
E S T I M A T I N G  D I S T R I B U T I O N  F U N C T I O N S  R E L A T E D  B Y  
D E P T H  

P a m e l a  J. A b b i t t ,  J u a n  Jos(~ G o y e n e c h e  a n d  J e n n i f e r  S c h u m i ,  I o w a  S t a t e  U n i v e r s i t y  

P a m e l a  J. A b b i t t ,  208A S n e d e c o r  Hal l ,  A m e s ,  IA,  50011 ( p j a ~ i a s t a t e . e d u )  

K e y  W o r d s :  measurement error model, calibra- 
tion, imputation, Chambers and Dunstan estimator 

A b s t r a c t :  

In a pilot project in western Iowa, a stratified multi- 
phase sampling design was used to conduct soil sur- 
vey updates in two counties. Variables are recorded 
at different depths for each sampling unit (point). 
Percentiles from the distribution of several variables 
of interest in a particular soil are desired. This dis- 
tribution may vary with depth. Lab and field mea- 
surements of the variables are available for a subset 
of the sampling units. Standard multi-phase esti- 
mation techniques cannot be applied directly due 
to unique features of the data. Measurement error 
models are used to describe the relationship between 
measurements and the true values of the variables. 
Calibration is used to scale field measurements. Im- 
putation is then used to estimate parameters of the 
measurement error model associated with the cal- 
ibrated values. Finally, a smoothed weighted em- 
pirical distribution function is used to estimate per- 
centiles which are allowed to vary with depth. 

1. I n t r o d u c t i o n  

The National Cooperative Soil Survey (NCSS) is 
a cooperative program involving the USDA and a 
state agency, often the state's Agricultural Experi- 
ment Station. The NCSS program is charged with 
constructing soil maps detailing the location of soil 
series throughout the U.S. For each county, reports 
which contain soil maps and descriptions of each soil 
map unit within the county are generated. These 
maps are periodically updated through the NCSS 
program to provide current information on charac- 
teristics for different soils. Updates are based on 
soil surveys involving extensive field work. Tradi- 
tionally, data on the distribution of soil properties is 
gathered during the survey using purposive sampling 
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methods. This information is used by contractors, 
farmers and others for land use planning purposes 
and by scientists to develop models based on soil 
characteristics. 

Recent developments in GIS and GPS technolo- 
gies have made it possible to collect data at ran- 
domly located points. In a pilot project in west- 
ern Iowa, a stratified multi-phase sampling plan was 
used to conduct soil survey updates in two counties. 
Sampling units for all phases are points on the land. 
A Markov Chain sampling design which encourages 
geographic spread was used to draw the first phase 
sample. Subsequent phase samples were systematic 
subsamples of the first phase sample (Abbitt and 
Nusser, 1995). The design consists of four phases: 
soil symbol points, surface horizon points, full pro- 
file points, and laboratory points. 

For phase one points, the name of the soil at the 
point is recorded. In all subsequent phases, values 
for additonal variables are recorded by horizon. A 
horizon is a layer of soil which differs from the adja- 
cent layers in physical, biological or chemical prop- 
erties. For the second phase sample, information is 
collected on the physical characteristics of the point 
that are easily determined from the surface horizons. 
The surface horizons are the uppermost one or two 
horizons at the point. For third phase sample points, 
field-observable data is collected on all horizons up 
to a depth of 48 inches, where possible. Such a de- 
scription of soil characteristics as they vary across 
depth is called a profile. In the fourth phase sample, 
laboratory determinations are made on soil samples 
taken from the field. 

2. C l a y  C o n t e n t  

Soil texture is an important  consideration in land 
use and management.  Texture is described by the 
percentages of clay, sand and silt which are present. 
These three percentages sum to 100%. In this study, 
both clay and sand content (as percentages) are 
recorded for each horizon. Silt content is calculated 
as 100% minus the sum of clay and sand percent- 
ages. Due to the multi-phase sampling design used 
for data collection, the amount of information ob- 
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tained varies from point to point. For phase 2 points, 
we have a texture description based on determina- 
tions made in the field for the surface horizons only. 
This may include one or two horizons. For phase 
3 and 4 points, we have field texture profiles for all 
horizons to a depth of 48 inches. For phase 4 points, 
we also have laboratory profiles of texture for all 
horizons to a depth of 48 inches. 

For the purposes of this analysis, we focus on 
clay content analyzing clay content in order to ob- 
tain a description of central tendency and of per- 
centiles which characterize the variability of clay as 
it changes with depth. These profiles may differ for 
each soil. Let the size of the phase 2, 3 and 4 samples 
be denoted n2, ha, and n4, respectively. Note that  
n2 >_ n3 _> n4. Let Yij be the field determinat ion 
and yij be the laboratory determination of the clay 
content of horizon j of point i. The true value of 
clay content for horizon j of point i will be denoted 

Xij . 
Because of resource constraints, the phase 4 sam- 

ple by itself is not large enough to support  estima- 
tion of percentiles for each soil in the county. Data  
obtained in phases 2 and 3 will also be incorporated 
into the estimation procedure. Phase one points will 
not be used in this analysis. Soil scientists are still 
in the process of collecting data  for this study. Cur- 
rently, laboratory measurements have not been re- 
ceived on all phase 4 points. These points will be 
considered phase 3 points until laboratory data  is 
received. 

The raw data  provides individual clay profiles. 
Figure 1 shows some individual field clay profiles 
from phase 3 and 4 points. Phase 2 profiles usually 
end at 6-12 inches. Each profile is a description of 
how clay content changes with depth at a particular 
point. The profile is recorded as a series of horizon 
descriptions. Because only one value is recorded per 
horizon, a plot of clay content against depth is a 
step function. The depth and number of horizons 
may vary from point to point, resulting in different 
numbers and locations of j ump  points in the step 
functions representing profiles from different points. 

3 .  E s t i m a t i o n  P r o c e d u r e  

The true values of clay content are of interest. Under 
a measurement error model, a method of moments  
(MOM) predictor for x i j  can be derived. This pre- 
dictor can make use of either laboratory or field mea- 
surements of clay content. However, many more field 
measurements are available than laboratory mea- 
surements. A plausible model for the relationship 
between field measurement,Y, and true clay content, 

Figure 1: Four individual clay profiles from phase 
3 and 4 points. Each line type is a profile from a 
different point. Profiles are recorded to a depth of 
48 inches. The horizontal axis is depth in inches. 
The vertical axis is clay content as a fraction of total  
texture. 
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x, is 

Yi j  -- /~0 -'t- 31Xi j  + eij (1) 

where i denotes the point, j denotes the horizon, 
2 ind(0 o'~) and x i j  is uncor- x i j  "~ ind(#~, cry), eij  "~ 

related with ei j .  Let /3  denote the vector (/30,/31) I. 
The residual e i j  represents the measurement error 
in the field determination,  ]~j. 

Define X i j  - /3i -1 (Y/ j - /3o)  to be the calibrated 
field value for horizon j of point i and let ai j  - -  

f l l l e i j  . Then model (1) can be rewritten as 

X i i  - x i i  + aii  (2) 

2 where aij  ": ind(O, era) and is uncorrelated with x i j  

2 2 2 Then, under the assumption that  and cr a - fl~- (r e. 
X i j  and eij  are  normally distributed and uncorre- 
lated, E ( x i j l X i j ) i s  

2 
O "  x 

+ (X j - 

2 if fll > 0. Be- It can be shown that  Var (i?) < cr x 
cause we are interested in estimating percentiles, it 
is impor tant  to produce predictions of the true val- 
ues with a distribution similar to that  of x. To more 
closely approximate this, we will use a MOM pre- 
dictor which matches the first and second moments  
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of the predictor to those of x. Let x + denote this 

G~ . Then MOM predictor and let 3 ' -  o~+o~ 

x~ - ~ + 7 }  (Xij  - p~) (3) 

We will use this predictor even though we will not 
assume x to be normally distributed. Because the 

2 is allowed distribution of x changes with depth, cr~ 
to change with depth. Let crxk2 be the variance of x 
at inch k. Similarly, use the notation 7k to denote 
the value of 7 for inch k. Calibrated field values 
are only available at great depths for phase 3 and 4 
points. In order to improve estimates of 7k at great 
depths, imputat ion will be used to complete profiles 
of calibrated values for phase 2 points. 

The predictor in equation (3) can not be calcu- 
lated exactly because ¢t, 7k, and #~ must be esti- 
mated from the data. Est imation of each of these 
quantities is described in the following sections. 

4.  E s t i m a t i o n  o f / 3  

In this study, the estimates of/3 are calculated sepa- 
rately for different soils. Through exploratory anal- 
ysis, three calibration groups have been developed. 
The estimate of/3 differs for each calibration group. 
For simplicity, we consider one calibration group 
here, so/3 does not need to be indexed by calibration 
group. 

Without  knowing the value of ¢1, we do not 
have Xij, but only a predictor, f~ij, where Xij 

For 2 points, only 

be calculated for the top one or two horizons. For 
^ 

phase 3 and 4 points, X i j  c a n  be calculated for each 
horizon to a depth of 48 inches. 

Recall that  yi j  denotes the laboratory measure- 
ment for horizon j of point /.The following model 
was used to estimate /3 where each horizon is an 
observation. 

(4) 

where yi j  "" ind (p; ,  cry), vi i  ~ ind (0, ~r~) and yi j  is 
uncorrelated with v i j .  Phase 4 points only are used 
in this regression, since laboratory determinations 
are not available for phases 2 and 3. The ordinary 
least squares (OLS) estimators of ~ and ~ will be 
used as estimators of/3, although they are biased if 
the laboratory measurements are subject to error. In 
particular, the slope estimate is biased toward zero 
(Fuller, 1987, p. 3). We assume that  the v i i  are 
independent, even though several observations come 
from each point. This model also assumes that  the 
slope, ~ ,  does not change with depth and that  the 

variance of Y is constant (a homoskedastic model). 
These assumptions appear reasonable based on re- 
gression diagnostics. 

5. E s t i m a t i o n  o f  yk 

We can estimate 7k by est imating the variance com- 
2 2 and 2 An estimate of ~r a can easily ponents, cra crxk. 

^ - - 2  

- 2 where 2 is the 2 /~1 8 v 8v  be calculated. Define s a 
mean squared error from the fit of equation (4). The 
MSE from this regression will be an overestimate of 
the field measurement error, if the laboratory mea- 
surement has positive error variance. If the mea- 
surement error of the laboratory determinations is 
much smaller than that  of the field determinations,  
the bias will be small. 

In estimating 2 crxk , we have a small number of ob- 
servations, and hence a direct estimate of the vari- 
ance will have a larger variance. From equation (2), 
we have that  

0.~( k 2 2 - -  Cr x k -4- (7 a , 

where cr~c k is the variance of X at inch k. Then de- 

fine s~k2 - S2xk _ Sa .2 The calibrated values, X i j ,  will 
be used to construct s~c k . The estimate s~¢ k is based 

2 on more observations than a direct estimate of cr~k, 
because we have more calibrated values than labo- 
ratory measurements of clay content at a particular 
depth. 

The estimates, s~k, would be more reliable if we 
had full profile descriptions for phase 2 points also. 
To use the information in phase 2 points, we fill in 
the missing 2 values using an imputa t ion  procedure. 
These imputed values form a full profile of x values 
to be used in percentile estimation. 

6 .  I m p u t a t i o n  

Calibration groups are too broad for use as imputa-  
tion classes. Smaller groups of closely related soils 
have been developed. Imputa t ion  models will be fit 
separately for each imputa t ion class. We will con- 
sider imputat ion for a particular soil, L, contained 
in a particular imputat ion class. 

^ 

Values of X are available only for the top one or 
two horizons of phase 2 points. The calibrated field 
data  for these profiles will be completed via imputa-  

^ 

tion. Imputing missing values of X i j  would require 
imputing the number and depth of the unobserved 
horizons. To avoid imputing the horizon, we will 
impute 2( by inch. 

Let the second subscript now represent the inch 
of the profile, rather than the horizon. That  is, Jfik 
represents a prediction for inch k of profile i and 
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~J~ik -- S(.ij when inch k is contained in horizon j .  
We define Yik,  x ik  and aik similarly. Let 

1 ifYik was not observed 
Mik  -- 0 otherwise. 

Let mk represent the number  of points for which the 
field values and thus the calibrated field values, f ( i k ,  

are available for inch k. Note that  mk is specific to 
the imputa t ion  class. For now, we consider only one 
imputa t ion  class, so additional subscripts on mk are 
not needed. 

6.1 I m p u t a t i o n  P a r a m e t e r  E s t i m a t e s  

No imputa t ion  is needed for k - 1; tha t  i s , -~ i l  is 
available for all i. For each inch after the first inch, 
we fit the models 

~(ik -- 50k + 51k f(i1 + 52k Li + uik k - 2 , . . . ,  48(5) 

where 

1 if point i is soil L, 
Li - 0 otherwise, 

2 uik "~ (0, cry) a n d  

O.kin 
E (uik ul,~) - 0 

i f i - l  

otherwise. 

In mat r ix  notation, we can rewrite model (5) as 

X k - - T k S k + u k  k - 1 , . . . , 4 8  (6) 

where 

21k 1 2(11 L1 

22k 1 221 L2 
X k  - -  . , T k  - -  . 

~7,~ k 1 -Xrnk I Lrnk /Ulk/ 
u k -  u2k ,5~-  51k 

• 52k 

for k - 2 , . . . , 4 8 ,  and 5' 1 - (0, 1,0) .  Est imates  of 5k 

are obtained by O LS separately for each inch. These 
are the initial imputa t ion  parameter  estimates.  

The OLS estimates of 5k are autocorrelated across 
depth. We will use a two-step model to obtain 
smoothed estimates of these coefficients. Rewrite 
equation (6) as 

X - T 5  + u .  (7) 

where 

X l  T1 
X2 T2 

X - . , T  - . ,5 - 

X4s  T48 

and 

(~1 
52 

~4s 

Ul 
U2 

U ~ . . 

U48 

The OLS est imate of this regression, (~, can be mod- 
eled as 

5 -  Z a + r l  

where Z and c~ are chosen to construct a piecewise 
linear function across depth, ~7 represents deviations 
of (~ from this function and Var (rt) - V. An es- 
t imate  of V,  V,  can be obtained from the fit of 
equation (7). The generalized least squares (GLS) 
es t imator  of (~ is 

~ - -  ( Z t ~ r - l z ) - l  z t ~ r - l ~ .  

A predictor of the calibrated values, ](ik from the 
smoothed imputa t ion  parameter  es t imate is 

Xi*k -- ~ok + ~lk Xi l  + ~2k Li , 

with residual 

Elk -- X i k  -- Xi*k. 

However, using this predictor to impute  the missing 
values will result in an imputed  da ta  set with too lit- 
tle variability• An imputa t ion  procedure is desired 
which imputes  values which reproduce the variabil- 
ity of X. A modification of a procedure from Cham- 
bers and Dunstan (1986) will be used. 

6.2 C h a m b e r s  and D u n s t a n  E s t i m a t o r  

Chambers  and Dunstan (1986) (CO) present an es- 
t imator  for a distr ibution function using auxiliary 
information. The CD es t imator  can be viewed as a 
two step process. The first step is to impute  val- 
ues of the variable of interest. The second step is to 
calculate a weighted empirical distr ibution function 
(EDF) from the imputed da ta  set. The weighting 
procedure of this study is a modified version of CD 
which incorporates sampling weights. 

A set of values is imputed  for each inch. In the 
first step of the CD procedure, we impute  mk values 
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for each missing value. The values in the imputed 
data sets are denoted Xikl.  These imputed values 
are 

{ Xi*k+Elk l -  1 , . . . , r n k  i f M i k - -  1 
-~'ikl- J~ik l - -  1 otherwise. 

Each profile in the original data set has a sampling 
weight, wi. The sampling weight for a point which 
has a missing value will be partitioned among its rnk 
imputed values. Let 

Wl 
gl -- rnk 

Y~'~i=I wi (1 - Mik ) 

for 1-- 1 , . . . ,  rnk. Each J~ikt in the new data set for 
the kth inch is assigned a new weight, tbikz, in the 
following way. 

Wigl 1 - 1 , . . . ,  rnk if Mik -- 1 
~ikl -- wi 1 -- 1 otherwise. (8) 

We modify the second step of the CD procedure 
by using the modified weights (8) instead of the CD 
weights of rn~-1 for each imputed value and 1 for each 
original value. This modification is required to apply 
the procedure to a multiple phase sample. Because 
we wish to estimate the distribution of x, not that 
of X, we next modify the X values. 

7. M O M  predict ion 

An estimate of cry( k is obtained separately for each 
inch by using the weighted variance estimator in 
equation 

~i , t  £vikl 

where/kxk is the mean of 3~ for inch k. Because the 
underlying variance profile is believed to be smooth, 
we smooth the estimates #~ck" A centered moving 
average of seven observations is used to compute a 
smoothed estimate, s~ck, defined by 

1 k+3 

i=k - 3  

Because we allow the variance components to vary 
by inch, ~/ also varies by inch. We will estimate 7k 
by ~/k, where 

2 
Sxk 

We can aproximate the MOM predictor with 

~tXk n t- @'k 5 ( ~ " i k ' -  ~ t X k ) .  ( 9 )  Xikl 

Figure 2: Estimated quantiles of clay content for 
Luton soils. The horizontal axis is depth in inches. 
The vertical axis is clay content as a fraction of total 
texture. 

0 

C D  

0 

0.8 

0.6 

0 4  

0.2 

0.0 

. . . . .  • ., . . . . . . . . . . . .  ..' . . . . . . . . . . . . . . . .  

. . . . . . .  " . . . .  " r . . . . .  J ' - - ~  

" - - - ~  / 

\ ~ -  ~ . J  .,. .. . . . . .  , . ................................... 
. . . . ,  .. .. . . . . . . . . . . . . . .  :' ., 

, 

t . .  :: . . . . . . . . . . . . . . . . . . .  

• , . . . . . . . . .  .: 

Q u a n t i l e s  

. . . . . . . .  . 0 5  

. 2 5  

. 5 0  

. 7 5  

. . . . . . . .  . 9 5  
. . . .  I . . . .  F . . . .  , . . . .  , . . . .  i . . . .  , . . . .  , . . . .  ~ . . . .  i . . . .  , 

0 5 10 15 20 25 30 35 40 45 50 

Depkh in Inches 

The data set of approximate MOM predic- 
tions, (9), is then used to construct a weighted 
empirical distribution function (EDF), using the 
weights from equation (8). A weighted EDF is calcu- 
lated for each inch. Each step function that results 
is modified by connecting the midpoints of the rises 
of the steps to create a smooth EDF (Nusser et al, 
1996). These smoothed functions are then used to 
estimate percentiles for each inch. Figure 2 shows 
estimates of the 5th, 25th, 50th, 75th and 95th per- 
centiles for clay content for a particular soil. 

8. Conclus ion  

The soils data set has several unique features. The 
nature of data collection (by horizons) and the de- 
sired end product (percentiles by inch) complicate 
the analysis. The current procedure of calibration, 
imputation, prediction and estimation of the distri- 
bution function has been applied to one particular 
soil. Composite profiles of each component of tex- 
ture (clay, sand, and silt) are also desired. Work 
is under way to develop a procedure with the con- 
straint that the percentages for each imputed value 
sum to 100%. We have also begun modifying these 
models to achieve the overall objective of developing 
a procedure which can easily be applied to each soil 
of interest for all three components of texture. 
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