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Abstract"  

Sampling, both adaptive and non-adaptive, is usu- 
ally conducted after dividing the study region into 
sample units by placement of a sampling frame. For 
cases where the population can be represented on a 
finer scale, it may be desirable to collect the sample 
without the use of a frame. In this paper, we study 
populations that  can be considered to be realizations 
of point processes. For these populations, an initial 
sample can be collected by uniformly choosing sam- 
ple point locations from within the study region, and 
then sampling point objects close to these point lo- 
cations. Additional point objects can be added to 
the sample during an adaptive stage, ultimately al- 
lowing for the calculation of various unbiased adap- 
tive estimates of the population mean or total. This 
paper will present and discuss estimators for these 
"frame free" designs. Like the frame based designs, 
these designs allow Hansen-Hurvitz and Horwitz- 
Thompson type estimation, as well as appropriate 
Rao-Blackwellization. 

1. I n t r o d u c t i o n  

The last decade has seen the introduction of the 
adaptive sampling designs, which allow for efficient 
sampling from rare and clustered populations [2]. 
These designs are known as adaptive since they pro- 
ceed in two stages: an initial random sampling stage, 
and a secondary adaptive stage in which additional 
sampling effort is applied near "informative" units 
revealed in the first stage. These methods were orig- 
inally developed for adaptive cluster sampling after 
a first stage simple random sample, and have since 
been extended to other classical designs such as sys- 
tematic [3], and stratified sampling [4]. This work, 
as well as other more recent work has been summa- 
rized in a book by Thompson and Seber [5]. 

Thanks to George Chao and Arthur Dryver for comments 
on an earlier version. 

For the sampling of spatial observations, most re- 
search on adaptive designs has assumed that  sam- 
ples are collected from a sampling frame, which is 
here considered to be a square or rectangular grid 
that contains the units of the population. In the 
case of spatial sampling of a marked point process 
{y(x) : x C 79} where countable index set 79 C ~d 
(we will often assume d = 2), the sampling frame 
would be superimposed on a realization of the pro- 
cess, and for the N units of the frame, unit i would 
provide an associated response yi. Typically this re- 
sponse would simply equal a count of the number of 
point objects in that frame unit. 

Alternatively, a sample from the realized point 
process can be collected without the placement of 
a sampling frame. By this approach, the point ob- 
jects (and not frame units) are labeled from 1, ..., N, 
where point object i located at x i  has an associated 
response of interest Yi = f ( y ( x i ) )  where x i  is the 
location of point object i, and y ( x i )  is a vector of 
attributes of point object i. A sample of n point lo- 
cations z l, ..., Zn are uniformly chosen from within 
the study region (a volume A of ~d where 79 C A) 
and point objects are then included in the sample 
depending on whether they are close in some sense 
to these point locations. 

Estimators for designs of this type were first pro- 
vided by Roesch [1] who considered designs with un- 
equal probability sampling in the first stage. Ad- 
ditional discussion can be found in Thompson and 
Seber [5]. In this paper, the earlier work will be ex- 
tended to provide estimators for a variety of other 
frame free designs. 

2. T h e  f r a m e  b a s e d  a d a p t i v e  s a m p l e  

A standard frame based adaptive cluster design has 
two sampling stages. In the first stage, a simple 
random sample of n units is collected from the pop- 
ulation. Units from the first stage that  satisfy some 
condition then have neighboring regions sampled in 
a second, adaptive stage. This adaptive stage may 
reveal other regions which contain units that  sat- 
isfy the condition, and these units in turn have their 
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neighboring regions sampled. Sampling continues 
until all neighboring regions of units that satisfy the 
condition have been sampled. The algorithmic na- 
ture of an adaptive sampling design allows the con- 
struction of unbiased estimates of parameters of in- 
terest since once a group of units satisfying the con- 
dition has been discovered, it is then known a pos- 
teriori what the probability of selecting that group 
was given the initial simple random sample. 

3. T h e  n o  f r a m e  i n i t i a l  s a m p l e  

When a sampling frame is not present, the initial 
sample will be obtained by uniformly choosing n 
point coordinates z l , . . . , z n ,  and associating with 
these points the label sets sl ,  ..., sn where point ob- 
ject label j E si if I ( x i  E Aj) = 1. The sets 
A1, ..., AN give inclusion regions of ,4 in which place- 
ment of a sample point location leads to the sam- 
pling of a given point object. Often the sets can be 
specified as the region in which f ( z ,  x j ,  y ( x j ) )  < rl ,  
where function f ( z , x j , y ( x j ) )  will be refered to as 
an inclusion function. Some examples of the sets 
are: 

1. If f ( z ,  x j , y ( x j ) )  - I I z -  xjll½ then Aj is a 
circular/spherical region of radius rx centered 
on point object j.  

2. If f ( z ,  x j ,  y ( x j ) )  = min(Izk  -- Xkl) where x j  = 
(xl, x2, ..., Xd) then Aj is a square/cubic region 
of width 2rl centered on point object j. 

3. If f ( z ,  x j , y ( x j ) )  - d j l l z -  xjll½ then there is 
probability proportional to size sampling. In 
Roesch [1], point objects (trees) were included 
depending on their diameters, and so in this 
case dj is a scaling factor for the diameter of 
tree j. 

4. If point locations are allocated to disjoint sets 
that partition A, and Aj equals the disjoint set 
to which point object j belongs, then the dis- 
joint sets will describe "units" for a sampling 
frame based design. 

An example of an initial sample for a square in- 
clusion function is given in Figure 1. In the figure, 
a sample of three point locations has been taken, 
and around each the "sample unit" region outlined. 
This is the region that would be physically sampled 
in search of point objects. Of the three sample point 
locations, the first lies within the sampling regions 
of two point objects. The third sample point was 
closer than r~ to the study region boundary, and 
if desired, point objects could be sampled from the 

other side of the study region if the inclusion func- 
tion was allowed to 'wrap' around to the other side 
(dotted lines). 
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Figure 1" Initial no frame sample 

4. T h e  n o  f r a m e  a d a p t i v e  s a m p l e  

There are two methods that can be used to decide if 
point satisfy the condition: a single point object con- 
dition and a multiple point object condition. Note 
that without a sampling frame, the adaptive con- 
dition is satisfied by point objects, and not units. 
Once adaptive sampling is finished, the final sample 
data D will consist of the locations and responses 
of all point objects discovered, as well as locations 
sampled in search of point objects. 

4.1 T h e  s ing le  p o i n t  o b j e c t  c o n d i t i o n  

By this method, sample point objects satisfy the 
condition if their response exceeds a constant value 
c, that is, point object j satisfies the condition if 
yj > c. Adaptive sampling is initiated by allocat- 
ing each sample point object to its own network set, 
creating network sets nl , . . . ,  nK where there were K 
point objects in the initial sample. If any network 
sets are equal, then they are collapsed into a single 
network set, and the remaining sets are relabelled. 
The adaptive sampling then iterates over all point 
objects that satisfy the condition, applying adap- 
tive inclusion function g(xi ,  x j ,  y ( x j ) )  from point 
object i E nk to j ~[ nk where point object i sat- 
isfies the condition. Include point object j in nk if 
g(xi ,  x j ,  y(xj) )  < r2 and g(x j ,  x i ,  y ( x i ) )  < r2 and 
j satisfies condition. Whenever nk = nk, k ~ k ~ re- 
move nk, and relabel. The adaptive inclusion func- 
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tion is not necessarily the same as the initial sample 
inclusion function, and is applied in a way that  en- 
sures that  point objects i and j will include each 
other regardless of which one was sampled first. 

4.2 T h e  multiple point object condition 

In the multiple point object method, sample point 
objects satisfy the condition if the sum of the re- 
sponses within a given label set exceeds the specified 
value, in this case point object j satisfies the condi- 
tion if ~-~iCsk Yi > C where j C Sk. This method will 
require that  the same inclusion function be used for 
the initial and adaptive stages, where the inclusion 
function does not depend on point object attributes. 
Adaptive sampling begins by setting network sets 
rtk = 8k k = 1, ... ,  n and then iterates over point ob- 
jects that  satisfy the condition, to determine if any 
point objects not in a given network set should be 
added to that  set. A point object is added to a net- 
work set if it is sufficiently close, and if an initial 
sample point could have been placed such that the 
point object would satisfy the condition. That  is, if 
point object j is not in network set nk then include 
point object j in nk if there is a location z such that 
I(z  C Aj) = 1 and I (z  C Ai) = 1 for some i C nk 

N 
and ~-~-i=1 yiI(z C Ai) > c. 

By either the single point object or multiple point 
object approach, the population of point objects will 
be uniquely partitioned into networks. As well, dur- 
ing the adaptive stage, for some networks there will 
be point objects which are close in the sense that 
they are within rl (multiple point object case) or r2 
(single point object case) of the network and yet do 
not satisfy the condition. These point objects be- 
have as "edge units" do for a frame based sample by 
not contributing to later estimators, unless they are 
in the initial sample or there is Rao-Blackwellization. 

5. In i t ia l  s a m p l e  u n b i a s e d  e s t i m a t o r s  

It is useful to first consider the estimators that would 
be used if there was no adaptive stage in the sam- 
ple design. Two well known unequal probability 
sampling unbiased estimators that  can be used are 
the Horvitz-Thompson estimator and the Hansen- 
Hurwitz estimator. 

5.1 Horvitz-Thompson estimator 

The Horvitz-Thompson estimator of the population 
total ~ -  ~-~iN1 Yi is 

N 

E Y--J-~Ii 
7ri i - 1  

where Ii indicates whether point object i was in- 
cluded in the sample, and ~i is its inclusion proba- 
bility. This probability can be calculated as 

a i ) n  
7 r i - 1 -  1 - - ~  

which is one minus the probability that  the point 
object is not present in the sample since A is the 
area of the study region and ai is the area in which 
placement of a sample point location leads to inclu- 
sion of point object i in the sample. The area ai can 
be found according to ai = f I (z  C Ai)dz. These ai 
can be considered in some cases to provide the area 
of the sampling "units". 

The variance of the Horvitz-Thompson estimator 
is 

N N 
V ar[~-]- E E 7 r i j  - -  7 r i T r j  

i=1  j = l  7riTrj Y i Y j  

with the 7riy being joint inclusion probabilities for 
point objects i and j in the sample. They are given 
by 

[( (1 
An unbiased estimate of the variance is then 

N N 
Va~r[~] - E E 7rij - 7riTrj 

i=1  j = l  7riTrjTrij 
yiyjIiIj 

where Ii and Ij indicate inclusion of point objects i 
and j in the sample, respectively. Note that  7~ij = ~i 
i f / = j .  

5.2 Hansen-Hurwitz estimator 

A second unbiased estimator which can be used on 
the initial sample data is the Hansen-Hurwitz es- 
timator. For an initial random sample without an 
adaptive stage the Hansen-Hurwitz estimator of the 
population total T is 

_ _  

N 

i~1 yifi 

where fi is the count or frequency of point object 
i in the sample and E[fi] is its expectation. This 
expectation is equal to E[fi] = npi where Pi =ai /A .  
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The variance of ~ is given as 

1) Var[~] - 1 E Z yiyj aiaj 
n i=1 j = l  

where aij is the area in which placement of a point 
location leads to both point objects i and j being 
included in the sample. This variance is similar to 
that of the classic Hansen-Hurwitz estimator, with 
a modification made for the possiblility of includ- 
ing more than one point object from a given sample 
location. 

Let wi - EN4--1 y j l j /p j  be the value of the 
. I  

Hansen-Hurwitz estimator for the i th sample draw, 
and ~ be the mean of the wi • An unbiased estimate 
of the variance is then 

Va"-r[~'] - 1 
n(n - 1) i: 1 (Wi - ~)2 (1) 

6. Adaptive estimators for single 
point object condition 

For thi~ case where the condition is satisfied by prop- 
erties of single point objects, the non-Rao-Blackwell 
estimators were presented in Roesch [1]. In his pa- 
per, the point objects were trees, and there was prob- 
ability proportonal to size sampling in the initial 
stage according to tree trunk diameter. 

Two of the unbiased estimators proposed in his 
paper were a Hansen-Hurwitz estimator, and a 
Horvitz-Thompson estimator. These estimators are 
the same as the non-adaptive estimators given ear- 
lier except that  inclusion areas associated with point 
objects are now determined by the networks to which 
they belong. 

6.1 Rao-Blackwell  est imators 

A single point object condition estimator not consid- 
ered by Roesch is the Rao-Blackwellization of either 
the Hansen-Hurvitz or the Horwitz-Thompson non- 
adaptive estimator. Suppose that for the n coordi- 
nates placed in the initial sample, there are a total 
of G different compatible collections of the label sets 
Sl, ..., Sn such that  the same final adaptive sample D 
would have been obtained. For each of these com- 
patable collections there will be a corresponding no 
adaptive stage sample estimate "?g of the either the 
Hansen-Hurwitz or Horwitz-Thompson type. The 
Rao-Blackwell estimator ~.RB o f  T is t h e n  

~_RB __ E[~']D] 

G 

g--1 

where f~'lD is the density of a non-adaptive frame 
free estimator ~ conditional on obtaining sample D. 
By the Rao-Blackwell Theorem ~RB will have vari- 
ance less than or equal to that  of the given initial 
sample estimate. 

0 Adaptive estimators for multiple 
point object condition 

With a multiple point object conditon, the difficulty 
in constructing estimators is that  it is not possible 
to know the true inclusion probabilities for point ob- 
jects that do not satisfy the condition in the ini- 
tial sample. This contrasts with the single point 
object condition approach where point objects sat- 
isfy the condition depending only on their associated 
responses, in which case point object inclusion prob- 
abilities are more readily found. It is also contrasts 
with the frame based designs where all initial sample 
units have a known initial sample inclusion proba- 
bility. 

However, it is still possible to construct unbi- 
ased estimators once it is realized that  point objects 
that can be either adaptively or non-adaptively sam- 
pled will have known initial inclusion probabilities 
if they are adaptively sampled. As a consequence, 
when such point objects are adaptively included in 
a sample these known inclusion probabilities can 
be used to weight their contribution to an adap- 
tive estimator so that unbiasedness of the estima- 
tor is maintained. The resulting estimators can be 
viewed as generalizations of the Horvitz-Thompson 
and Hansen-Hurwitz estimators. 

7.1 Horvi tz -Thompson type est imator 

The Horvitz-Thompson type unbiased estimator of 
the population total is 

~ ' - E  l I i + =  Ji Yi 
i--1 7ri 7ri 

which is a sum over all point objects, of the point 
object responses times the sum of two functions of 
indicator variables. 

The first indicator variable Ii indicates if point 
object i is in the initial sample but does not satisfy 
the condition at the end of this stage. This indicator 
is multiplied by the factor 1/Tri where 7ri is the in- 
clusion probability of point object i if there were no 
adaptive stage. This inclusion probability is equal to 

a i ) n  
7 r i - - 1 -  1 - - -~  
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where ai is the area of the region in which placement 
of an initial point location leads to inclusion of point 
object i in the sample. 

The second indicator variable Ji indicates whether 
point object i satisfies the condition in the final sam- 
ple. It is multiplied by ci/Tr~ where 7r~ is the in- 
clusion probability for point object i given that it 
satisfies the condition. This inclusion probability is 
equal to ( ,)n 

* - - 1 -  1 - a i  7r i -~- 

where a~' is the area in which placement of an initial 
sample point leads to point object i satisfying the 
condition in the final sample. 

The constant ci is equal to 

c i = l  
T" i 

7~i 
where the probability u~* gives the probability that  
point object i is in the initial sample and did not 
satisfy the condition while in the inital sample. This 
probability is equal to 

( "*a~* ) n 
~ *  - 1 -  1 -  

where a~* is the area in which placement of an initial 
sample point includes point object i in the initial 
sample without satisfying the condition. The ci can 
be thought of as compensating within the estimator 
for those point objects that  can either satisfy or not 
sat isfythe condition in the initial sample, depending 
on location of the initial sample point. 

Note that  the estimator does not contain an in- 
dicator variable for point objects that  are found in 
the adaptive sample but do not satisfy the condi- 
tion. These point objects will not contribute to the 
estimator and so behave as edge units do in a frame 
based design. 

If there is no adaptive stage, the Or/will all equal 
zero, and so the estimator reduces to the no adaptive 
stage Horvitz-Thompson estimator. If there are no 
point objects that  can be both adaptively or non- 
adaptively sampled then the ci will equal zero when 
the or/ equal one, and the estimator reduces to the 
Horvitz-Thompson estimator for single point object 
conditions. 

The variance of this estimator is a rather involved 
expression which for brevities sake will not be in- 
cluded here. Unfortunately, an estimate of this vari- 
ance cannot be obtained by the usual approach be- 
cause the sample information does not provide all of 
the necessary inclusion probabilities. 

7.2 H a n s e n - H u r w i t z  t y p e  e s t i m a t o r  

The Hansen-Hurwitz type estimator can be given as 

N (  E[f~ a ci , )  
~--  i 1E fi-~ E[y;]k Yi 

where fi is the frequency of point object i where 
it is in the initial sample but does not satisfy the 
condition at the end of that  stage. The expectation 
E[f  ha] is the expectation of this frequency if there 
were no adaptive stage. This expectation is equal 
to npi, where Pi = ai/A and the ai are defined as 
above. 

Similarly, fi* is the frequency that  point object i 
satisfies the condition in the final sample, and E[f~] 
its expectation. This expectation is equal to np* 
where p~ - a~/A and the a~ are as previously de- 
fined. 

The constant ci is equal to 

ci - 1 ai 
a i  

where a** is as given above. 
This estimator reduces to the non-adaptive 

Hansen-Hurwitz or the single point object Hansen- 
Hurwitz estimator in the same manner as the 
Horvitz-Thompson type estimator does. It is eas- 
ily seen to be unbiased once it is realized that  
for the sample of size one it equals the (unbi- 
ased) Horvitz-Thompson type estimator. Since the 
Hansen-Hurwitz is the average of n such estimators, 
unbiasedness follows as a property of the sample 
mean. 

As with the Horvitz-Thompson type estimator, 
the variance of the Hansen-Hurwitz type estimator 
is a lengthy expression, and so not included here. It 
does yield an unbiased estimator, however, and this 
estimator is the same as (1), the variance estima- 
tor for the non-adaptive Hansen-Hurwitz estimator 
where the wi are now 

W i  z 

N(cj) 
j~l YJ I + -ST JJ 
• = P-7 a pj 

7.3 R a o - B l a c k w e l l  E s t i m a t o r  

As in the single point object case, the Rao- 
Blackwellized estimator averages one of the no adap- 
tive stage estimators over all initial samples compat- 
ible with the final adaptive sample. For a sample of 
size one, the Horvitz-Thompson, Hansen-Hurwitz, 
and Rao-Blackwell estimators are identical. Another 
view of the Hansen-Hurwitz estimator then is that  
it is a draw by draw average of Rao-Blackwell esti- 
mators. 
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8. Compar i son  of frame and frame 
free approaches  

Besides issues of practicality for a specific study, the 
decision of whether or not to use a sampling frame 
can be considered in terms of amount of area sam- 
pled during the initial and adaptive stages. For the 
frame free designs, this area is found by integrating 
over all point locations within rl and r2 (if single 
point object method) of the inclusion functions ap- 
plied to point locations from the initial sample and 
point objects that satisfied the condition in the final 
sample. 

During the initial stage, a frame based design can 
have sampling either with or without replacement of 
study region. An advantage of without replacement 
sampling is that there is no repetition of effort by 
the resampling of formerly sampled regions. With 
a frame free design, however, sampling would gen- 
erally be with replacement since the inclusion prob- 
abilities are then much easier to compute. A con- 
sequence of with replacement sampling, though, is 
that regions can be sampled more than once during 
the initial stage. This duplication of effort suggests 
that the without replacement frame based designs 
are desirable during the initial stage (although adap- 
tive designs are often used in situations where the 
chance of sampling the same initial region is small). 

During the adaptive stage, though, it would be 
expected that the frame free designs sample less re- 
gion since the "edge" of a sampled region will more 
closely follow the shape of a network of point objects. 
Using square units for ease of comparison, Figure 
2 presents an example of possible gains. This fig- 
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Figure 2: Comparison of sample region. 

ure shows the region sampled around a point object 
that satisfies the condition at the end of the adaptive 
stage for both frame and frame free designs. Some 
study reveals that the frame based aproach sampled 
one additional unit of area than the frame free ap- 
proach. 

Finally, an additional efficiency advantage to the 

adaptive frame free approach is that by more closely 
following the shape of the network, point objects 
can be part of a network which would otherwise have 
been in a frame edge unit. That is, point objects that 
are part of units that satisfy the condition in a frame 
based design will satisfy the condition in a frame free 
design, however the converse is not generally true. 

9. Combined  approaches  

Since a frame based approach may be prefered for 
the initial stage, while a frame free approach pref- 
ered during the adaptive stage, it seems reasonable 
to ask if a combined approach can be used. In fact, 
it can, although the initial inclusion probabilities 
change in the Horvitz-Thompson type estimator to 
accomodate sampling without replacement. To dis- 
tinguish the number of frame units from the number 
of point objects, let N'  be the number of units in 
the sampling frame. For a sampling frame of regu- 
larly sized units, the adaptive inclusion probability 
for point object i becomes 

7r~--l-(N'-mi)/n ( N ' )  

where mi is the number of frame units that satisfy 
the condition in the network to which point object 
i belongs. Note that for the multiple point object 
condition the units of the frame must correspond to 
the units determined by the inclusion function. 

Interestingly, with this combined approach point 
objects that are in network edge units according to 
the frame still do not contribute to the final estimate 
since for these point objects ai - a~* and so ci - O. 
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