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1. INTRODUCTION 

The literature on longitudinal surveys proposes several 
approaches to producing a set of final weights to be 
used in data analysis. A common feature of these 
approaches is that they are weight modification 
procedures. That is, a set of initial weights is 
transformed into a set of final weights, in one or more 
steps of varying complexity. 

The weight modification procedure commonly found in 
the literature is performed in three steps. The first step 
adjusts the sampling weights to reflect the fact that the 
size measures used in selecting primary sampling units 
(PSUs) are not perfectly accurate at the time of the 
survey. At Statistics Canada, most of the longitudinal 
household surveys use only a subset of the Labour 
Force Survey (LFS) as their data collection vehicle. 
Consequently, the LFS subweights (which are the 
inverse of the selection probabilities adjusted to reflect 
design and allocation changes over time) have to go 
through a first weight adjustment to compensate for the 
subsampling of the LFS to obtain what is called the 
initial weight. 

The second step adjusts the initial weights to reduce the 
potential bias that can be introduced by nonresponse. 
The step that produces the final weights consists in a 
poststratification, or more generally a calibration (see 
Deville and S~irndal, 1996), to benchmark the weights 
to population control totals known from an external 
source. 

A common aim of all weight modification procedures 
is to produce, in some sense, the "best" possible set of 
final weights. One hopes, by different steps, to include 
in the final weights any information deemed to be 
relevant, considering that different users may be 
carrying out different kinds of statistical analyses with 
the aid of the final weights. At the same time, it is 
clear that parts of the weight modification procedure 
may have negligible impact on the final weight system. 
For example, a step may be simplified without causing 
any significant changes in the final weights. 

The main objective of this paper consists of studying 
and measuring the change (between initial and final 
weights) produced by the adopted weight modification 
procedure. The following section presents a general 
framework for longitudinal weighting. Section 3 
introduces a measure of change that will be used to 
quantify and to understand the transition from the 
initial weight to the final weight. Some adjustment 
strategies to deal with nonresponse, found in the 
literature, are presented in Section 4. Section 5 gives a 
few empirical comparisons using two of Statistics 
Canada's longitudinal household surveys, namely the 
Survey of Labour and Income Dynamics (SLID) and 
the National Longitudinal Survey of Children and 
Youth (NLSCY). Concluding remarks are given in 
Section 6. 

2. GENERAL FRAMEWORK FOR 
LONGITUDINAL WEIGHTING 

In a longitudinal survey, persons who are part of the 
original sample and who are followed through time are 
usually referred to as longitudinal persons. It is this set 
of persons that will be used in this paper. More 
precisely, the emphasis will be put on every responding 
unit, k e-r, where r is the set of responding units. The 
current section presents an overview of the steps 
followed to modify the initial weight of the 
longitudinal persons into a final weight. 

2.1 Initial weight 

For this paper's surveys, the initial weight, Wok, has the 
structure Wok = x i  ~ *fk where xk ~ is the LFS subweight 
and j~ is the compensation factor for subsampling. 
Thus, we will have a weight, Wok, for all k ~ s, where s 
represents the entire sample. In the absence of 
nonresponse, the weight system {Wot: k ~ s} would 
yield an estimator for Y according to the formula 
2,Wo~Vk. Being (essentially) unbiased for Y, its only 
drawback would be that it-does not incorporate 
auxiliary information in the form of known control 
totals for poststrata. 

2.2 Nonresponse adjustment and intermediate 
weight 

Most, ff not all, surveys face nonresponse. Despite 
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numerous efforts, some reference units remain without 
response for various reasons: refusals, special 
circumstances, temporary absence, etc. To compensate 
for this nonresponse, a frequently used method consists 
of proportionally adjusting the initial weight of the 
responding reference units by the inverse of the 
weighted response rate. These adjustments are usually 
performed within response homogeneity groups 
(RHG), such that each group is formed of reference 
units believed to have a similar probability of response. 

Nonresponse reduces the sample size due to the fact 
that the value Yk is available only for k e r. For this 
reduced set of data, the weights wok are too small on 
average and the estimator E~WoO'k is not admissible 
since it will systematically underestimate Y. 

The nonresponse adjustment consists of multiplying 
Wok, for each unit k belonging to the same RHG, by a 
factor equal to the inverse of the weighted response rate 
in this particular group. This operation yields an 
intermediate system {wlk: k E r} that could be used to 
construct an admissible estimator ZrWl~k. It eliminates 
the underestimation that characterises ErWo~k. Its 
principal drawback is that it also fails to incorporate the 
available information for the poststrata. 

2.3 Poststratification and final weight 

A procedure commonly employed in surveys consists 
of modifying weights in such a way that the sum of the 
final weights corresponds to known population control 
totals of certain auxiliary variables. This procedure 
insures the sample will be representative, at least with 
respect to a certain set of variables. The choice of such 
variables is often limited by the availability of control 
totals. Demographic variables such as age and sex or 
geographic variables such as province or region of 
residence are frequently used. Various methods can be 
used to calibrate the weights to the chosen control 
totals. The choice of one of these methods is often 
dictated by the chosen variables and the number of 
control totals to respect. Weights obtained after this 
step are generally considered as the final weights and 
are noted w2k. This step produces the system {w2k : k 
r}, which incorporates the auxiliary information and 
achieves, at the same time, consistency with respect to 
the control totals for the poststrata. 

3. MEASURE OF CHANGE FROM INITIAL TO 
FINAL WEIGHTS 

We assume that the initial weights have been scaled so 

that ~-,sWok = N. Then, the three systems of weights 

described in section 2 verify the following relations: 

ZWo, <N,y'.Wl,=N,Ew,,=N 
r • • 

Let us define 

wl = k x and w 2 = x i, 

The ratio ~ measures the average change of the 

intermediate weight system relative to the initial 
system. As nonresponse increases, ~ moves further 

away from a value of 1, which it is equal to only in the 
case of full response. 

The ratio ~-2 represents the average change of the final 

system relative to the intermediate system. In practice, 
its value is close to one. For example, for Statistics 
Canada's LFS, ~-2 is close to 1.10. 

The ratios ~ and ~-~ measure an average weight 

change. To measure individual weight change, we 
define, for all k e-r, 

l"l k ~ ]'t21k Ok a n d  

These quantifies vary around an average value of one. 
More precisely, we have the following weighted 
averages: 

Z Wok r]k Z Wlk rEk 
_ r - - 1  

" ~  W ok W]k 
r r 

The quantifies r l k  and r2k will be helpful in measuring 
individual weight movements according to the 
procedure that we now explain. 

The total change that the weighting system goes 
through, from the initial system to the final system, via 
the intermediate step, can be calculated by a measure of 
distance. In this paper, we will use the following 
distance: 

Zwo,(W, 1 x Zwo, 
~, Wok 

This is a weighted average of the individual weight r-,./' ( / '  change factors -1 = ~W2kx ~ -  w tk 1 . We 
~, Wot Wtk Wot 

have D_>O, with equality holding when both of the 
following conditions are satisfied: 
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(i) 

(ii) 

absence of nonresponse (r=s and 
wlk=wok for all k) 
poststratification has no effect on the 
intermediate weights (W2k=W~k for all 
k). 

Normally, D > 0. One factor that will tend to increase 
the value of the distance D is a high nonresponse rate 
since, in such a case, W lk is considerably larger than 
Wok, on average. 

The distance D can be decomposed into four 
components according to the following equation: 

D = Ro~ + R12 + R~ + G 

where: 

ZWok (ru, - l) 2 

" EWo, 
r 

Z wok rt2k (r,, - 1) ~ 
RI 2 : (~1 ~'212 r 

Z W0k 
I" 

Z o, ,,, (r,,- I) (r,, - 1 )  

Z Wok 
r 

' 

The interpretation of these terms is as follows. The Roa 
term measures the individual changes that the weights 
undergo between the initial and the intermediate step. 
In the present case, it is the change due to the 
nonresponse adjustment. The R~2 term measures 
individual changes between the intermediate and the 
final step, which is the change due to poststratification 
in the present case. The R~nt term measures interaction 
between the two types of changes. Finally, the G term 
measures the average weight change between the initial 
and the final step. A high rate of nonresponse will tend 
to make G larger. 

For a given survey, we can draw some important 
conclusions by looking at the relative importance of the 
three terms Ro~, R~2 and Rint. If Rol is large, and at the 
same time Ra2 is small, the survey is one where the 
nonresponse adjustment causes important movements 
in the weights, while poststratification does not change 
the weights very much. In the inverse situation, where 
R~2 is rather large while Ro~ is small, the nonresponse 

adjustment has little effect on the weights but the 
poststratification causes important changes. The sign 
of Rint will indicate if both types of change move in the 
same direction (Rmt > 0) or in opposite directions (Rmt 
< 0). Often, Rint is numerically small. 

4. VARIOUS STRATEGIES FOR 
NONRESPONSE ADJUSTMENTS 

Traditionally, two approaches have been used to 
compensate for nonresponse: imputation and weighting 
adjustments. The latter is most commonly used to 
compensate for total nonresponse, while imputation is 
often used to compensate for partial nonresponse. 
There are several weighting adjustment procedures that 
can be used to compensate for total nonresponse. A 
common approach is to divide the sample into a set of 
RHGs. The idea is to group people who have a similar 
probability of response, so that a uniform response 
mechanism can be assumed in each RHG. Then, a 
nonresponse adjustment factor is applied within each 
RHG. 

RHGs are based on auxiliary information available for 
both respondents and nonrespondents. In many 
surveys, little information is available for 
nonrespondents, beyond the PSU and straaun 
membership. Here, the choice of possible RHGs is 
very limited, and the procedure can be applied directly 
using the swam as the RHGs. This assumes that the 
response probability is the same within a stratum. This 
assumption may often be questionable. Nevertheless, 
this procedure is the best possible one under the 
circumstances, given that no other information is 
available for nonrespondents. However, in longitudinal 
surveys, there is often much information available for 
both respondents and nonrespondents from previous 
waves. This extensive auxiliary information can be 
used to create efficient RHGs in which the assumption 
of a uniform response mechanism within a RHG is 
more likely to hold. This would result in a better 
nonresponse adjustment and consequently in a 
reduction of the risk of a nonresponse bias in the 
survey estimates. 

4.1 Variable selection method 

By definition, RHGs are formed by a set of predictors 
of response propensity. In longitudinal surveys, many 
variables could be candidates for use in a nonresponse 
adjustment procedure. In our ease, we use the 
following approach. First, discussions are held with 
subject matter experts to determine a set of potential 
predictors of response propensity. Note that 
categorical variables are usually transformed into 
dichotomous ones to simplify the analysis. An initial 
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screening of variables is then performed using 
univariate tests in order to reduce the large number of 
variables to a more manageable set. Finally, a variable 
selection method is used to select the best set of 
predictors of response. Common variable selection 
methods are the logistic regression (LR) method and 
the segmentation modelling (SM) method. 

4.1.1 Logistic regression approach 

LR analysis seems a natural method for selecting the 
best set of dichotomous predictors. We use the 
response status as the dependent variable and, using 
standardised weights and the stepwise procedure, we 
obtain a list of the most significant predictors of 
response propensity. The RHGs are created using all 
2 k combinations of a selected set of k predictors. This 
method of creating RHGs is often referred to as the 
symmetrical approach. Note that some constraints can 
be added when creating the RHGs. For example, a 
minimum group size of 30 and a minimum weighted 
response rate (RR) of 50% in each RHG can be 
required. This way we obtain 2 k - M valid 
combinations, where M is the reduction caused by 
collapsing of RHGs when the minimum requirements 
are not met. Kalton and Kasprzyk (1986) suggest these 
kinds of constraints to avoid a large variance in the 
weights and a possible loss of precision in the survey 
estimates. 

4.1.2 Segmentation modelling approach 

Another method that can be used to form the RHGs is 
SM, based on the CHAID (Chi-square Automatic 
Interaction Detection) algorithm. This method splits 
the sample into smaller subgroups based on their 
response rates. The splitting process continues until no 
more statistically significant predictors can be found. 
The final subgroups become the RHGs, m which our 
nonresponse adjustments will be calculated. Note that 
all minimum requirements (example: n>30, RR>50%) 
have to be met in each RHG. SM method is often 
referred to as the nonsymmetrical approach. It is 
important to mention that changing the significance 
level of the tests will lead to a different number of 
statistically significant predictors and thus to a change 
in the total number of RHGs created. 

4.1.3 Nonresponse adjustment factors calculation 

The RHGs can be created using either the LR method 
as described in 4.1.1 or the SM method as described in 
4.1.2. Since a uniform response mechanism is assumed 
in each RHG, the nonresponse adjustment factor is 
simply given by the inverse of the weighted response 
rate in the RHG with Wok being the weight used. 

5. EMPIRICAL COMPARISONS 

To compare the efficiency of the two variable selection 
methods, a simulation study was done using data from 
SLID, a longitudinal rotating panel survey selected 
with a complex design. This survey was conducted for 
the first time in 1994 with a sample size of 15,000 
households, including approximately 31,000 adults 
(Lavigne and Michaud, 1998). SLID follows the same 
respondents for six years. We have also analysed data 
from NLSCY, another Statistics Canada longitudinal 
survey. The first NLSCY cycle of data collection took 
place from November 1994 to June 1995. The initial 
sample for this first wave included some 29,000 
children from 0 to 11 years of age (Michaud, Morin, 
Clermont and Laflamme, 1998). Data collection will 
be repeated at two-year intervals. The children 
originally surveyed in the first wave will be followed 
over time until adulthood. 

5.1 Description of the empirical study 

As a first step, the probability of response was 
estimated for every unit in SLID's sample. This was 
done using a very large number of RHGs (without any 
constraints on the RHGs' size or RR) that included 
both SLID's respondents and nonrespondents. Then, 
along with their estimated probability of response, 
respondents were kept as our reference sample for the 
simulation. The size of this sample was about 25,000 
persons. From our reference sample, nonresponse was 
generated using a Poisson sampling procedure. This 
process was repeated 100 times to create as many 
respondent and nonrespondent sets; the resulting 
response rate was 90% on average. For all 100 
repetitions, the LR approach was used to create RHGs. 
However, for the SM approach, RHGs were created 
only for the first 20 repetitions since manual 
intervention and usage of a specific software package 
(such as Knowledge Seeker) are required. Different 
variations of these variable selection methods were 
studied: 

a) LR_i where i indicates the approximate average 
number of RHGs generated with the method (i=4, 16, 
40, 60). For example, LR_40 means that LR was used 
to identify the k=-6 most important predictors of 
response. RHGs were then created using all the valid 
combinations of these k=-6 predictors. In our case, 
because of additional constraints, M was equal to 24. 
Therefore, a total of 2 k -  M = 2 6 -  24 = 40 RHGs were 
formed. In our simulation study, LR_i with i=4, 16, 
40 and 60 RHGs, corresponds to k =2, 4, 6 and 8 
predictors respectively. Note that since the number of 
valid combinations using k predictors can vary from 
one repetition to another, the value of i is in fact an 
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average over the 100 repetitions. For each of them, the 
k most important predictors of response were identified 
using LR with the stepwise option, RHGs were created 
from valid combinations based on these predictors, and 
a set of weights was produced. 

b) SM_ i where i indicates the approximate average 
number of RHGs generated with the method (/=16, 25, 
40), i being an average number over the 20 repetitions. 
For example, SM_16 means that SM was used with a 
given significance level and 16 RHGs, on average, 
were created. In our simulation study, SM_i with i= 16, 
25 and 40 RHGs, corresponds to the following 
significance levels: 0.0001, 0.0005 and 0.0025, 
respectively. For each of the 20 repetitions, a set of 
RHGs was created based on Knowledge Seeker's 
results and a corresponding set of weights was 
produced. 

In addition to (a) and (b), a method with only one RHG 
was used in our simulation study for comparison 
purposes. This method consisted of defining the whole 
sample as the one and only RHG. A set of weights was 
produced, using this particular method, for each of the 
100 repetitions. Note that this method is effective only 
if nonresponse is uniform within the sample. 

For each repetition, eight sets of final weights were 
produced. Each set of weights is the result of two 
steps: an adjustment for nonresponse (by one of the 
eight methods mentioned: single RHG, LR_i with i = 
4, 16, 40, 60 and SM_i with i = 16, 25, 40) and a 
poststratification (which is the same for all eight 
methods). 

5 . 2  R e s u l t s  

For each of the eight methods discussed in the previous 
section, we studied each component of our measure of 
change D (described in section 3), as well as 
nonresponse bias and variance of the estimates. 
Estimates were produced for various variables of 
interest and for various domains. However, because of 
space limitations, only estimates of the total number of  
persons living in a family whose income is below the 
low income cutoff for the reference year are presented 
in this section. It is important to mention that given the 
large sample size, the low nonresponse rate (10%) and 
the fact that a large number of control totals were used 
in the poststratification, the relative bias of any of the 
studied methods is very small (less than 1%) when the 
whole population is the domain of interest. However, 
the relative bias can quickly increase for smaller 
domains. 

The measure of change D (the total change the weights 

go through, from the initial weights to the final ones) 
was calculated for each set of weights. The average of 
D over the repetitions, is presented for each of the eight 
studied methods in Graph 1. The graph shows that, 

Graph.l Distance (D) by nonresponse 
adjustment method 
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within a method, as the number of RHGs increases, the 
measure of change, D, also increases. Also, the overall 
change is higher for SM than for LR. Given that, for a 
given sample, the term G is constant, the term Rint is 
close to zero and the term R~2 is approximately 
constant, it is clear that variations in D are mainly due 
to variations in the Ro~ term. 

Graph 2. Contribution (in %) of Rol to D for 

d i f f e r e n t  nonresponse adjustment methods 
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Graph 2 shows that the Rol terIn accounts for a greater 
percentage of the total distance D in the SM method 
than in the LR method, for a given number of RHGs. 
For example, for SM_40, Rol contributes to 32% of D, 
compared to 16% for LR_40. 

This means that the individual weight changes, apart 
from the average change, between the initial step and 
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the intermediate one (which, in the present case, is the 
nonresponse adjustment) are greater for SM than for 
LR. This leads us to expect the SM method to be more 
effective in reducing nonresponse bias, for a fixed 
number of RHGs. This expectation is confirmed by 
Graph 3, which shows that the nonresponse bias (for 
our variable of interest) is smaller for the SM method 
than for the LR one. 
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Graph. 3: Bias comparison of nonresponse 
adjustment methods 
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Variance estimates were also produced by a jackknife 
procedure for each of the point estimates. The average, 
over the 100 repetitions, of the variance estimates are 
approximately the same for each method studied. 
However, there is a slight decrease as the number of 
RHGs increases, within both LR and SM methods. In 
addition, variance estimates for SM appear slightly 
smaller than those for LR. 

It is of interest to mention that nonresponse bias has 
also been studied for other variables of interest, as well 
as for various domains, through our simulation study 
using SLID data. In a large proportion of the cases, 
SM performed better than LR in creating efficient 
RHGs. The same conclusions were also found using 
production data from NLSCY. 

6. CONCLUSION AND FUTURE WORK 

This paper points out that the choice of RHGs and of 
the method to define them depends on the following: i) 
the available auxiliary information; ii) the desire to 
reduce nonresponse bias for all survey estimates; and 
iii) time and operational constraints. The empirical 
study shows that SM is better than LR in creating 
efficient RHGs and, consequently in reducing 
nonresponse bias. The results also indicate that the 
proposed measure of change, D, can be a very useful 

tool for comparing different weighting strategies. In 
particular, it seems that the larger the Rol term, the 
greater the biasreduction obtained by using the 
corresponding RHGs as nonresponse adjustment 
groups. Since it is not usually possible to get precise 
estimates of the nonresponse bias in a sample survey, 
the relationship that we have found between the size of 
the easily computed component Rol and the bias 
reduction suggests to use Ro~ as a tool for nonresponse 
treatment as follows : compute Ro~ for alternative sets 
of RHGs; the set with the largest value of Ro~ has the 
potential to be more effective than the other 
alternatives for reducing nonresponse bias, for most 
variables of interest. 

Future work includes carrying out further empirical 
studies in order to corroborate and extend the results 
presented in this paper. The study reported in this 
paper could, for example, be repeated with other 
variables of interest, various nonresponse rates and a 
larger number of repetitions. It would also be 
interesting to study other Statistics Canada's 
longitudinal surveys, both economic and social. 
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