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1. Introduction and background

In sampling from finite populations, the original
“simple” bootstrap proposed by Efron (1979) does
not capture the dependence imposed by without re-
placement sampling. A number of finite popula-
tion bootstrap approaches have been proposed. One
early approach, BWO (short for Bootstrap With-
Out replacement), by Gross (1980), has been fur-
ther developed and discussed by Bickel & Freedman
(1981, 1984), Chao & Lo (1985, 1994), Booth, But-
ler & Hall (1994), Sitter (1992a, 1992b), and Rao
& Katzoff (1996). Among other suggestions we find
the Mirror Match method (MM), Sitter (1992a), the
Bootstrap With Replacement (BWR), McCarthy &
Snowden (1985), and the Rescaling Bootstrap (RB),
Rao & Wu (1984, 1988) and Rao, Wu & Yue (1992).

The properties of these bootstrap methods
when estimating the variance of a point estimator
have been studied for various combinations of sam-
pling design and point estimator. However, few
studies exist on bootstrap methods for 7ps designs,
i.e., without replacement probability proportional-
to-size designs. Kuk (1989) proposed a bootstrap
method for systematic wps sampling, while Rao
& Wu (1984, 1988), Rao et al. (1992), and Sit-
ter (1992a, 1992b) studied extensions of the BWO,
MM and RB methods to handle the Rao-Hartley-
Cochran (RHC) approach for unequal probability
sampling. Chao & Lo (1994), finally, give one ap-
proach for a design referred to as Murthy’s method
in Cochran (1977, ch. 9A9).

(In the sequel, we will refer to Gross’ approach
as the BWO, while BWO,, refers to a modified ap-
proach, where the « indicates the relevant authors.)

It has until recently been difficult to find a fixed
size mps sampling scheme that has all of the desir-
able properties mentioned in Sdrndal, Swensson &
Wretman (1992, Section 3.6.2). The Pareto sam-
pling scheme proposed by Rosén (1996, 1997a-b),
however, has such properties that most of these diffi-
culties are overcome. Pareto sampling makes it very
easy to generate a mps sample, and in a general class
of mps sampling schemes Pareto sampling has opti-
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mal properties in the sense of producing the smallest
asymptotic variance for an estimator of a population
total.

In this paper we propose a bootstrap approach
for mps samples. In particular, we consider its ap-
plication to Pareto 7mps sampling and to the 7wps
scheme proposed by Sunter as desribed in Sdrndal
et al. (1992). A bootstrap variance estimator is
suggested, and its properties are studied by Monte
Carlo simulations. In these simulations, we consider
point estimators of the population mean, the Gini
mean difference and the Gini coefficient.

1.1 Notations and definitions

Let U = {1,...,k,..., N} denote a finite popu-
lation of size N. For £ =1,..., N, let yx denote the
(unknown) values of the study variable, and let zy
(> 0) denote the (known) size measures. Let s de-
note a without replacement (fixed size) sample of n
elements drawn from U. Furthermore, let 7 and my;
denote first-order and second-order inclusion proba-
bilities.

In mps sampling, we have

nTg

: (1)

where t;y = 3, 2x = 21 + 22 + - + an. (In the
sequel, we assume that m, < 1 for every k € U.)
The m estimator, t,, of the population to-

tal ty is given by," &, = Zs}/ﬁ—: and has the
2

. -~ 1 .
variance, V(t:) = —5 3 Y, ey Okl (% - %ll—) .
where Ag = (7w — 7). An unbiased estimator

of V(£), provided that every my > 0 (k # 1), is
given by the Sen-Yates-Grundy (SYG) variance es-
timator,

o 1 - Yk i ?
V(te) = ) ZZk;HEs B (W_k N 7f—l> @

where Ay = Ay /7ri- Furthermore, let the distri-
bution function of y for the population elements,
be defined as Fy(y) = #Ay/N, where # de-
notes the number of elements k in the set A, =
{k:keU, and yr <y}. An estimator for Fy (y) is

* Troughout the paper all estimators and parameters lack-
ing the subscript « refers to the y variable.



given by Fy(y) = 2osna, /3, mit, where sN A,
is the set of sample elements with values y; < y.

2. BWO approaches

In this section we will only consider simple ran-
dom sampling without replacement (S7).

2.1 The BWO bootstrap

Consider a SI sample s C U of size n, with
values, y;, attached to each k € s. An estimator, 6=
8(s) = 0[(k,yx) : k € s] is to be used for estimating a
finite population parameter, 8, e.g., the population
total ty = >, yx. Let the inverse of the sampling
fraction f~! = %— ¢ be an integer. The BWO
suggested by Gross can be described as follows.

1. Create an artificial resampling population U*
consisting of ¢ copies of each element k € s, i.e.,
U* = {1*,...,k*,...,N*}, where N* = nc =
N. All c elements that are copies of element & €
s are assigned the y value yi. (Hence, Fy«(y) =
-Fs(?/)) and, e.g., ty. = EU* Y = czsyk =

tr.)

. Draw a ST sample s} of size n* = n from U*.

We will refer to s as a bootstrap sample.

Compute a bootstrap replicate 9: = 4(s?)

O[(k" y-) : k™ € 5]

Repeat step 2 and 3 B times. The Monte Carlo
bootstrap variance estimator for 6, is then given
by

A B ~% = 2
Viuol®) = (550) 3 (8 —07)
b=1

where 6* = Eil 9;/3.

(3)

Let the subscript Fpoor and Vpoo: denote expec-
tation and variance, respectively, over all Apossilzle
bootstrap samples conditional on s. Let 8 = ¢,
and 6, = tr = Zs; Ygs [T = ch; Yg~. Since
Ebootf/bwo(fw) = ‘/boot(i;) Z—__ll-%‘)\/(fﬂ'), where
V () is the unbiased variance estimator (2), we have
EVywo(tr) = 2L Xy (£,). Hence, Viwo(éx) is biased

—-1n
n N—-1
N n—-1"

for V(£,) unless it is corrected by the factor
2.2 Modifications of the BWO

Different approaches have been suggested to
modify the BWO scheme to cope with cases where
N=cn+r,0<r<n.

Bickel & Freedman (1984) suggest the creation
of two resampling populations U} and Ug, where
U consists of ¢ copies for each & € s, while U
consists of ¢ + 1 copies for each k& € s. One of these

379

resampling populations is selected at random, U%
with probability p, U with probability 1—p. Denote
the outcome of the random choice U*. Bootstrap
samples of size n* = n are now taken from U* as
in the BWO scheme. By an appropriate choice of
p, the variance estimator (3) will be unbiased for
V(t:) under the designs SI and stratified SI, with
the bootstrap procedure applied to each stratum.
However, the procedure, (BWOgr), is unfeasible for
some combinations of N and n, (see McCarthy &
Snowden (1985), Sitter (1992b)).

This is also pointed out by Booth et al. (1994),
who moreover show that BWOgF can lead to poor
results if ¢ = 1 (e.g. large sampling fractions). They
suggest a method, BWOggy of 'filling out’ U* to
get N elements, as an alternative approach for non-
integer f~!. U* is created by c copies of each element
in s plus a random sample (drawn without replace-
ment), of m elements from s, where m = N —cn = 7.

The modification of the BWO proposed by Sit-
ter (1992b) (BWOs;;), resembles BWOpgy in the
sense that two resampling populations U} and U}
are created. The special characteristics of BWQsg;
can be summarised as follows.

Let ¢ = f—! (1 - 1—;£) and let g4 = [q] and

gs = [q], (where |-] denotes the greatest integer
equal to or smaller than, and [-] denotes the small-
est integer greater than, respectively). U} is now
formed to consist of g4 copies of each k € s, while
U} is formed to consist of gg copies of each k& € s.
The population to resample, U*, is, for each resam-
ple, the result of a random choice between U?% (prob-
ability p) and Uj (probability 1—p). The bootstrap
sample size, n*, equals n — 1 if U* = U} or n if
U* = U}. With a proper choice of p, BWOg;, yields
an unbiased variance estimator. BWOQOsg;: also over-
comes the deficiency for certain combinations of N
and n.

The BWO is also discussed by Chao & Lo (1985,
1994). Their generalization of the BWO for nonin-
teger f~1, BWOcy, is essentially the same as the
one proposed by Booth et al. (1994), (BWOggy),
except that the ‘filling out’ of U* is done through
simple random sampling with replacement.

3.

A BWO approach to 7wps sampling de-
signs

In this section we propose a bootstrap approach
to estimate the variance of an estimator € = 4(s) for
a finite population parameter 6 under a general fixed
size mps sampling design p(-), such that all first-order
and second-order inclusion probabilities are strictly
positive.

Let mx = nxi/tzy (K = 1,...,N) be the first-



order inclusion probabilities, let s C U be a sample

of size n selected by a sample selection scheme obey-

ing the design p(-), and let
7r;1 =cr+1r (k€s)

where ¢ = Lﬂ;lJ and 0 < r, < 1.

Finally, for £k € s, let ex be independent
Bernoulli random variables with parameters 7, i.e.,
ry, = Pr(exy = 1) = 1 — Pr(ex = 0).

The bootstrap approach we propose, now pro-
ceeds as follows:

1. For k € s, let £; be independent realizations of
the Bernoulli random variables, and let dy =
Ck + €k

2. Create a resampling population U* by copy-
ing each element k¥ € s in such a way that
element k is copied d times, ie., U* =
{1*,...,k*, ..., N*}, where N* = 3" _d. All dy
elements that are copies of element k € s are
assigned the value (yg, zx).

3. Draw a bootstrap sample s of size n*
from U* by applying the same sample selec-
tion scheme as for selecting s, which, inter alia,
means that mg = nzg-/tyy+, where top. =

v The = 3 GeTh

4. Compute a bootstrap replicate é: = B(s?).

=N

5. Repeat steps 3 and 4 B times. The Monte Carlo
bootstrap variance estimator for 4 is now given

by (3).

We will refer to the above approach as the

BWOj;pa, where IPA is used to point out that the
approach focuses on inclusion probabilities in the
creation of the resampling population U*.
Remark 1. If r, = 0 for all k € s, then U* simply
consists of ¢ copies of each k € s. Hence, e.g.,, N* =
Z Cx = Z 1/7Tk = 7r7 o = stk/ﬂ'k = tpu
and Fy-(y) = Fy(y). If, furthermore, the design is
SI, we get N* = N, i.e., the approach is identical
to the Gross’ BWO.

For simplicity we assume that 7. <1 for k* €
U* and every U

4. An example - Pareto 7mps sampling

4.1 Pareto mps sampling

In Rosén (1997b) Pareto mps sampling is intro-
duced, together with the following sample selection
scheme: (i) For every element k € U, compute target
inclusion probabilities Ay = nzy/tyy. (ii) Generate
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N independent standard uniform random variables

Ui,Us,...,Un and form the ranking variables
Up(1 — Ag)
— k- Ok k=1,...,N). (4
G=T T Fo @

(iii) The elements with the n smallest (x constitute
the sample s.
To estimate the population total ¢y, Rosén con-

siders v S
: k k k
t frd —_— = —_— —
DD D Db (5)

which is very close to the 7 estimator, since A\ are
very close to mx (k=1,...,N).

The variance of t is, unless n and N are very
small, well approximated by,

AV () = s 30, - M)

v Yoyl =)\
* (A_k - ng\k(l—Ak)>

- —12ZZ ’“<y_z yl>2’

k#lEU

(6)

where vi = Ae(1 = Ae) (1= X)/(n — 3o A2). As

a variance estimator, Rosén proposes

=2, 0N (7)

n—1
v Zoue(l—Ae)/M )
g </\k PONEPYY )

which, unless n and N are very small, is approxi-
mately unbiased.

In Swensson (1997) approximations to my; are
given by )\kl = /\k>\l(1 — ’ykl), where Yei = N(l -

M1 = M)/ (n =Ty MIN ~ 1), k£LeU.
4.2 BWO;pas and Pareto nps sampling

To apply BWO;p4 to Pareto wps sampling we
follow the scheme in section 3, the only difference
being that the 7s are replaced by As. We will sepa-
rate the case when all ri, =0, (i.e. all )\;1 = ¢y, are
integers) from the case when some 73 # 0

All . = 0 The remark in section 3, implies that
Ax» = X for every copy k* € U* linked to element
k € s.

Let us consider the point estimator 5 of equa-
tion (5), and let our objective be to estimate its
variance. For the BWQO;pa we first observe that
the expectation of fz, conditional on s, is Ebootf; =
e MYk [ Aer = e Yie = tus = 3, CrlYk = L.
Hence,

Et* ~ Ef\ ~ Ef. = ty. (8)



_ Let the variance estimator (3) be denoted
Vmc(tx); Then we have Epoot Vinc(ts) = Vioor(th) =
AVioot(th), where

. N*
AVooorlly) = Fo 1 ZU* Ao (1= A=)
» (ZJL 2y e (1 — /\k*)>2
Ak* EU* Ak"‘(l - )\k*)
N* n—1~ ,.
T N*—1 n V(tA) ©)
where we have used the fact that ¢, = A;', and

that A= = Mg for every copy k* € U* linked to
element k € s. Hence, to get an approximately un-
biased and consistent variance estimator, the boot-
strap variance estimator has to be slightly corrected.
Ignoring the factor N*/(N*—1) an alternative boot-
strap variance estimator is,

n

Vipa(ty) = 7 Vine(tr). (10)

It is not easy to give general results for more

complex parameters. However, some indications of
what to expect follows from the Monte Carlo simu-
lations of section 5.
Some ry, # 0 We now have two sources of variation,
(I) the generation of U*, and (II) the subsequent re-
sampling from U*. Hence Eypo0t(-) = ErEr;(-) and
Vioot(*) = ErVir(-) + Vi Eq1(+). Since tzy+ now typ-
ically differs from t;r;, Ag~ usually differs (slightly)
from Xy, for a copy k* linked to element k € s. Hence,
the evaluation of EV;n(fy) will be less straightfor-
ward.

However, since

Eyoottu~ =  Ebpoot Zs(ck +Eex)Yr
= Zs(ck + rk)yk
_ -1 _ ¥
= ZS )‘k Y = Ty

we still have Et* ~ ty. Furthermore, FEpoot N* =
Es )‘1:1 ~ Zs 7!']:1 = N’ and EbOOttCKU* = Zs(ck +
Tk).’L‘k = Zs /\lek =1y. A

Next, we see that if § = x, Eboot Vime(fs) equals

(11)

Voot (Be; ) = BiVu() + ViEu(®)  (12)

where

ViEr () Vioottu=

= %oot(zs Cklk + ZS Ekyk)

= Zs ’I‘k(l — T‘k)yk. (13)
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Turning to the first term of (12), we see that Vi (£)
approximately equals

N*
1 ZU* A (1 = Ager)

y (yk* Y (1- /\k*))2
YR S W G W

which is equal to (9). When taking the expectation
over all possible bootstrap samples conditioning on
s, there is a major difference between the expressions
though. Expression (14) cannot be evaluated in the
same way. It can be rewritten to a summation over
s incorporating the random variable e, hence

AVi(E) (14)

_N* ! i
T Zs did(1=X)  (15)

, 2
o [ YE s drye(l = Ay
e Laded(1=X) )

AVir(E)

where /\Ik are the bootstrap target inclusion proba-
bility from U* connected with element £ in s, and dj
is the sample value multiplier for element k. Adding
(15) and (13) gives,

EyootVime(tr) = Er AV (T3) + Zs Te(1 = 7%) Yk,

(16)
where an expression for the first term is difficult de-
rive. However, its relation to equation (9) suggests
that we can expect a reasonable behaviour of the
variance estimator in (10), which also is supported
by Monte Carlo simulations. To keep the bootstrap
variance estimator as simple as possible for the more
complex estimators studied in section 5, we use the

same expression i.e. VIPA(@) == Vmc(@)
4.3

n—1

Variations of the BWO;p4
It is easy to see that there are a number of vari-
ations of the BWO;p 4 for the case of noninteger )\;1
which more or less mimic some of the BWO,.. They
are not spelled out here, but are presently under
study.

5. Empirical Results

To get some preliminary idea of the perfor-
mance of the proposed method, a limited Monte
Carlo simulation was carried out. The finite pop-
ulation used was MU281 (281 Swedish municipali-
ties) in Sdrndal, Swensson & Wretman (1992), and
the variables considered were P75 (=), SS82 (=y1),
and REV84 (=y;) with population correlation co-
efficients p(z,41) = 0.7 and p(z,y2) = 0.9. 5000
independent samples of sizes 5 and 40 were gener-
ated according to each of two mps schemes (Pareto



and Sunter’s.) Three parameters were considered,
viz. the mean, 7y, Gini’s mean difference, Gy =
S5y vk — wi| /N?, and the Gini coefficient, Ry =
Gu /27y (see table 1).

Table 1: Parameter values

Yi ty Ju Gy 100 x Ry,
¥ 6193 22.039 7.907 17.94
yo T.574E5  2694.8 2328.7 43.21

Under Pareto mps sampling the estimators used
for the three parameters were §j = (3, yx/Ax)/N,
G = (T %, lve —uil/M)/N?, where N = 3 A,
and R=G /23, respectively. Four variance estima-
tors were considered for §: (i) An expression based
on the SYQG variance estimator where 7, and mg
were replaced by Ag and Ay, nggq, (see Swensson
(1997)). (ii) An expression based on the variance
estimator (7), Vio. The two estimators nggq and
VRO were derived through first-order Taylor lineari-
sation of ¢, thus replacing yx in formulas (2) and (7)
by ux = (yx — §)/N. (iii) The delete-one jackknife
variance estimator, V;, and, (iv) the BWOp4 vari-
ance estimator, V;p4, based on B = 300 bootstrap
replicates in each sample”. For the estimators G and
R only VJ and VI pa were considered.

Under 7ps sampling according to the Sunter ap-
proach Vo does not apply. The variance estimator
for ¢, ngg, was obtained from ng(;q by replacing
Ax and Ay by 7 and 7y, respectively. The variance
estimators for G and R were the same as those used
for the Pareto approach.

Results from the simulation are presented in ta-
ble 2.

6. Discussion

As can be expected, a sample size of n = 5 is too
small for reliable inference based on the non-linear
estimators considered here. Hence, in the sequel, the
discussion will only concern the sample size n = 40.

(a) All three point estimators (j, G, and R)
seem to have negligible bias under both schemes.

(b) The jackknife variance estimator has a
large positive bias for each combination of sampling
scheme and point estimator. This is partly due to its
failure of capturing the dependence due to without

*Clearly, the design of the Monte Carlo study does not
permit the calculation of reliable bootstrap percentile-t con-
fidence intervals, and the application of the normal approxi-
mation is crude in several respects. Hence, no effort is made
to study coverage rates of confidence intervals in the present
limited Monte Carlo study.
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replacement sampling, which to some extent might
be remedied by applying some finite population cor-
rection factor.

(¢) Comparing Vipa(f) with its competitors,
the Monte Carlo results indicate that it behaves at
least as well with respect to relative bias, while its
variability seems to be at about the same level.

(d) For the more complex point estimators G
and I%, VI pa consistently underestimates their vari-
ation. Different bias-reducing factors are presently
being studied.

7. Conclusion

The suggested bootstrap approach, BWOj;p4,
for without replacement probability-proportional to
size sampling is relatively simple to implement. By
focusing on the inclusion probabilities for the con-
struction of a finite resampling population, its degree
of generality is high. The results from the Monte
Carlo simulation indicate that the proposed variance
estimator might be useful. However, more extensive
studies are needed. Such studies are presently in
progress. Furthermore, different variations of the
approach are also under study.
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