
A B O O T S T R A P  A P P R O A C H  TO 
P R O B A B I L I T Y  P R O P O R T I O N A L - T O - S I Z E  S A M P L I N G  

Anders  Holmberg ,  Univers i ty  of l~rebro 
Dept. of Statistics, University of 0rebro, SE-701 82 0rebro, Sweden 

KEY WORDS: Bootstrap, Finite Population, 
Pareto Sampling, Unequal Probability Sampling, 
Variance Estimation, Gini coefficient 

1. Introduct ion  and background 

In sampling from finite populations, the original 
"simple" bootstrap proposed by Efron (1979) does 
not capture the dependence imposed by without re- 
placement sampling. A number of finite popula- 
tion bootstrap approaches have been proposed. One 
early approach, BWO (short for Bootstrap With- 
Out replacement), by Gross (1980), has been fur- 
ther developed and discussed by Bickel & Freedman 
(1981, 1984), Chao & Lo (1985, 1994), Booth, But- 
ler & Hall (1994), Sitter (1992a, 1992b), and Rao 
& Katzoff (1996). Among other suggestions we find 
the Mirror Match method (MM), Sitter (1992a), the 
Bootstrap With Replacement (BWR), McCarthy & 
Snowden (1985), and the Rescaling Bootstrap (RB), 
Rao & Wu (1984, 1988) and Rao, Wu & Yue (1992). 

The properties of these bootstrap methods 
when estimating the variance of a point estimator 
have been studied for various combinations of sam- 
pling design and point estimator. However, few 
studies exist on bootstrap methods for 7rps designs, 
i.e., without replacement probability proportional- 
to-size designs. Kuk (1989) proposed a bootstrap 
method for systematic 7rps sampling, while Rao 
& Wu (1984, 1988), Rao et al. (1992), and Sit- 
ter (1992a, 1992b) studied extensions of the BWO, 
MM and RB methods to handle the Rao-Hartley- 
Cochran (RHC) approach for unequal probability 
sampling. Chao & Lo (1994), finally, give one ap- 
proach for a design referred to as Murthy's method 
in Cochran (1977, ch. 9A9). 

(In the sequel, we will refer to Gross' approach 
as the BWO, while BWOx refers to a modified ap- 
proach, where the x indicates the relevant authors.) 

It has until recently been difficult to find a fixed 
size 7rps sampling scheme that has all of the desir- 
able properties mentioned in S~trndal, Swensson & 
Wretman (1992, Section 3.6.2). The Pareto sam- 
pling scheme proposed by Ros6n (1996, 1997a-b), 
however, has such properties that most of these ditfi- 
culties are overcome. Pareto sampling makes it very 
easy to generate a 7rps sample, and in a general class 
of 7rps sampling schemes Pareto sampling has opti- 

mal properties in the sense of producing the smallest 
asymptotic variance for an estimator of a population 
total° 

In this paper we propose a bootstrap approach 
for 7rps samples. In particular, we consider its ap- 
plication to Pareto 7rps sampling and to the 7rps 
scheme proposed by Sunter as desribed in S~trndal 
et al. (1992). A bootstrap variance estimator is 
suggested, and its properties are studied by Monte 
Carlo simulations. In these simulations, we consider 
point estimators of the population mean, the Gini 
mean difference and the Gini coefficient. 

1.1 N o t a t i o n s  and definit ions 

Let U = {1 , . . . ,  k , . . . ,  N} denote a finite popu- 
lation of size N. For k = 1 , . . . ,  N, let yk denote the 
(unknown) values of the study variable, and let Xk 
(> 0) denote the (known) size measures. Let s de- 
note a without replacement (fixed size) sample of n 
elements drawn from U. Furthermore, let 7rk and 7rkz 
denote first-order and second-order inclusion proba- 
bilities. 

In 1rps sampling, we have 

n x k  
7rk = - - ,  (i) 

txu 

where t xu  = ~-]~u Xk = X l  -It- x 2  - J r - ' "  Jr__ X N "  (In the 
sequel, we assume that 7rk _< 1 for every k E U.) 

The 71- estimator, t . ,  of the population to- 
tal t u  is given by,* t~ - >-~s ~ and has the 71" k 

1 A k  I yk  _ JtL variance, V(t~) - - 7  E Y~k¢ZEU ~: ~ , 

where Akt = (Trk t -  7rkTrt). An unbiased estimator 
of V(t .) ,  provided that every 7rkZ > 0 (k =)4- 1), is 
given by the Sen-Yates-Grundy (SYG) variance es- 
timator, 

1 ( )2 
hkz yk yz , (2) 

Tk  ~l  

where ~Xkt -- Akz/Trkz. Furthermore, let the distri- 
bution function of y for the population elements, 
be defined as F u ( y )  - # A y / N ,  where # de- 
notes the number of elements k in the set Au = 
{k " k E U, a n d  Yk <_ Y} .  An estimator for F u ( y )  is 

* T r o u g h o u t  t h e  p a p e r  all  e s t i m a t o r s  a n d  p a r a m e t e r s  lack-  
ing  t h e  s u b s c r i p t  x refers  to t h e  y va r i ab l e .  
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given b y / ~  ( y ) =  ~,~nA T r ; 1 / E s  7r; 1, where s N A y  
is the set of sample elements with values yk ~_ y. 

2. B W O  a p p r o a c h e s  

In this section we will only consider simple ran- 
dom sampling without replacement (S I ) .  

2.1 T h e  B W O  b o o t s t r a p  

Consider a SI sample s c U of size n, with 
values, Yk, attached to each k C s. An estimator, 0 - 
0 ( 8 )  - -  O[(k, Yk) " k C s] is to be used for estimating a 
finite population parameter, 0, e.g., the population 
total t v  = ~-~u Yk. Let the inverse of the sampling 
fraction f - 1  __ N _=-- c be an integer. The BWO 

n 

suggested by Gross can be described as follows. 

Create an artificial resampling population U* 
consisting of c copies of each element k c s, i.e., 
U* = { l * , . . . , k * , . . . , N * } ,  where N* = nc = 
N. All c elements that  are copies of element k C 
s are assigned the y value Yk. (Hence, Fu.  (y) = 
Fs(Y), and, e.g., tu .  = E u .  Yk* = C E s Y k  = 

. Draw a S I  sample s~ of size n* - n from U*. 
We will refer to s~ as a bootstrap sample. 

3. Compute  a bootstrap replicate b[ - b(s ) - 
0 [(k*, W-)"  k* e 

4. Repeat step 2 and 3 B times. The Monte Carlo 
bootstrap variance estimator for 0, is then given 
by 

B 

b=l  

where t~* - EbB=I b ~ / B .  

Let the subscript Eboot and Vboot denote expec- 
tation and variance, respectively, over all possible 
bootstrap samples conditional on s. Let 0 - t~, 

and 0~ - t; - E s ;  yk./Trk. - -  C Es~, Yk*. Since 

Eboot Vb~o ( t~ ) = Vboot ( t; ) = n-1 y ~ ( ~ ) where 
N - - 1  n 

(~)  is the unbiased variance estimator (2), we have 
EVb~o(i~) = n - 1  N u_----i--yV(t~). Hence, ~ o ( t ~ ) i s  biased 

for V(t~) unless it is corrected by the factor n N-1 N n - - l "  
2.2 M o d i f i c a t i o n s  of  t h e  B W O  

Different approaches have been suggested to 
modify the BWO scheme to cope with cases where 
N = c n + r ,  0 <  r < n. 

Bickel & Freedman (1984) suggest the creation 
of two resampling populations U~ and U~, where 
U~ consists of c copies for each k c s, while U~ 
consists of c + 1 copies for each k E s. One of these 

resampling populations is selected at random, U~ 
with probability p, U~ with probability 1-p .  Denote 
the outcome of the random choice U*. Bootstrap 
samples of size n* = n are now taken from U* as 
in the BWO scheme. By an appropriate choice of 
p, the variance estimator (3) will be unbiased for 
V(t~) under the designs S I  and stratified S I ,  with 
the bootstrap procedure applied to each stratum. 
However, the procedure, (BWOBF), is unfeasible for 
some combinations of N and n, (see McCarthy & 
Snowden (1985), Sitter (1992b)). 

This is also pointed out by Booth et al. (1994), 
who moreover show that  BWOBr  can lead to poor 
results if c = 1 (e.g. large sampling fractions). They 
suggest a method, BWOBBH of 'filling out'  U* to 
get N elements, as an alternative approach for non- 
integer f -1 .  U* is created by c copies of each element 
in s plus a random sample (drawn without replace- 
ment), of m elements from s, where m = N - c n  = r. 

The modification of the BWO proposed by Sit- 
ter (1992b) (BWOsit), resembles BWOBF in the 
sense that two resampling populations U~ and U~ 
are created. The special characteristics of BWOsit 
can be summarised as follows. 

Let q = f -1  ( 1 -  1-__~ and let qA = [qJ and 
\ n ] 

qB = [q], (where [.J denotes the greatest integer 
equal to or smaller than, and [.] denotes the small- 
est integer greater than, respectively). U~ is now 
formed to consist of qA copies of each k E s, while 
U~ is formed to consist of qB copies of each k C s. 
The population to resample, U*, is, for each resam- 
ple, the result of a random choice between U~ (prob- 
ability p) and U~ (probability 1 - p ) .  The bootstrap 
sample size, n*, equals n -  1 if U* = U~ or n if 
U* = U~. With a proper choice of p, BWOsit yields 
an unbiased variance estimator. BWOsit also over- 
comes the deficiency for certain combinations of N 
and n. 

The BWO is also discussed by Chao & Lo (1985, 
1994). Their generalization of the BWO for nonin- 
teger f - l ,  BWOcL, is essentially the same as the 
one proposed by Booth et al. (1994), ( B W O B B H ) ,  
except that the 'filling out' of U* is done through 
simple random sampling with replacement. 

., A B W O  a p p r o a c h  to  7rps s a m p l i n g  de- 
s igns 

In this section we propose a bootstrap approach 
to estimate the variance of an estimator 0 - 0(s) for 
a finite population parameter 0 under a general fixed 
size 7rps sampling design p(-), such that all first-order 
and second-order inclusion probabilities are strictly 
positive. 

Let 7rk = n x k / t x V  (k = 1, . . . ,N) be the first- 
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order inclusion probabilities, let s C U be a sample 
of size n selected by a sample selection scheme obey- 
ing the design p(.), and let 

7rk I - -  Ca Jr- r k  (~ ~ 8) 

where ca - L¢rk-lJ and 0 _< rk < 1. 
Finally, for k ~ s, let eL be independent 

Bernoulli random variables with parameters  rk, i.e., 
ra -- Pr(ea -- 1) -- 1 - Pr(ea - 0). 

The boots t rap  approach we propose, now pro- 
ceeds as follows" 

1. For k ~ s, let eL be independent realizations of 
the Bernoulli random variables, and let dk = 
ca +~a .  

2. Create a resampling populat ion U* by copy- 
ing each element k ~ s in such a way tha t  
element k is copied da times, i.e., U *  = 
{ 1", ..., k*, . . . ,N*} ,  where N* - Y~ da. All da 
elements tha t  are copies of element k E s are 
assigned the value (Ya, xk). 

3. Draw a boots t rap  sample s~ of size n* - n 
from U* by applying the same sample selec- 
tion scheme as for selecting s, which, inter alia, 
means tha t  ~ra. - nXk . / t xu . ,  where t~u. = 

- 

4. Compute  a boots t rap  replicate 0~ - 0(s~). 

5. Repeat  steps 3 and 4 B times. The Monte Carlo 
boots t rap  variance es t imator  for 0 is now given 
by (3). 

We will refer to the above approach as the 
B W O I P A ,  where I P A  is used to point out tha t  the 
approach focuses on inclusion probabilities in the 
creation of the resampling populat ion U*. 
R e m a r k  1. If ra = 0 for all k E s, then U* simply 
consists of ca copies of each k ~ s. Hence, e.g., N* = 
E s  ca - E s  libra - fi~, txu. - E~ xa/Tra - txu 
and Fu.(y)  - F~(y). If, furthermore,  the design is 
SI ,  we get N* = N,  i.e., the approach is identical 
to the Gross' B W O .  

For simplicity we assume tha t  ~ra. _< 1 for k* 
U* and every U* 

4. A n  e x a m p l e -  P a r e t o  ~rps s a m p l i n g  

4 . 1  P a r e t o  7rps s a m p l i n g  

In Ros~n (1997b) Pareto ~rps sampling is intro- 
duced, together with the following sample selection 
scheme: (i) For every element k E U, compute target  
inclusion probabilities Ak = nxa / t xv .  (ii) Generate 

N independent  s tandard  uniform random variables 
U1, U2 , . . . ,  UN and form the ranking variables 

Qa - Ua(1 - Aa) ( k -  1 , . . . , N ) .  (4) 
( 1 -  Ua))~a 

(iii) The elements with the n smallest Q a consti tute 
the sample s. 

To est imate the populat ion total  tu,  Ros~n con- 
siders 

(5) 

which is very close to the 7r est imator,  since /~k are 
very close to 7rk (k = 1 , . . . ,  N).  

The variance of tx is, unless n and N are very 
small, well approximated by, 

N 
)~a(1 - )~a) A V ( t x )  - N - 1 E u  

(Yk ~ u Y k ( 1  - £k) ) 
x £k ~ U £ k ( 1 - - £ k )  

N 1 (Yk N-12EE 
k#~U 

.Xz 

(6) 

where vkz - £k(1 - £k)£z(1 - A z ) / ( n -  E u  ~ ) .  As 
a variance est imator,  Ros~n proposes 

n 
I ) ( t~ )  - n - l E s  ( 1 - ' ~ k )  (7) 

x ~k ~ s ( 1 - ) ~ k )  " 

which, unless n and N are very small, is approxi- 
mate ly  unbiased. 

In Swensson (1997) approximations to 7rkz are 
given by ~kZ = ,~k)~Z(1 -- ~kt), where ")'kZ = N(1 - 
Ak)(1 -- A z ) / ( n -  E U  "~2k)(N- 1), k ¢ 1  e U. 

4.2 B W O I P A  a n d  P a r e t o  7rps s a m p l i n g  

To apply BWOIPA to  Pareto 7rps sampling we 
follow the scheme in section 3, the only difference 
being tha t  the 7rs are replaced by )~s. We will sepa- 
rate the case when all rk -- O, (i.e. a l l /k/1 -- Ck are 
integers) from the case when some rk 5/= 0 

All rk = 0 The remark in section 3, implies tha t  
Ak* = Ak for every copy k* C U* linked to element 
k E s .  

Let us consider the point es t imator  ta of equa- 
tion (5), and let our objective be to es t imate  its 
variance. For the B W O I P A  we first observe tha t  
the expectat ion of t~, conditional on s, is Eboott~ = 

Hence, 
_ 

~ E i .  - t v .  (8) 
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Let the variance estimator (3) be denoted 
Vm~(t~). Then we have Ebootl/m~(t~,) -- Vboot(t'~) 
AVboot (t[, ), where 

N ~  

AVboot (t;) = N* - 1 E u .  )~k* (1 - )~k* ) 

(yk .  ~ u ~  Yk* (1 - Ak*l)2 

x ~ :  Ak. (1 -- Ak- 

_ -  N *  ( 9 )  

N * - I  n 

where we have used the fact that  Ck -- Ak 1, and 
that  )~k* = /kk for every copy k* E U* linked to 
element k c s. Hence, to get an approximately un- 
biased and consistent variance estimator, the boot- 
strap variance estimator has to be slightly corrected. 
Ignoring the factor N * / ( N *  - 1) an alternative boot- 
strap variance estimator is, 

~rlPA(~)~) - 72 Tk~rm c (/~,k)" (10) 
n - - 1  

It is not easy to give general results for more 
complex parameters. However, some indications of 
what to expect follows from the Monte Carlo simu- 
lations of section 5. 

Some rk :fi 0 We now have two sources of variation, 
(I) the generation of U*, and (II) the subsequent re- 
sampling from U*. Hence Eboot(') = E I E I I ( ' )  and 
Vboot(') = EIVI I ( ' )  + VIEII ( . ) .  Since txu .  now typ- 
ically differs from t~u, )~k* usually differs (slightly) 
from Ak for a copy k* linked to element k E s. Hence, 
the evaluation of EVm~(t~) will be less straightfor- 
ward. 

However, since 

EboottU * - + 

- + 

= E s  /~klyk -- ~ (11) 

we still have E[* ~ tu.  Furthermore, EbootN* = 
E s  /~k 1 ~ E s  7rk 1 : N'  and Eboottzv. -- ~-~s(Ck + 
I'k)Xk -- E s  /~k lxk  -- txU. 

Next, we see that  if 0 -  tx, EbootVmc(t,x) equals 

Vboot ( tsb)  -- E I V I I ( t ; ) n  u V I E I I ( t ; )  

where 

- -  VboottU * 

-- V b o o t ( E s e k Y  k + E s C k Y k )  

= - (13) 

Turning to the first term of (12), we see that  Vii( t ; )  
approximately equals 

AVII( t~ ) = 
N ~ 

E u .  Ak*(1 - )~k* ) (14) 
N* 1 

x Ak. EV* ~k: (1- -  Ak.) 

which is equal to (9). When taking the expectation 
over all possible bootstrap samples conditioning on 
s~ there is a major difference between the expressions 
though. Expression (14) cannot be evaluated in the 
same way. It can be rewritten to a summation over 
s incorporating the random variable ~k, hence 

AVzI(i'~) = 
N ~  ! 

N* - 1 E s  dk )~k (1 -  )(k) (15) 

x yk ~ d k y k ( l - -  ak) 
! ! ! , 

)~k ~ s  dk)~k( 1 -- ~k) 

! 
where /k k are the bootstrap target inclusion proba- 
bility from U* connected with element k in s, and dk 
is the sample value multiplier for element k. Adding 
(15) and (13)gives, 

EbootVmc(t~) - E ,  AVI , ( t~)  + E s  rk(1 - rk)Yk, 
(16) 

where an expression for the first term is difficult de- 
rive. However, its relation to equation (9) suggests 
that  we can expect a reasonable behaviour of the 
variance estimator in (10), which also is supported 
by Monte Carlo simulations. To keep the bootstrap 
variance estimator as simple as possible for the more 
complex estimators studied in section 5, we use the 
same expression i.e. ffIPA (0) -- ~ f/rmc(O). 

4.3 V a r i a t i o n s  of t h e  B W O I p A  

It is easy to see that  there are a number of vari- 
ations of the BWOIPA for the case of noninteger )~k 1 
which more or less mimic some of the BWOx. They 
are not spelled out here, but are presently under 
study. 

5. E m p i r i c a l  R e s u l t s  

To get some preliminary idea of the perfor- 
mance of the proposed method, a limited Monte 
Carlo simulation was carried out. The finite pop- 
ulation used was MU281 (281 Swedish municipali- 
ties) in S~trndal, Swensson & Wretman (1992), and 
the variables considered were P75 (=x) ,  SS82 (=Yl), 
and REV84 (=y2) with population correlation co- 
efficients p(x, Yl) = 0.7 and p(x, y2) = 0.9. 5000 
independent samples of sizes 5 and 40 were gener- 
ated according to each of two 7rps schemes (Pareto 
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and Sunter's.) Three parameters were considered, 
viz. the mean, Yu, Gini's mean difference, Gu - 
E E u  lYk - Yzl/N2, and the Gini coefficient, Ru - 
Gu/2flu (see table 1). 

Table 1: Parameter values 
0 

yi tu Yu Gu 100 × Ru 
yl 6193 22.039 7.907 17.94 
y2 7.574E5 2694.8 2328.7 43.21 

Under Pareto 7rps sampling the estimators used 
for the three parameters were ~) - (~-~s yk//~k)/J~f~ 

-- ( ~  ~ s  lYk -- Yll /)~kl)/2~2, where J~ -- :~-~s )~k 1, 

a n d / ~ -  G/2~), respectively. Four variance estima- 
tors were considered for ~)" (i) An expression based 
on the SYG variance estimator where 7rk and 7ckt 
were replaced by )~k and )~kl, VSyGq, (see Swensson 
(1997)). (ii) An expression based on the variance 
estimator (7), VRo. The two estimators VsYcq and 
VRo were derived through first-order Taylor lineari- 
sation of ~), thus rep!acing Yk in formulas (2) and (7) 
by uk - (Yk - - f l ) /N.  (iii) The delete-one jackknife 
variance estimator, Vj, and, (iv) the BWOIPA vari- 

^ 

ance estimator, VIPA, based on B - 300 bootstrap 
replicates in each sample*. For the estimators G and 
/~ only I?g and VIpA were considered. 

Under 7rps sampling according to the Sunter ap- 
proach VRo does not apply. The variance estimator 
for ~), I)syG, was obtained from (/SYCq by replacing 
)~k and/~m by 7rk and 7rm, respectively. The variance 
estimators for G and/~ were the same as those used 
for the Pareto approach. 

Results from the simulation are presented in ta- 
ble 2. 

6. Discussion 

As can be expected, a sample size of n - 5 is too 
small for reliable inference based on the non-linear 
estimators considered here. Hence, in the sequel, the 
discussion will only concern the sample size n = 40. 

(a) All three point estimators (9, G, and /~) 
seem to have negligible bias under both schemes. 

(b) The jackknife variance estimator has a 
large positive bias for each combination of sampling 
scheme and point estimator. This is partly due to its 
failure of capturing the dependence due to without 

*Clearly, the design of tile Monte Carlo study does not 
permit the calculation of reliable bootstrap percentile-t con- 
fidence intervals, and the application of the normal approxi- 
mation is crude in several respects. Hence, no effort is made 
to s tudy coverage rates of confidence intervals in the present 
limited Monte Carlo study. 

replacement sampling, which to some extent might 
be remedied by applying some finite population cor- 
rection factor. 

(c) Comparing VIPA(~I) with its competitors, 
the Monte Carlo results indicate that it behaves at 
least as well with respect to relative bias, while its 
variability seems to be at about the same level. 

(d) For the more complex point estimators 
and/~, ~fIPA consistently underestimates their vari- 
ation. Different bias-reducing factors are presently 
being studied. 

7. Conclusion 

The suggested bootstrap approach, BWOIPA~ 
for without replacement probability-proportional to 
size sampling is relatively simple to implement. By 
focusing on the inclusion probabilities for the con- 
struction of a finite resampling population, its degree 
of generality is high. The results from the Monte 
Carlo simulation indicate that the proposed variance 
estimator might be useful. However, more extensive 
studies are needed. Such studies are presently in 
progress. Furthermore, different variations of the 
approach are also under study. 
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T a b l e  2: Expected values, variances and relative biases for point estimators, (0), and variance estimators, 
(IY), est imated from S = 5000 Monte Carlo runs, (sample sizes n - 5 and n - 40, variables yl and y2). 
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