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1. I n t r o d u c t i o n  

Under a given population model, the optimal con- 
ventional sampling strategy would be to purposively 
select the sampling units to minimize the conditional 
mean square error given the sample s, E[(2~-T)21s]. 
In the field of spatial statistics, the related problem 
is to optimally select n sample sites out of N possi- 
ble sites to estimate or predict the population quan- 
tity of interest, for example, the total of population 
variable of interest (cf., Cressie 1993, p. 268-273, 
319-322, Guttorp, et al. 1993, Sacks and Schiller 
1988). With an isotropic spatial model and a spatial 
covariance function that is nonnegative and mono- 
tonically decreases as the distance increases, the op- 
timal conventional sampling strategy will in general 
provide a systematic arrangement of sampling loca- 
tions which spread throughout the study region as 
evenly as possible, with modifications to accommo- 
date the boundary shape and other irregularities of 
the study region (Mat4rn 1986, Ripley 1976). How- 
ever, it is possible to do still better with an adap- 
tive design which takes the observed values into ac- 
count as well, while the optimal conventional sam- 
pling strategy considers only the locations of sample 
sites(Zacks 1969, Basu 1969, Thompson and Seber 
1996). 

Zacks (1969) described the optima] sampling de- 
sign, with a fixed sample size, under a population 
model with a given prior distribution. The optimal 
sampling design is in general a design which sequen- 
tially takes into account the observed values of the 
population variable of interest, that is, it is adaptive. 
Also Zacks (1969) gave a sufficient condition under 
which the optimal conventional (non-adaptive) de- 
sign can be as good as the adaptive design. Neces- 
sary and sufficient condition for the optimal design 
to be non-adaptive with fixed sample size, along with 
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an extension to a design in which the sample size is 
also adaptive, are given in Thompson (1988) and 
Thompson and Seber (1996). The essence of the op- 
timal adaptive design is that at any point during 
the survey, one selects the remaining sampling sites 
by a procedure that minimize the mean square er- 
ror (or other risk function) conditional on what has 
been observed so far. By doing so, the overall mean 
square error is minimized as well. 

An example of a population model satisfying the 
necessary and sufficient condition for the optimal 
sampling strategy to be a conventional one is the 
multivariate normal distribution with known covari- 
ance function (Thompson and Seber 1996 p.242-5) 
and by extension the spatial Gaussian model with 
a known covariance or semivariance function. The 
reason is that the conditional covariance function Of 
the unobserved values does not depend on the ob- 
served values. On the other hand, if the covariance 
structure is not known exactly but is specified by 
a prior distribution, then the conditional covariance 
function of the unobserved values will depend on the 
observed values (Cressie 1993 p. 171). Such a model 
will in general no longer satisfy the necessary and 
sufficient condition for the optimal strategy to be 
non-adaptive. With many other models, including 
the log-normal or spatial log-Gaussian models, the 
optimal sampling is adaptive since the conditional 
variances and covariances of the unobserved values 
given the observed values do depend on the observed 
values. 

We examine the optimal sampling strategy with 
an assumed spatial log-Gaussian model in the fol- 
lowing sections. The log-Gaussian model is chosen 
for the illustrative purpose because of its practical 
importance in describing real phenomena, at least as 
an approximation, providing data having nonnega- 
tive values and skewed distributions. The popula- 
tion quantity of interest to be predicted is the total 
of the variable of interest. The relative efficiency of 
the optimal sampling strategy, which is adaptive, to 
the optimal conventional sampling strategy is com- 
puted for different covariance function parameters. 
In Section 2 the optimal sampling strategy, which is 
adaptive, is derived for the log-normal model. The 
optimal conventional strategy is also derived. Op- 
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timal sampling locations selected by these sampling 
designs are illustrated in Section 3; because of the 
nature of adaptive design, the sampling locations se- 
lected by the optimal adaptive design vary from re- 
alization to realization. The relative efficiency of the 
optimal strategy to the optimal conventional strat- 
egy is computed in Section 4. The relative efficiency, 
though always greater than one, is seen to depend on 
the "range of influence" spatial covariance function 
parameter.  We also discuss some undergoing work 
of this optimal sampling strategy in Section 5. 

0 Optimal Sampling Strategy with a 
Lognormal Model 

For simplicity we assume that  the population itself 
consists of a finite set of N units labeled 1, 2 , . . .  N. 
In the spatial setting this corresponds to partition- 
ing the study region into N spatial units. Associ- 
ated with the N units in the population is a vec- 
tor of random variables Y = (Y1, Y2, . . . ,  YN),  a re- 
alization of which is denoted y = ( Y l , Y 2 , . . . , Y N ) .  
An assumed distribution F (y )  or probability den- 
sity function f (y )  is referred to as the population 
model. A sample s of n units is selected from the 
N units in the population. The data  d = (s, ys) 
consist of the sample unit labels together with the 
associated values y~ of the variable of interest. For 
any possible sample s the design p ( s l y s  ) gives the 
probability that  s is the sample selected. With an 
adaptive design this probability can depend on Ys, 
the realized y-values observed in the sample. A con- 
ventional design does not depend on any y-values 
and can be denoted simply p(s) .  

By sampling strategy for estimating or predicting 
a population quantity T - T(Y)  we mean a design 
p for selecting the sample together with an estima- 
tor or predictor T - T(d) .  In particular, we con- 

sider prediction of the population total T - )--~g=l Y/ 
based on the observed values of the n units. An op- 
timal strategy, for the purposes of this paper, will 
consist of a design and an unbiased estimator or pre- 
dictor giving the smallest mean square error among 
the class of unbiased estimators or predictors and 
among a specified class of designs. 

Consider an N-dimensional population vector 

Y -  ( Y1, Y2, ...... , YN ) ' 

under a lognormal spatial model with known mean 
vector and covariance matrix. The associated Gaus- 

sian random vector is 

w -  w 2 ,  . . . . . .  , w N ) '  

W~ - log Y~, Vi - 1, ...... , N 

where 

W ~ Gau(pt ,  E ) .  

The sampling design is a two phase de- 
sign in which n l units are selected and ob- 
served at the first phase and the remaining 
n2 - n -  n l units are selected at the sec- 
ond phase. The sample sizes of each phase 
are fixed as n l - sample size of the first phase, 
n2 - sample size of the second phase and n = 
n l + n l, final sample size. The final data  is d - 
(dl,d2) - ((sl ,ys~),  (s2,ys2)). 

The predictor used for T is the best unbiased 
predictor (BUP), which with the specified model is 

^ 

T -  E(TId ). 

2.1 O p t i m a l  A d a p t i v e  S t r a t e g y  

The optimal adaptive design would select the second 
phase sampling units/ locations s2, under the BUP 
used and the model given above to minimize 

gs2 (sl, Ysl ) - E{[T(dl,  s2, Ys2) - T(Y)] 2 I dl } 
(1) f 

= J ( T  - ~)2f(y~l  td 1 ; ¢ ) d y ~  

(using the result of Zacks 1969 with the notation of 
Thompson and Seber 1996). The optimal design in 
n phases can be produced by applying this result re- 
cursively, but the computations are correspondingly 
more complex. 

^ 

Because T - E(T I d), therefore 

gs2 (sl, ysl ) - E[Var(TId) ldl]  

The optimal s2, denoted by s~, needs to satisfy 
the following condition 

9s~(Sl ,Ys~)  - m i n g s 2 ( s l , y s l )  
8 2 C S 2  

where $2 is the set of all possible s2. We should 
notice that  82 is a finite set since the population size 
is finite. However, the number of different possible 
s2 is often very large. 

For convenience we denote conditioning by sub- 
scripts with 

Edl -- E ( T l d l  ) 

Yard1 (T) - E{[T - E(T[dl)]2ldl } -- Edl [T - Ed~ (T)] 2 
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and 

Var(Tld) -- Var(Tldl, d2) - Vardl (Tide). 

Then 

gs2 (81, YSl ) - -  Edl [Vard~ (Tide)] 
= Vard~ (T) - Vard~ [Ed~ (TId2) ] 

Since the value of Vardl (T) does not depend on 
s:,  so the minimization of Equation (1) is equiva- 
lent to finding s~ which can maximize the value of 
Vard~[Edl (TId2) ] among all possible s2. This means 
we shall find s~ such that  

Vardx [Edl (TId~)] = max Vardl [Edl (TId2)], (2) 
s2 C82  

The calculation of Vardl [Ed~ (TId2) ] for the differ- 
ent possible combinations of s2 can be done by the 
following results. 

L e t  Y s l  - -  {Yi}i~Sl, Y s 2  - { Y / } i E s 2 ,  Y~ : 

{Y/}i~={1 ..... N}\s and Ys - (ys~,Ys~) represent 
the associated values of the units in the final sample. 
It is still a random vector since the real values of the 
second phase sample are unknown. Also, let w ~ ,  
W~:,  W s  and W~ represent theassocia ted vectors 
of Ysl, Ys2, Ys and Y~ transformed by the natural 
log function. 

The conditional mean vector and variance- 
covariance matrix of W~ given the first phase sam- 
pling data d~ - (Sl, Wsl) and the potential second 
phase data d2 - (s2, Ws~) are u -- {ui} i~  and 
F - {Tij }i,j e ~, given by 

u -  tt~ + E~s]E~ -1 (W~ - tt~) (3) 

r - E ~  - E ~ E ~  -1 E ~  (4) 

(cf. Arnold 1990, p. 214). Note F is fixed once se is 
given, but u is still a random vector since W~ 2 (and 
Y~2) remains unknown. 

Furthermore, let 

" "  = ~ 1  + ~1,~ ~;1~1 ( w ~  - t , ,~) - 

r ~ - E ~  ~ - E ~  ~ 1 E ~ I , ~  E , ~  ~ = 

r~i: 

") rs2~ 

r:-~ 

and decompose E~,E~ -1 - (Asl ,As2).  The dimen- 
sion of Asx and A~ 2 are (N-n)  × nl and (N-n)  × n2 

--1 respectively. Also let E ~ -  Es2s~ES~Sl 
It can be shown, by the properties of multivariate 

lognormal random vector and its associated Gaus- 
sian random vector, that  

where 

Vard~ [Edl (TId2)] 

E E e x p  OTi + ~ ) e x p  (~?j + ~-~)(e"J -1 )  

(5) 

Vs 2 

diag(r) 
~ + (A~ + A~ ~')(w~ I - ~ ) + ~ 

(6) 

r ~  ( n , ~ r ~ : )  ~ 82 

a = ) (7) 
~1 $1 T 

All the information needed to calculate ~/ and A 
can be obtained after we have 

dl : the first phase data, (sl,ysl). 
s2 : the second phase sampling location. 

The calculation of Equation (5) then can be done by 
applying (6) and (7) with any value of dl, s2. Also 
we can conclude that the minimization of gs2 (Sl, Y~I ) 
depends on the y-value of the first phase sample via 
z/since wi = log (yi), Vi E sl. This means that if we 
want to find s2 which can minimize equation (1), we 
need to use an adaptive design. 

2.2 Optimal Conventional Strategy 

The optimal conventional design, on the other hand, 

would select s2 to minimize the mean square error 
without taking the first-phase observations y~1 into 
account. 

Let 

then 

~;~ (~)  - E[(~ - T)~l~, ~] 

= E[(Var(Tld)[s~, s2] 
- Var(Tlsl,  s2) - Var[E(Tld)lsl, s2] 
- V~r(T) - V~r[E(TI~, Ys)] 

(s) 
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The object for the optimal conventional two phase 
design is to find a set s2 E 5'2 to minimize equation 
Equat ion (8). 

The value of Var(T) is irrelevant to the minimiza- 
tion of g~2 (s l) since it is the same for every dif- 
ferent s2 .  The only term in equation (8) we need 
to calculate in order to obtain the optimal s2 is 
Var[E(TIs, Ys)]. Using an approach similar to that  
in 2.1, the calculation of Var[E(TIs, Y~)] is 

Var[E(Tls, Ys)] 

= E E exp(rh + ~ )  exp(r/j + ~ ) ( e ~  
i j 

i j  

1 )  

(9) 

where 5ij is the ith row, j t h  column entry of the 
variance-covariance A, given by 

and ~i  is the i t h  entry of 7/, given by 

- ( 1 1 )  
r/ diag(r) 

J t / ' s  - [ -  2 

F is the conditional variance-covariance matr ix  of 
W~ given W s  which can be obtained by (4). We 
can use (9), (10) and (11) to calculate the values of 
Var[E(TIs, Y~)] for different s2 in order to find the 
optimal s2 which can minimize Equat ion (8) under 
conventional sampling strategy. 

0 O p t i m a l  S e l e c t i o n  o f  S p a t i a l  S a m -  

p l i n g  U n i t s  

In this section, the conventional and adaptive opti- 
mal selection of sites will be illustrated in a spatial 
setting. For the example a square spatial study re- 
gion contains N = 81 potential sampling sites, lo- 
cated at the cross points of a rectangular grid. The 
object is to select a sample of n = 18 of the sites, 

Sl and predict the total  T - }-~i=1 Y/" The realizations 
of the 81 population values Y were produced using 
the lognormal model with a Gaussian-shaped spatial 
covariance function (cf. Cressie 1993, p.85) given by 

C(h) -- o2e-Ilhll2/aZ, h C R d. 

Thus the model is 

logY~ - W i ,  V i  - 1, . . . . . .  , N 

Wi ,-~ N(#, a2), Vi - 1, ...... , N 

Cov(Wi, Wj) - o'2e -Ilhll=/~=, 

where II h II is the Euclidean distance between sites 
i and j .  Parameter  values # - 0, a 2 - 1, and a - 3 
were used. 

Figure 1" The Second Phase Sampling Locations un- 
der Optimal  Conventional Design. ( I  • First phase 
sample. • • Second phase sample.) 
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The first-phase sample is systematic and remains 
the same from realization to realization. The choice 
of second phase sampling locations is independent 
of Ysl and takes into account only the locations sl 
already selected. Figure 1 shows the optimal con- 
ventional second phase sample selection. The result 
shows the tendency to spread the units out evenly. 
Only the discrete part i t ioning of the study region 
into units prevents a completely systematic arrange- 
ment. 

The optimal adaptive second phase sampling lo- 
cations, on the other hand, depend on the observed 
value of the first phase sample, Ysl. Thus the se- 
lection of second phase units varies from realization 
to realization. Figure 2 shows different optimal sam- 
pling locations selected with several different realiza- 
tions. In Figure 2, the sample selections are super- 
imposed on the realizations. Note tha t  the observer 
does not see the entire realization, but only those 
values at the sample sites. The choice of the second- 
phase sample is based on observed values only at the 
first-phase sites. The superimposit ion of the sample 
selections on the underlying realizations illustrates 
the tendency of the optimal selection procedure to 
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Figure 2" The Second Phase Sampling Location (.) 
under Optimal Adaptive Design. 
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place sampling sites near high observed values and 
far from low observed values, while still striving to 
spread the sample out in the study region. 

4. Relative Efficiency 

The spatial model of the proceeding section will be 
used in this section to compare the relative efficien- 
cies of the optimal adaptive strategy (OA) with the 
optimal conventional strategy (OC). For the com- 
parisons in this section, the square spatial study re- 
gion contains N = 49 potential sampling locations 
on a rectangular grid. A sample of n = 12 sites are 
to be selected for the purpose of predicting the to- 

49 tal T - ~-~'~i=1 Yi. For the two-phase strategies, the 
sample sizes are nl = 4 and n2 = 8. The smaller 
population and sample sizes are used because of the 
large number of computations involved in the com- 
parisons. 

The relative efficiency of strategy 1 to strategy 2 
is defined as the ratio of the mean square prediction 
error E ( T - T )  2 obtained with strategy 2 to that ob- 
tained with strategy 1, so that  a value greater than 
one indicates strategy 1 is the more efficient. Mean 
square prediction error was estimated with simula- 
tion by producing K realizations of the model and 

selection procedure and computing 

K 

E ( T -  ~)2 _ 1 

j = l  

The potential efficiency gain of the adaptive strat- 
egy over the conventional strategies is based on tak- 
ing advantage of spatial dependencies in the popu- 
lation. The optimal conventional strategy uses the 
spatial structure only through the mean and covari- 
ance functions, while the adaptive strategy uses the 
spatial structure more fully. The shape of the co- 
variance function in relation to the parameter a is 
illustrated in Figure 3. 

Figure 3" The covariance Cov(Yi, Yj) with different 
values of a 
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The parameter a is related to the range within 
which the spatial covariance function has the most 
influence. Specifically, a gives the spatial distance 
at which the covariance function is decreasing most 
rapidly. A small value of a corresponds to a co- 
variance function approaching zero rapidly, so that 
observations at different sampling sites are approx- 
imately independent. With independence between 
units, one sampling design should be as good as an- 
other, so that  relative efficiency should approach 1 
as a decreases. As a increases, the covariance func- 
tion becomes increasingly flat so that  the correlation 
between the values in the study region approaches 
one. With the Yi values perfectly correlated, the ob- 
served sites will provide a perfect prediction of the 
unobserved values. Thus, with any of the designs the 
mean square error will approach zero as a increases. 
Thus one would expect to see the maximum advan- 
tage of the adaptive strategy over the conventional 
ones for some intermediate value of a. 

For values of a from 1 to 7.5, the computed rela- 
tive efficiency of the optimal adaptive strategy to the 
optimal conventional strategy is shown in Figure 4. 
There are 4,000 different realizations generated for 
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each a and the experimental mean relative efficiency 
calculated out of the 4,000 different realizations is 
connected by the solid line. Of the computed val- 
ues, the highest efficiency of the adaptive strategy 
relative to the others was obtained at the interme- 
diate value a - 5. 

Figure 4" The relative efficiency of the optimal adap- 
tive (OA) to the optimal conventional (OC) design 
with different values of the covariance parameter a. 
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5. D i s c u s s i o n  

It is unlikely that a population model can be speci- 
fied exactly in practice. However, the optimal sam- 
pling strategy under a Bayesian population model 
with a known prior distribution of the parameters 
can be developed in a similar manner as which in 
the given model situation. The reason is that the 
predictive inference of the pure prediction prob- 
lem, with a known parameter, and the Bayesian 
prediction problem, with a known prior distribu- 
tion, depend on the same conditional distribution 
given the data. For example, if we assume that 
the mean vector follows a multivariate prior dis- 
tribution, that is with Y = (Y1, Y2, ...... , YN)' and 
W = (W1,W2, ...... ,WN)' with Wi = log Y~, Vi = 
1, ...... , N, given b, 

W [ b  ~ Gau(b,V) .  

and the prior distribution of b is 

b ~ Gau(tt, F). 

It can be shown (most easily using the moment 
generating function) that under this model the un- 
conditional distribution of W is 

W ,~ Gau(tt, E). 

where 

E - F + V  

Since the unconditional distribution of W is nor- 
mal, the unconditional distribution of Y is again 
lognormal, and the derivations of all the conditional 
distributions already obtained apply. 

The procedure for a more complicated and prac- 
tical Bayesian population model, under which the 
marginal distribution of the population variable of 
interest is not of closed form, is under investigation 
by the authors. 
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