At the other extreme 
of the continuum is the use of explicit data pool- 
ing, which I call maximal information pooling. In 
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between these two extremes is a host of informa- 
tion pooling techniques that use multiple groups' 
data somewhat indirectly, such as the model selec- 
tion technique mentioned in the above paragraph. 
Since this model selection technique relies on esti- 
mates of parameters from multiple groups to spec- 
ify each group's model, it uses multiple groups' data 
more directly than does solely using past experience. 
Since it ultimately estimates the included parame- 
ters in each group from just the data in that group, 
it does not use multiple groups' data as directly as 
explicit data pooling. I call such techniques medial 
information pooling. 

It seems clear that a legislated or self-imposed pro- 
hibition of all information pooling strategies would 
severely restrict, if not eliminate, the ability of the 
Census Bureau to provide accurate estimates. How- 
ever, just because one form of information pooling is 
unacceptable, namely explicit data pooling, it does 
not follow that all forms of information pooling are 
unacceptable. Thus, the pertinent question the Cen- 
sus Bureau should consider is not whether informa- 
tion pooling is permissible; rather, it is, "how much 
information pooling is permissible?" In other words, 
how far along the information pooling continuum is 
the Census Bureau willing to travel? Undoubtedly, 
as the techniques move towards maximal informa- 
tion pooling, they are more likely to be perceived 
by Census clients as similar to explicit data pooling, 
and hence less likely to be acceptable to clients that 
disapprove of explicit data pooling. 

If there is little reduction in estimation errors 
when a potentially controversial form of informa- 
tion pooling is employed, then it is not worthwhile 
to argue for that strategy. Thus, a second perti- 
nent question the Census Bureau should consider is, 
"does using an information pooling strategy reduce 
estimation errors by a sufficient amount?" Implicit 
in the answers to this question is a tradeoff between 
accuracy and acceptability. We expect the strate- 
gies that rely more directly on multiple groups' data 
to produce estimates with smaller mean-squared er- 
rors, yet these strategies will be more controversial. 
Those strategies that look less like explicit data pool- 
ing will be easier to justify, but they will not give as 
large a payoff in estimation accuracy. Therefore, to 
find a strategy with a satisfactory balance between 
accuracy and acceptability, it is necessary to con- 
sider strategies at many locations of the information 
pooling continuum. 

Q Some medial information pooling 
strategies for regression models 

In this paper, we assume that  the statistician will 
model the data with multiple regressions: 

2 Yij ~ N (xij/~i, aij), 

where xij represents a 1 x p row vector of predictors 
for the j t h  observation in the ith group. Assure- 

2 (and covariances) ing known sampling variances aij 
ICM smoothing fits into this framework as follows. 
Let i index a state, j index a demographic or geo- 
graphic post-stratum, and yij be the direct estimate 
of the i j th  adjustment factor. Let xij be a vector 
of dummy variables corresponding to main effects 
and interactions that define the post-strata. When 
we drop interactions or main effects, we smooth 
the factors. For example, consider a universe with 
only 4 post-strata in each state: black/white crossed 
with renter/owner. Then, an intercept, a main ef- 
fect for black post-strata, a main effect for renter 
post-strata, and an interaction between black and 
renter post-strata would account for all post-strata. 
Dropping the interaction or the main effects would 
smooth the adjustment factors. 

What  kind of medial strategies are located on 
the information pooling continuum? Or, putting it 
a different way, what useful information might be 
teased out of the multiple groups' data that cannot 
be found in individual groups' data? To answer this 
question, it is helpful to construct a wish-list of in- 
formation that, if known, might aid modelers to im- 
prove predictions. The goal of a medial information 
pooling strategy is to use multiple groups' data to 
make one of these wishes come true, or at least ap- 
proximately true, without violating the constraints. 

The first thing we might wish for is knowing if 
estimates of regression coefficients are close to the 
true values of the coefficients. If they are not, we 
would be better off removing the predictors from the 
model instead of estimating their coefficients. How 
might multiple groups data help grant this wish? 
Consider the following anecdote: say the coefficient 
for predictor Xi in one group is estimated as ~i - 5 
with large variance, but in all of the other groups the 
coefficient of Xi is close to two with small variance. 
We might believe that  the one large ~i resulted from 
sampling variability, and in reality the coefficient is 
similar to those in other groups. Eliminating X1 
from that  group will yield more accurate predictions 
since /~i - 0 is closer to two than /3i - 5. This 
example can be translated into a medial information 
pooling strategy: use multiple groups' data to help 
determine which predictors have coefficients that are 
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poorly estimated, and then estimate the coefficients 
ultimately included in each group's model using just 
that group's data. I call this a Matching strategy. 

A second item on the wish-list, if the first is un- 
available, is knowing whether a predictor is unim- 
portant; that  is, does dropping a predictor reduce 
the mean squared errors of predictions. Satisfying 
this wish is typically the goal of traditional model 
selection strategies, such as choosing the model in 
each group that minimizes the Akaike Information 
Criterion (AIC) or the Bayesian Information Crite- 
rion (BIC). Using across-group information might 
allow us to more effectively achieve this goal. Con- 
sider the following example: the coefficient for pre- 
dictor X2 is estimated as unimportant in all of the 
groups' regressions except for one. We might believe 
that the estimated coefficient in the one group is a 
result of sampling variability, and in reality the co- 
efficient is similar to those in other groups. We may 
want to eliminate X2 from all the models to improve 
accuracy. This example leads to the following infor- 
mation pooling strategy: use multiple groups' data 
to help identify unimportant predictors that can be 
excluded from the models, and then estimate the co- 
efficients ultimately included in each group's model 
using just that group's data. I call this an Impor- 
tance strategy. 

If knowledge from Matching or Importance strate- 
gies is not available, it would helpful to know 
whether a traditional model selection procedure 
should be performed in a group. Traditional model 
selection procedures can improve accuracy when 
there are many unimportant  predictors, but can also 
lead to excluding important predictors. If multiple 
groups' data can be used to decide if traditional se- 
lection strategies should be employed, we may be 
able to take advantage of the benefits of these pro- 
cedures while avoiding the drawbacks. I call this a 
Selection strategy. 

A next item is knowing the number of predictors 
in each group that make an important contribu- 
tion to the predictive ability of the model. With 
knowledge of the number of important predictors, 
we can use standard techniques, like selecting the 
model that maximizes R 2, in hopes of finding those 
important predictors and, in the process, excluding 
unimportant predictors. Since multiple groups' data 
can help identify important predictors, they also can 
help identify the number of important predictors. 
This leads to the final information pooling strategy 
examined in this paper: use multiple groups' data 
to determine the number of predictors to include in 
each group's model, and then determine those pre- 
dictors separately in each group. I call this a Di- 

mension strategy. 
How can we implement these four strategies? To 

create viable procedures, it is necessary to mine 
the extra information that  exists in multiple groups' 
data. Hierarchical models easily and effectively take 
advantage of across-group information. It makes 
sense, then, to use these hierarchical models as tools 
for extracting this information. Effectively, this 
means fitting a hierarchical model that explains the 
data as well as possible and using the results to as- 
sist in model specification. Importantly, this form 
of information pooling may not be a violation of the 
constraints since it uses explicit data pooling only 
as a tool to extract across-group information which 
might otherwise be difficult to tease out. In other 
words, even though we may not be permitted to es- 
timate parameters via explicit data pooling, we may 
be permitted the to improve model construction by 
using the results of explicit data pooling. 

Below are some procedures that at tempt to ac- 
complish the goal of each strategy, assuming a 
good-fitting hierarchical normal regression model 
(HNRM) has been found. Each procedure uses a 
stepwise model selection in each group that stops 
when a criterion is satisfied. These procedures are 

2 2 constructed assuming that the variances ~ij - ~i 
are unknown and that each observation is indepen- 
dent (i.e., the usual OLS set-up). This does not 
correspond to ICM smoothing, but leads to easier 
demonstrations of the potential of medial informa- 
tion pooling. The procedures can be adjusted to 
account for known variances and/or  weighted least 
squares. I have also created procedures that select 
a set of predictors that  must be included in every 
group, but I do not comment on these in this paper. 

1. Matching strategy, MI: In each group, choose 
the set Si of predictors that produces OLS fitted 
values with the smallest squared distance from 
the fitted values of the HNRM: 

~ F ~  ^ S i  t ^ F~ ^ S i  
- (Yhnr,~ ), rain ( h~r Ysep) - Y s e p  Si m 

^ F~ where Yhnrm is the vector of fitted values in the 
ith group using the HNRM with all predictors 
included, and ^ s~ Y;ep is the vector of fitted val- 
ues in the ith group using an OLS model with 
only the predictors in set Si included. Since 
the HNRM yields estimates that are on average 
closer to the t ruth than O LS estimates, match- 
ing to the HNRM's estimates should lead to 
non-hierarchical models that yield better pre- 
dictions. 

2. Importance strategy, Ii: In each group, choose 
the set Si of predictors that leads to the smallest 
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prediction mean squared error: 

^ F i  ^ S i  t ^ F i  ^ S "  - - ( Y ; d p ) )  min(Yhn ~ E(Yiep) ) (Yh~rm E Si rn 

^2 
+P& Crseg ), 

where ^2 is the estimate of the conditional Oseg 

variance from fitting the full OLS model, and 
^ S~ -- (X  t& Xs~ S~ Yhnrm" Effectively, 

^F,  

this treats the fitted values from the HNRM as 
the true mean response of the full OLS model. 
I have also created procedures that  minimize 
AIC-like and BIC-like criteria, but I do not de- 
scribe these in this paper. 

3. Selection strategy, SI: In each group, use the 
predictors in the set Si from the model that  
minimizes the AIC if: 

. 

(Yh~rm - YSA}C) ( h~r~ 
^ Fi ^ Fi t ^ Fi ^ Fi 

( Z h n r r n  --  Z S e p )  ( Y h n r r n  --  Z S e p ) ,  

or else use the full O LS model. Here, Ysep is 
the vector of fitted values in the i th group using 
the OLS regression with all predictors included. 
This is similar to M1, but only two models are 
compared to the HNRM. 

Dimension strategy, DI: In each group, deter- 
mine the number of predictors to include, and 
then do best-subsets regression to select the 
model with the largest coeffÉcient of determi- 
nation, R 2, for that  number of predictors. The 
number of predictors in each group is the num- 
ber of predictors in the group's model after ap- 
plication of I1. 

Determining which, if any, of these procedures 
might be acceptable to Census clients is, of course, 
the responsibility of the Census Bureau. Roughly, I 
anticipate the ordering of acceptability to be similar 
to the order in which the procedures are presented. 

0 A s s e s s i n g  
t ion  s t u d y  

accuracy  via a s imula-  

To investigate the effectiveness of these procedures, I 
perform a simulation study. Data  sets are simulated 
from the following data  generation model: 

Y i j  =- X i j  f l i  + ~ij  , 
2 ~j  ~ N(0 ,  c~ ). 

Here Yij represents the dependent variable for the 
j t h  unit in the i th group, X i j  is a row vector of pre- 
dictors for the i j t h  unit, fli is a column vector of 

2 _ 40 regression coefficients in the i th group, and cr i 

is the conditional variance in the i th group. There 
are 50 groups with 40 observations in each group, 
and there are 14 predictors considered for inclusion 
in each group. The predictors are drawn indepen- 
dently from a N(O, I ) ,  and the intercept term is 0. 
This set-up does not correspond to ICM estimation, 
but it does facilitate investigation of the potential of 
medial information pooling strategies. 

With this simulation design, the variance matrix 
of the estimates of the OLS coefficients in the full 
model is on average the identity matrix.  This makes 
it easy to define values of the regression coefficients 
that  have meaningful interpretations: the value of 
a coefficient equals the number of s tandard devia- 
tions it is from zero. To examine the performance 
of the procedures at different distances from zero, I 
simulate six scenarios: 

1 m u = 4 :  flik = 4 for k = 1 . . .  14, i - 1 . .  50. 

2 m u = 3 :  flik = 3 for k = 1 . . .  14, i = 1. .  50. 

3 m u = 2 :  flik = 2 for k = 1 . . .  14, i = 1 . .  50. 

4 m u = l :  flik = 1 for k = 1 . . .  14, i = 1. .  50. 

5 m u = 0 :  /3ik - 0 for k = 1 . . .  14, i = 1. .  50. 

m u = 0 / 4 :  flik = 4 for  k = 1 . . .  7, i = 1 

flik = 0 for k = 8 . . .  14, i = 1 . . .  50. 
• . 5 0  

Thus, as we move from scenario m u = 4  to scenario 
m u = 0 ,  the predictors become less important .  The 
scenario m u = 0 / 4  represents the realistic scenario of 
a mixture of unimpor tan t  and impor tant  predictors. 

The procedures depend on finding a good-fitting 
hierarchical model. The hierarchical model I fit to 
this data  is the random coefficients model: 

2 ~ N(,, 

I estimate parameters  by maximum likelihood• In 
these simulations, the random coefficients model is 
very effective because of the large shrinkage in the 
direct estimates. Thus, this simulation study con- 
tains best-case scenarios for the procedures: if they 
cannot perform well when a HNRM is really helpful, 
they are unlikely to perform well in general settings. 

5. C o n c l u s i o n s  from the  s i m u l a t i o n s  

For each scenario, I simulate 4 data sets containing 
80 observations. I run the procedures on the first 
40 observations and use the resultant models to pre- 

dict the true dependent variables from the second 
set of 40 observations. I also make predictions using 
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the model that minimizes the AIC criterion (proce- 
dure MAIC) and the full OLS regression (procedure 
SEG). The results from all procedures are summa- 
rized on the graph at the end of this paper. Each 
symbol on the graph represents the average squared 
prediction error for a procedure divided by the av- 
erage squared prediction error for fitting a full OLS 
model. Thus, any procedure whose symbol is to the 
left of 1.00 is an improvement on full OLS regres- 
sion, and any procedure to the right of 1.00 is worse 
than OLS regression. The standard errors for the 
symbols on the graph are around 1%. 

Regardless of where the coefficients are, the 
HNRM yields about a 33% improvement in predic- 
tion accuracy. Of course, we cannot use the hierar- 
chical model because it is explicit data pooling. 

When the coefficients are four standard deviations 
from zero, all the medial information pooling proce- 
dures select the full OLS model. Thus, these pro- 
cedures are appropriately identifying and including 
the important predictors. On the other hand, MAIC 
performs 20% worse than SEG. MAIC drops predic- 
tors when their coefficients' estimates are sufficiently 
small, even though they are truly important. 

As the coefficients approach two standard devia- 
tions from zero, we see some separation in the pro- 
cedures: M1 jumps out to a 6% improvement over 
SEG. M1 drops predictors whose coefficients' esti- 
mates are far from their true values, even if the es- 
timates are far from zero. Other medial information 
pooling procedures perform similarly to SEG, while 
MAIC continues to perform poorly. 

When coefficients are one standard deviation away 
from zero, M1 increases to a 15% improvement in ac- 
curacy, and I1 yields about an 8% improvement in 
accuracy. I1 is beginning to identify and drop unim- 
portant predictors, and it is doing so more effectively 
than MAIC, which yields about the same accuracy 
as SEG. $1 shows a 3% gain in accuracy, indicat- 
ing that in some groups it is appropriately choosing 
the MAIC model and in other groups appropriately 
choosing the full OLS model. As in previous scenar- 
ios D1 hovers conservatively around 1.00. 

When all the coefficients equal zero, M1, I1 and 
D1 yield about a 28% improvement over SEG. All 
three procedures are doing an excellent job of picking 
off unimportant predictors. In fact, in this scenario 
the gains in accuracy are close to gains in accuracy 
from using the HNRM. In contrast, MAIC improves 
accuracy by only 16%. As expected, $1 mirrors the 
performance of MAIC. 

In the more realistic scenario with half unimpor- 
tant and half important predictors, M1 and I1 yield 
a 20% improvement, D1 yields a 9% improvement, 

S1 yields a 7% improvement, and MAIC yields a 
5% improvement. The medial information pool- 
ing procedures are identifying the important predic- 
tors while excluding the unimportant predictors, and 
they are doing so more effectively than MAIC. 

Although this is a limited simulation study, it 
seems clear that, by using medial information pool- 
ing procedures, we can substantially improve esti- 
mates without explicit data pooling. 

6. A p p l y i n g  these  ideas in Census  
2000 

A possible application of these techniques in Census 
2000 is to use multi-state information to help deter- 
mine the adjustment factors for the census counts in 
sub-state demographic and geographic post-strata. 
Using dummy variables to represent main effects and 
interactions for post-strata, we can build a hierar- 
chical model that smooths adjustment factors, and 
then use medial information pooling to construct a 
smoothing model in each state. If raking is to be 
used, predictors from the state-specific smoothing 
regressions can define the margins used in the rak- 
ing matrix for each state. With modifications, these 
procedures could also be based on log-linear models. 

For ICM, the medial information pooling proce- 
dures will have to be modified to account for known 
sampling variances and covariances of the estimates 
of adjustment factors. In future work, I plan to ex- 
plain these modifications. 
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