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Introduction 
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The Census 2000 Integrated Coverage Measurement (ICM) 
Survey will be used to provide census totals designed to 
correct the undercount, especially a differential undercount 
among racial, ethnic, and socioeconomic groups, that has 
been observed in every decennial census since 1940. The 
ICM survey will be designed to produce direct estimates of 
total population for each of the fifty states and will have a 
sample size of 750,000 housing units. This paper will 
present results of research on the causes and proposed 
remedies for sampling weight variation in the Census 2000 
ICM. 

where: 

u, = wp,,, u = ~ u , . . ,  = ~w t 

If  it is assumed that the sum of the weights, ~w~ = N, is 
constant across all samples in the design, then formula (2) 
becomes the following" 

varO:~) = var(u) 

Theory of Weight Variation 

Kalton (1983) notes that weights are used to compensate 
for the unequal probability of selection of sample units. 
Weights are also used in stratification after selection 
(poststratification) and in adjusting for nonresponse and 
noncoverage. A weighted sample mean estimator is 
actually a ratio estimator: 

In addition, if equal probability sampling is used, the 
weights, wi, are constant across the sample elements i and 
formula (2) reduces to the variance of the sample mean: 

varfy-- ) = var(y--) 

~wev l 
(1) 

Yw ~w l 

where w i is, in general, equal to the inverse of the 
probability of selection of sample element i. If the weights, 
wi, are constant across the sample elements i, then the 
formula (1) reduces to the sample mean formula: 

m 

Yw - - Y 

The variance of (1) can be calculated using the Taylor 
linearization approach as follows • 

Moreover, if one applies the weighted mean formula to the 
stratified sample mean, the following formula is attained: 

~hWhY-'yh, ~'hNff  h 
- = = = Y"hW~h = Y~t (3) 
Yw ylh w h~]i 1 ~hNh 

where the weight, Wh = Nh/nh, is constant for all elements 
within a stratum h but varies for elements in different strata 
assuming disproportionate allocation of the sample to the 
strata. If we further assume that the population variance is 
each stratum, Sh 2 ---- S 2, is constant, then it can be shown that 
a sample employing weight variation as in (3) will have a 
higher variance than an equal probability sample of the 
same size. 

Consequently, especially in sample designs employing 
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wide weight variation, methods to alleviate the problem 
have been investigated (Potter, 1988). In the present study, 
two methods will be evaluated using empirical data from 
the 1995 Test Census ICM. First, however, an illustration 
of the reasons for weight variation ib the ICM program will 
be given. 

Sources of Weight Variation in the Census 2000 ICM 

There are four potential sources of sampling weight 
variation in the ICM (Schindler, 1998). First, estimates 
calculated from person-level poststrata can have variable 
weights because persons in a given poststratum are divided 
among different block cluster-level sampling strata. These 
sampling strata may have disparate sampling weights. For 
the Dress Rehearsal (DR) Census, however, it has been 
decided to use proportional allocation of the sample to each 
sampling stratum. Proportional allocation will most likely 
also be used in Census 2000. 

A second source of sampling weight variation is the result 
of the disproportionately low sampling rate of census 
blocks in the 'small' substratum. Furthermore, if blocks 
that are thought to be small (0, 1, or 2 housing units) are 

• actually not small (10 or more housing units) a particular 
block can account for an abnormally large proportion of 
the weight of a particular poststratum group residing in the 
block. 

A third source of weight variation stems from the sub- 
sampling of large block clusters. One segment of 
approximately 30 housing units is selected from the block 
clusters containing more than 80 housing units. The 
variable weight from the sub-sampling when multiplied by 
the first-stage sampling rate results in disparate weights. In 
the DR ICM, large block clusters were sampled at a higher 
rate in the first stage to account for the subsequent sub- 
sampling. This resulted in sampling weights for large block 
clusters very close to the weights for the remainder of 
block clusters. This plan, however, resulted in an overly 
burdensome listing work load which required a further 
sub-sampling of large blocks to take place between the first 
stage sampling and the sub-sampling. This second sub- 
sampling resulted in sampling weight variation from large 
blocks. 

The final source of weight variation in the ICM is the result 
of differential nonresponse. In the ICM, weighting for 
nonresponse is done at the block cluster level resulting in 
weight variation within poststrata groups. 

Possible Remedies for Weight Variation in the Census 
2000 ICM Survey 

Two approaches to reducing weight variation in the ICM 
Dual System Estimates of census undercoverage were 
investigated I. These approaches are (i) observing the effect 
of various levels of weight trimming on mean square error 
(MSE) of the estimates (Potter, 1988; Cox and McGrath, 
1981) and (ii) computing optimal shrinkage weights as a 
function of within and between stratum variance and the 
unbiased stratum sampling weights (Stokes, 1989). 

Estimated Mean Square Error (MSE) Trimming 

One procedure to lessen the variance due to weight 
variation is to trim the weights and distribute the excess to 
other strata while maintaining the original sum of the 
weights. Potter (1988) refers to this technique as Estimated 
Mean Square Error (MSE) Trimming. It is well known that 
when sampling weights deviate from the inverse of the 
probability of selection bias in the estimates can occur 
(Cochran, 1977). On the other hand, trimming the larger 
weights can result in lower variance. The objective is then 
to minimize the MSE (the sum of the variance and the 
square of the bias) by trimming the weights to the point 
where the decrease in sampling variance is not yet eclipsed 
by the increase in bias. 

Griffin (1995) investigated these approaches using a two- 
strata design in the estimation of a proportion of a 
population with a characteristic of interest. Incidentally, 
using a two-strata design is quite appropriate to the 
generalization to multi-strata designs because Kish (1965) 
observed that the maximum loss in precision occurs when 
all the remaining weight is subject to the highest weight. 
Thus, for a fixed ratio of largest to smallest stratum weight, 
the greatest loss of efficiency occurs in the two strata case. 
In the present study we will apply this two-strata design to 
Dual System Estimates (DSE) of census population using 
empirical data from the 1990 Census Post Enumeration 
Survey (PES) and the 1995 Test Census ICM. 

In general the DSE is equal to the following" 

1 See Wolter (1986); Hogan and Wolter (1988); Mulry 
and Spencer (1988) for a detailed discussion of dual system estimation 
and census undercoverage 
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where: 

where: 

Also, 

DSE = C 
( 1  - Poo) 

( 1  - 13om ) 
(4) 

C = the census count 

fi 1 ^ .. =--7-[nl w f ..1 + n2kw f r o ]  
Np 

(5) 

Pore = ~1  [nlwlPoml + n2kW lfo.;] 
N e 

(6) 

:.., :..,, :..,, :o., fo.,, :o., 

are the estimated proportion of census erroneous 
enumerations in the total population, in stratum 1 
and in stratum 2, respectively, and similarly for 
census omissions 

and, 

P 

are the estimates of  the true population count, N, 
obtained from the E-sample and P-sample, 
respectively. 

wz=N~/n~ 

W2 - -  N2 / n 2 

W 2  --- k w  I 

where: 

k is a constant (the weight ratio) 

N~ and N 2 a re  the true population counts 

in strata 1 and 2, respectively, and 

N! + N 2 = N  

Consequently, 

n~w~ + n2w 2 = n~w~ + n2kw I = N (7) 

Further, using the first-order Taylor approximation we 
have the following formulas for the expected value, the 
variance, and the bias of the dual system estimate: 

E[DSE] - C (I - Eli 3oo1) (8) 

(I - E[13o.]) 

where: 

- l [ n l W l P  + n2kwlP,,,,:] 
e [ / ]  N "°' 

(9) 

E [ f o . ] - l [ n  IW 1P + n2kw iPo.~] N" oral ( lo)  

Next, 

N I 
P = --~-Po., + N2P (11) 

e.  N ee2 

- .P + (12) Pont N oml N om~ 

where Pee, Pe,~, and Pee2 a r e  the true proportion of census 
erroneous enumerations in the total population, in stratum 
1 and in stratum 2, respectively, and Pore, Poml, and Pore2 are 
defined similarly for census omissions. 

Var(DSE) - C2[ (I - P,,)]2[ Var(fiu) 
(I -Po,~) (I -Po)2 

Zar(P ) 2Cov(13o,13om ) 
- ] 

(1 - Pore )2 (1 -Pore)(1 - P o,) 
(13) 

where: 
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Var(: ) = 
D E F F w :  

N 2 
~ [ n l P ° ° l Q  oot +n2k 2P,°2Q,,2] (14) 

Var(1~o~ ) = 
D EFFw 

N 2 
~ [ n  lPo,,,1Q o,,,1 +n2k 2Pom2Q om:] 

(15) 

Coy(f rio.) = 

2 
-DEFFw I 

N 2 
[rt 1 Pool Poml + 

n:k2po°zPom2] (16) 

where DEFF is the design effect due to cluster sampling for 
the estimated erroroneous enumeration and omission rates. 
In the present study, the DEFF is a simple average of the 
design effects for the erroneous enumeration rate and the 
omission rate in stratum 1. Therefore DEFF = (DEFFee~ + 
DEFFom~) / 2. In addition, Qeeh = 1 - Pe,h, and Qomh = 1 - 
Pomh" 

Also, 

Bias(DSE)  = E[DSE] - Target  (17) 

where, 

Target = N = C 
(1 - Poo) 

(1 - P o r e )  

(18) 

Finally, 

M S E ( D S E )  : Var(DSE) + Bias(DSE)  2 (19) 

In the simulation conducted for the present study, each of 
the values used were taken from actual parameter values 
encountered in the 1990 PES or 1995 DSE. Following 
Cox and McGrath (1981) and Griffin (1995), an estimated 
mean square trimming analysis (MSE) was conducted 
using a two stratum design. First, a pair of Pee and Pom were 
alternatively set to actual values from each of the eight 
strata in Sacramento. For each pair of Poe and Pore values 

set from a particular stratum, two pairs of simulated values, 
Peel, Poml, Pee2, Pore2, were derived from the Peo and Pore. In 
addition, for each of the eight Sacramento strata, a 
simulated target population value, N, was set using formula 
(18). Values for N~ and N2 were then both set as 0.5*N. 
Similarly the value for n was taken from the particular 
stratum value. The simulated values for n~ and n2 were then 
calculated using a constant parameter value for the 
unbiased weight ratio, k, and the values N and N~ 
calculated above and inserted into formula (7). The values 
for w~ and w2 were then set. The DEFF was set as 
explained in the discussion that follows formula (16). 

Finally, simulated values for • 

Var(ff ), Var(l~om ), C ov(l~ u, l~om ), 

E[/~e ], E[/~om ], E[DgE], 
Var(DY}E), Target, Bias(DSE),  M S E ( D S E )  

were then calculated using the values set above and 
inserted into formulas (14), (15), (16), (9), (10), (8), (13), 
(18), (17), and (19), respectively. 

In all for the present study, for each of the eight simulated 
pairs of 'true' values for Pee and Pore as well as for N, N~, 
N2, n, n~, n2, and for DEFF, eight additional sets of 
simulated 'true' values for P~, Poml, Pee2, Pom2 (one for each 
of the eight strata) were calculated resulting in 64 
combinations of simulated values inserted into the 
variance, covariance, expected value, bias and MSE 
estimators listed above. 

Next, for each of the following : 

Var(DSE),  Bias(DSE),  M S E ( D S E )  

a simple average of the 64 values was calculated for the 
each of the series of unbiased weight ratios, k = 25, 20, 25, 
10, and 5. For each of these unbiased weight ratios, k, the 
biased weight ratio, j, was successively decremented by 1 
and replaced in k (creating a new set of 64 variance and 
bias values) until the minimum average MSE was obtained. 
The results showing the optimal trimmed weight ratios 
resulting for each unbiased weight ratio, k, are shown in 
Table 1. 
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For each of the unbiased weight ratios, the plot of average 
MSE values by trimmed (biased) weight ratio formed a 
"U" pattern. As the weight ratio was trimmed from the 
unbiased weight ratio, the variance decreased and the bias 
increased so that the average MSE decreased to the optimal 
point and then began rising again. This result was 
consistent with the pattern found by Griffin, 1995. 

Calculation of Shrinkage Weights 

A second method employed for determining the most 
favorable weight was the shrinkage method (Stokes, 1989; 
Griffin, 1995). 

Stokes(1989) puts forth that the optimal weights are a 
weighted average of the unbiased sampling weight in 
stratum i, w~ = Nine, and the proportional sampling weight, 
N/n. The optimal weights are determined by the relative 
variability of the estimator within each stratum with that of 
the estimator between the strata. This value is 
characterized by B which is calculated as follows • 

2 
1; l 

n 
B : ~ (20) 

2 

[o ~ + ~I 
/'/l 

where, 

a:t 2 = population variance within stratum i 

0 .2 --" population variance between strata 

n~ = sample size in stratum i 

In the present study, 

In the present study the following formulas were used to 
calculate the stratum i shrinkage weight, w~i, for each 
unbiased weight, w~ = 25, 20, 15, 10, and 5" 

w a = Bt(N) + (1 - Bl)w t (21) 
n 

W ith Var l 
B~ = (22) 

WithVar I + BetVar 

WithVarl  = 1--(P..,Q..I + PomlQomt) (23) 
n l 

BetVar  = "~"((P,,,1 - P c . 2  )2 + (Poml  + Pom2 )2) 
4 

(24) 

The ratio the stratum shrinkage weights, ws2 / wsl for each 
unbiased weight, was then calculated and averaged for the 
same 64 combinations of values of Peel, Pee2, Poml, and Pore2 
as in the MSE analysis (Table 1 .) 

Table 1. Unbiased and Optimal Trimmed 
Weight Ratios Using Minimum MSE 
and Shrinkage Approaches 

Unbiased Biased Weight Shrinkage 
Weight Ratio with Minimum Weight 
Ratio Average MSE Ratio 

25 10 17.82 

20 9 14.70 

15 8 11.42 

10 6 7.94 

5 4 4.22 

Discussion 

The discrepancy found between the results of the minimum 
MSE and shrinkage approaches may be due to the large 
emphasis put on the unbiased weight in the shrinkage 
weight formula. Our preference would be the more direct 
approach of the minimum MSE technique. 
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This is also more consistent with the anticipated approach 
to the research that will be done on weight variation 
following the 1998 Dress Rehearsal ICM. 

Conclusion 

If weight trimming is called for in the Census 2000 ICM 
program, this research along with that of Griffin (1995) 
provides efficient values to which to trim the most extreme 
weights. Further research will concentrate on an empirical 
investigation of the 1998 Dress Rehearsal ICM results to 
see if which of our findings in the present study are 
corroborated. Weight trimming is not expected to be 
implemented in the Dress Rehearsal ICM but is a 
possibility for the 2000 Census ICM. 
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