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1. INTRODUCTION 

Cluster sampling is a commonly used technique 
in finite population sampling, primarily due to its 
convenience. For example, choosing clusters that 
represent a physical location requires less effort and 
less time for data collection than a simple random 
sample that would require many more physical 
locations. The work in this paper is motivated by an 
analysis of a Slovenian cluster-design survey by 
Rubin, Stern and Vehovar(1995). For simplicity they 
ignored the clustering design and treated the sample 
as a simple random sample (SRS). The goal of this 
paper is to provide a Bayesian hierarchical model to 
analyze observations from cluster sampling design 
where the measured response is polychotomous. 

A hierarchical Bayesian approach to finite 
population sampling with a Gaussian response was 
described by Scott and Smith(1969). Similar work 
has been done on responses that are transformable to 
normality by Malec and Sedransk(1985) and on 
binomial responses by Stasny(1989) and (1991). 
These authors considered Bayesian hierarchical 
models. A recent non-hierarchical approach is Ghosh 
and Meeden's (1997) inference from finite 
population sampling from the Bayesian bootstrap 
perspective. Frequentist analyses of data from cluster 
samples can be found in such classical works as 
Cochran(1977) and Kish(1965). 

Section 2 of this paper describes a probability 
model for cluster samples with polychotomous 
responses. Section 3 considers how to make 
inferences from this model. In Section 4 we present 
an application of this model to an actual data set. 
Finally we present a few comments and some 
suggestions for future work in Section 5. 

2. THE MODEL 

In this section, we present a general model for 
analyzing polychotomous data from cluster sampling. 
Here, we will refer to the ultimate sampling unit as 
individuals since our motivating example is a public 
opinion survey. The model is, clearly, not limited to 
that situation. Suppose that we sample J clusters 
from a population of J+K clusters and within each 

sampled cluster a simple random sample is performed 
and nj of Nj individuals in the cluster are measured. 
Each of the nj responses will be in one of I categories. 
We let Y0 be the number of individuals with response 
i;i = 1, 2 . . . . .  I, that come from cluster j. Also let Yj 
-(Ylj, Yzj . . . . .  YIj) T and Y=(YI, Y2 . . . . .  y j )T.  Also, 
let 0ij be the probability that an individual in the jth 
cluster yields response i with _0j=(01j,02j . . . . .  0ij) T and 
__O=(_01,02, . . . ,  _0j) T. 

We propose the following Bayesian 
superpopulation model. The data Yj are multinomial, 

Yj I __0j, nj-- Multinomial(nj, 0j). 
The cluster level probability vectors are modeled as 
independent draws from a Dirichlet, 

0jl cz-- Dirichlet(a), 
where ~=(~1,~2, . . .  ,czl) T represents the parameters 
describing the population of 0ij's with E[00 ]= (Xi/~(Xm. 
Finally the prior distribution for _~ is the improper 
distribution, 

21+1 
/ " 

p(~) ~ ~ oe i I { ~ i  >O,Vi  } • 
:1 j 

This choice of prior is uniform on the simplex form 
by the ratios of the oq to Z~i and Z~i -le. For an 
example with the Beta-binomial distribution consult 
Gelman et al.(1995). 

Here we are treating the clusters as 
independently drawn since they are chosen via SRS. 
We can express the joint distribution of Y, O, and g, 
as follows" 

J 
p(___O,~,Y) = { l--I p ( Y  j ] _0 j )p(0_ j I a ')  } p ( a ' ) .  

j = l  

In the Bayesian nomenclature, the distributions 
of the Yj's are referred to as sampling distributions. 
The distributions of the 0j's and _~ are known as the 
prior distributions and the hyperprior distribution, 
respectively. The hyperprior distribution on g is 
called a "diffuse" or "vague" prior, meaning that the 
density places mass somewhat evenly throughout the 
entire parameter. The advantage of this type of prior 
or hyperprior is that it allows the data to shape the 
posterior and, consequently, to shape the inference to 
be made. Here, the hyperprior is clearly improper; 
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however, it yields a proper marginal posterior p(glY). 
A sketch of a proof of this is given in the Appendix. 

3. POSTERIOR INFERENCE 

From the Bayesian perspective, the posterior 
distribution p(___O,glY) describes the uncertainty in the 
parameters after observing the data. In this case we 
can factor the posterior into two pieces" 

p(__O,~lY) - p(OI~,Y) p(~lY). 
The first piece, the conditional posterior of Okz,Y, is 
simply a product of Dirichlet distributions with 
parameters Yj + cz. The second piece, the marginal 
posterior of czlY, is the product of a Dirichlet- 
Multinomial(DM) distribution and the hyperprior 
distribution on _~. The resulting posterior distribution 
is not recognizable. Consequently, we use a Markov 
Chain Monte Carlo (MCMC) procedure to obtain 
samples from the posterior. 

Supposing that we have obtained M samples 
from the posterior distribution of ~, we can use these 
samples to make our inferences. Then we can 
estimate any function, q)(O), of the parameters using 
samples from its posterior. For each of the M 
samples from the posterior, we calculate cp(O). This 
yields q)(m} , realizations from the posterior 
distribution of cp. From these realizations of q~, any 
inferential measures can be calculated, e.g. posterior 
quantiles, posterior means. 

It is important to point out that a variety of 
choices of q~ are possible. For example, / /' J+K J+K 

njz j  ~ nj 
j = l  j = l  ) 

where zj -- Dirichlet(Yj +a) for j= 1 . . . . .  J and 
zj -- Dirichlet(a)j  for j=J+l . . . . .  J+K, is the 
superpopulation estimate of the I cell proportions in 
the total population. For this paper, we are interested 
in understanding the relationship of the Bayesian 
hierarchical model to the traditional inferential 
methods. Therefore, we construct an estimand that 
allows us to recreate the traditional interval inference 
for cluster samples. 

Specifically, we take q~ to be the proportion 
of responses for J randomly chosen clusters that 
occur in a particular cell or cells. 

Here, let (p(m,_~j ~/]T~(m) 
- - -  - - n  ' ( 1 )  

n=l 

where 0_.-7 ) is a sample from a Dirichlet(Yj + ~(m)) 

with probability 1/(J+K) for each sample cluster,j , 
and is a sample from a Dirichlet(cz (m)) with 
probability K/(J+K). ~ is a column vector of zeroes 

and ones indicating which cells are of interest. This 
cp attempts to capture the sample to sample variability 
that characterizes the classical inferential methods. 

4. AN APPLICATION: THE SLOVENIAN 
PLEBISCITE 

On October 8, 1991 Slovenia became an 
independent republic. Ten months earlier a plebiscite 
was held, and the Slovenian citizens overwhelming 
voted for independence. In the month proceeding the 
plebiscite, the annual Slovenian Public Opinion 
(SPO) Survey was conducted and incorporated into 
the survey were the following questions: 

1. Are you in favor of Slovenian 
independence? 

2. Are you in favor of Slovenia's 
secession from Yugoslavia? 

3. Will you attend the plebiscite? 

The last question was especially relevant since an 
individual not attending the plebiscite would be 
counted as a no vote. The results recorded were 
YES, NO and Don't Know(DK) for each question. 
For the purposes of this paper, we will ignore the 
DK's, so that each question will have only two 
responses. The response of interest for this paper 
will be the 23=8 possible responses to the three 
questions above. That is, we will consider the 1=8 
possible combinations of answers to the above 
questions as our response. 

The SPO was carried out via a three-stage 
design. 139 of 1000 PSU's were sampled and then 
three secondary sampling units(SSU) were sampled; 
finally five individuals within each SSU were 
sampled. For this paper, we will ignore the SSU 
information and treat the data as if an SRS of size 15 
was performed within each cluster. Like most large 
scale surveys, not all selected individuals responded. 
However, 2074 of the 2085 did respond (including 
some substitutes). Eliminating those individuals who 
chose DK as one of their responses to the three 
questions that concerned the plebiscite further 
reduces this number. Consequently, data from 1454 
individuals were analyzed. This data set was 
originally analyzed ignoring the clustering in Rubin, 
Stern and Vehovar(1994). Their emphasis was on 
treating the DK responses. Additional information 
concerning the Slovenian plebiscite and the SPO can 
be found there. 

The primary measure of interest for this 
paper is the proportion of individuals in the 
population who will attend and who are in favor of 
independence. Following the procedure outlined in 
section 3, we took M=15000 samples from the 
posterior of g. From those samples we found that a 
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95% central posterior predictive interval for the 
proportion described in the previous paragraph runs 
from 0.9054 to 0.9355. Table 1 contains the results 
from the Bayesian analysis along with the results 
from the classical analysis following Cochran(1997). 
Both intervals are approximately the same length, 
0.0301 versus 0.0308. There is a slight discrepancy 
in the center of each interval, but overall there is 
good agreement between the intervals. As expected 
for our choice of % the results from the Bayesian 
hierarchical analysis closely mirror those from this 
classical cluster analysis. 

Table 1. Posterior estimates of the proportion who 
intend to attend the plebiscite and to vote for 
independence. 

Percentiles 2.5 th 50 u~ 97.5 th 
Posterior 0.9054 0.9216 0.9355 
Classical 0.9124 0.9278 0.9432 
Cluster 

5. COMMENTS AND FUTURE WORK 

We have developed a Bayesian hierarchical 
model for cluster samples with a polychotomous 
response. This probability model treats each cluster 
as a random sample from a multinomial distribution, 
with each cluster having its own probabilities. In 
turn, those probabilities are modeled as coming from 
a Dirichlet superpopulation. The parameters of this 
population are then given a "diffuse" improper 
distribution. One important aspect of this model is 
that inference can be made on cells for which no 
responses were recorded 

Also, in Section 4, we discarded individuals 
whose response to any of the three questions of 
interest included a DK. A more preferable analysis 
would be to utilize modern missing-data methods to 
more accurately assess the affect of the DK's on 
inference of the kind presented in this paper. This 
was done in the analysis of Rubin, Stern and 
Vehovar(1995). 
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APPENDIX 
We need to show that p(c~ly) ~ p(yl~)p(~) is integrable. That is, we must show that 

~ . . . ~  p ( y  l a ) p ( a ) d a l . . . d a  I < 

o r  

J 

II...f n 
j=l / ' / I-" nj + ~.~a i 

_ i=1  

~_i I-'(Yij + O~i ) 

/=1 F ( a i )  
~i  doq  . . . doQ < ~ 

There are two cases that need to be considered. 

1. 0~ i - + 0  Vi  

2. c~ --~oo Vi  

Case 1" Small alpha's 

N o t e ' F o r  e > 0, 

rO + ~)- ~v(~) = r(~)- rO+~) 
£ 

1 
m 

£ 

For suitably small E, 
£ £ 

~... ~ p (y  I ~)p(___)d~ = 
0 0 

So Sofi 
j= l  

["~nj + I¢] ~ I'(yij + O('i ) 
i=l F(a/) 

_ / 2 I + 1  

(21+1 

C g L2 LI (i~= 1 I -J  (i~= 1 3 - ~ 2  _~ k ( y , n ) I . . . I o~ L l Ot 2 . . . oQ oc i o~ i 
0 0 

J 
where Li = Z I(Yij > O) 

j= l  
Consider the case where 1=3 for simplicity: 
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ylT! 
E E L21~zLI(i~=] l-J( 3 -2 ~IJ - il I'L3 0~2 "i i~lOti dot 

O0 0 
Integrat ion by parts yields 

i E 3 L2 - ( 7 ) - J  +(LI +1) 
q J -  IO~ 30~ 2 . g l (E+O~ 2+O~ 3 ) + ( a  2 + a  3) do~zdo~ 3 

00 

Now we can ignore gl since it will integrate to a finite quantity. Repeat integration by parts, until 

IO; L3 g2 (~' + 0;3) + O~ O~ 3 
0 3 

so W < oo as long as L 1 + L 2 + L 3 > J + 1/2. 

I 
In the general I dimensional case, the posterior is proper as long as ~ L i > J + 1 / 2. That is, in order for 

i=1 
the posterior to be proper there must be at least one cluster that has observed values in at least two cells. 

Case 2" Large alpha's 

Choose large M, such that each nj is small relative to M. 

Replace Gamma functions with products. 
• Integrate by parts. 
• Repeat this for each alpha. [(1 

j F ] ~ a  
IM oo i=1 /j O~i 

j=m r j+~Ji=m r(a~) 

J 
z -  n 

j=l 
nj -1 

1-I(~ + ~c) 
k=0 

/i m ~i dN  

I YO -1 
1-1 1-I ( ~ + a~) 
i=1 k=O 

/-i.,+1 / 
i~l~i doe 

2 )- ~.,nj+ y__, Z Ylj+(I-1) 
j=l i=lj=l a ' l  

3 
o o  ~ _ _  

z =  f a t 2 a a i  < =  
M 

Consequently, the posterior is proper. 
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