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Abstract :  If one wants to estimate a parameter 
for each of many small areas, one can generally im- 
prove the independent direct estimates by "borrow- 
ing strength" from the other small areas. Much re- 
search has been devoted to the situation in which 
one seeks to minimize the (possibly weighted) sums 
of the expected squared errors of the small area esti- 
mates° Thomas A. Louis, Malay Ghosh, and others 
have considered the contrasting situation in which 
the relationship among the small area parameters 
is of primary interest. For example, one might be 
interested in knowing the proportion of small areas 
where the high school dropout rate is above some 
level. The aim in such problems is to minimize the 
distance between the observed distribution of the 
"ensemble" (set) of small area estimates and the true 
distribution of the ensemble of parameters. In this 
paper we further explore the small area estimation 
problem when estimating the distribution of the pa- 
rameters is the goal. 

1. Introduct ion  

Suppose we are investigating the values of a cer- 
tain parameter (e.g. average income or an average 
measure of the level of literacy) for each of many 
small areas° If the goal is the best estimates of these 
parameters considered individually, then empirical 
and hierarchical Bayes techniques have been devel- 
oped that  improve upon naYve estimators. What  if, 
though, we want to know which small areas have pa- 
rameter values above a fixed cutoff C and which be- 
low? A different approach is required to treat prob- 
lems of this type. 

Louis (1984) was the first to study these small 
area estimation problems although Rubin (1981) had 
looked at the situation in another context. Ghosh 
(1992, 1994) built on the work of Louis, extending it 
to non-normal and multivariate situations. Our aim 
is to build on the work of these authors and, in par- 
ticular, to investigate the use of loss functions that  
measure the distance between the distribution of the 
estimates and the distribution of the parameters. 

For a general appraisal of small area estimation, 
Ghosh and Ra~ (1994) is highly recommended. 

The very recent and interesting work of Shen 

and Louis (1998) studies and compares the different 
approaches to small area estimation in a two-stage 
hierarchical setting. 

The organization of this paper is as follows: 
This introduction is Section 1. Section 2 provides 
background information. Section 3 introduces the 
loss functions that  will be employed. In Section 4 we 
study a simple normal model, and in Section 5 we 
extend the results to more general situations. Some 
concluding remarks are given in Section 6. 

2. Background 

Consider the estimation of m parameters 
^ B  ^ B  

011ooo , 0 m under squared error loss. Let 01 , . . .  , 0 m 

denote Bayes estimates of these parameters based on 
1 m 

data X - (X1, . . .  ,Xm). Let 0• - m E i = I  oi and 

0 B 1 m ~B° Then 
• - -  ~ E i - - 1  

E(0.!X) = b B. 

but 

0.) l x > E 0.") 
i = 1  i=1 

This was shown byLoui s  (1984) under a normality 
assumption and, in general, by Ghosh (1992). 

The point is that  the Bayes estimates of the pa- 
rameters (under squared error loss) have the same 
mean as the parameters themselves, but are on aver- 
age less "spread out." If we are trying to use the col- 
lection of Bayes estimates to study the distribution 
of the parameters, we will have the distorted view 
that  the parameters are more concentrated about 
their mean than they really are. We have been dis- 
cussing Bayes estimates, but empirical Bayes esti- 
mates face the same problem. 

In the context of small area estimation, the 0i 
are parameters associated with small area i, say 

^ B  
mean household income. If we use the 0 i to study 
the 0i, we will underestimate the diversity in the 
parameters. 

Louis (1984) tackled this problem by investigat- 
ing the class of estimators 0i that  satisfy 

m 

E(0.lX ) - -0  where 0 . -  1 E 0, 
• m 

i - -1  
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and 

i = 1  i = 1  

He still used squared error loss but it was minimized 
subject to these constraints. The constraints force a 
match on the first two moments between the distri- 
bution of the estimates and the distribution of the 
parameters. 

In giving a theoretical basis to his work, Louis 
(1984, Subsection 2.2) introduced the notion of a 
general loss function operating on the empirical dis- 
tributions of the parameter  estimates and the pa- 
rameters. Our investigation will be based on such 
loss functions; they are described in the next sec- 
tion. 

3.  L o s s  F u n c t i o n s  

Given m parameters 0x, . . .  ,Ore, define the 
function 

1 
m 

G i n ( t ) -  ~-~I(Oi <_ t) (3.1) 
m 

i = 1  

where I(-) is 1 when its argument is true and 0 oth- 
erwise. We can regard Gm as the empirical distri- 
bution function of the parameters. From a Bayesian 
point of view, the parameters are random variables. 
It should be noted, however, that  the parameters will 
generally not be identically distributed and maybe 
not independent. 

Let 0,~ be an estimator of Gin. For example, 
given m estimates 0 a , . . . ,  0m of 01 , . . . ,  Om respec- 
tively, one could estimate Gm by 

6;re(t) 1 = - -  I(0i < t), (3.2) 
m 

i = 1  

but we do not require estimators of Gm to be of the 
form (3.2). If we want to s tudy  the distribution of 
the 0~, we would like to find an estimate G,~ that  
is close, in some sense, to Gm. In other words, we 
would like IlGm-amll to be small where I1" II is a dis- 
tance function or metric. Examples of such distance 
functions include 

II0m -Gmllw,~ 

f? = IGm(t) - am(t) l  ~ dW(t) ,  (3.3) 
CK) 

IlGr~ - Gmllt,w,~ 
L 

= Z  ,tOm - am(t,)I 
e = l  

(3.4) 

and 

II m -- amlloo 
= max 

- - o o < t < o o  
[ G m ( t ) -  Gm(t)l. (3.5) 

In (3.3), j > 0 and W(t) is a weight function that  we 
can choose to give more weight to ranges of param- 
eter values in which we are especially interested. In 
(3.4), j > 0 and the w = ( w l , . . . ,  WL) are weights 
attached to the points t = ( t l , . . .  , tL). If we adopt 
a general definition of integral, the second distance 
function is just a special case of the first. An even 
more special case is 

IIGm - Gmll,o,j - I G m ( t 0 )  - Gin(t0)[ ~ 

that  considers only a single point in the space of 
parameter  values. For example, if Oi corresponds to 
average household income in small area i and to -- 
$25,000, then IGm(to)-Gm(to)l measures how close 
we are in estimating the proportion of small areas 
with average household incomes less than or equal 
to $25,000. 

The distance function (3.5) is of great interest 
but difficult to work with analytically. There are, 
of course, other distance functions one might want 
to consider. In this paper, though, we concentrate 
on (3.3) with j = 2. The goal is to minimize the 
(conditional) expected distance given the data. 

If we are presented with a distribution function 
estimate (~m of the form (3.2), we can recover the 
set of values of the 0i from the jumps in the func- 
tion (~m, but we cannot determine uniquely which 
small area i is associated with which jump. In fact, 
any one-to-one assignment of the small areas to the 
jumps gives rise to the same value of (~m- Letting 
0 = (Ox, . . . ,  Ore) and 0 = (Ox , . . . ,  Ore), Louis (1984, 
p. 394) suggests using a loss function of the form 

IIGm - Grail + e Z(0,  0) (3.6) 

for some small e > 0 where L (-,-) is, for example, the 
sum of squared errors L(0,  0) = Y]4~1 ( 0 i - 0 i )  2- The 
second term in the loss function is designed to force a 
unique assignment of the jumps in (~m of form (3.2) 
to the small areas i without otherwise affecting the 
loss function much. 

Given any estimator (~m of Gin, not neces- 
sarily of form (3.2), we can estimate the ensemble 
{ 0 1 , 0 2 , .  • • , Ore} by 

{hi ,b2 , . . .  
1 ) 

m + l  ' m + l  " " '  

m + l  ' m + l  " 
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We use (3.6) to determine which 0i corresponds to 

) m + l  ' 

and so forth. 
In the next section, we make use of some of the 

loss functions described in this section to investigate 
a simple normal model. 

4. S i m p l e  N o r m a l  M o d e l  

Suppose that  each Oi ~ N(#, T2), that is, sup- 
pose each Oi is normally distributed with mean # 
and variance T2. Suppose further that  the 8i are in- 
dependent. Let Xi given Oi be N(Oi, 1) and let the 
Xi be independent, i - 1 , . . .  , m. We shall use this 
simple model as a starting point. 

For known # and r 2, the posterior distribution 
of 8i given X is normal with mean E(OilX ) = # + 
l+r-ffr2 (Xi  - -  #) and variance var(OilX ) -- ~ r2 . The 

r2 
0ilX are independent. Letting 7 -  1--4-~, we have 

E{Gm(t) lX } = 
m 

1 E E{I(Oi _< t)IX} 
m 

i--1 

m 

- -  E Pr(Oi _< tlX) 
m 

i = 1  

m i--1 

(4.1) 

where ¢ is the standard normal distribution func- 
tion. 

Let us consider the distance function 

/? IIGm - GmlIw, 2 - ( G i n ( t )  - -  Gin(t)) 2 dW(t) 
(X) 

where W(t) > 0 and f _ ~  dW(t) < oo. The condi- 
tional expected distance given X is 

E(ll0m - Gm[Iw,2 IX) 

{F E o (0re(t) - am(t))  2 dW(t) x} 

F OO 

E { (G in ( t ) -  Gin(t))21X } dW(t). 

The last step is justified because the integrand is 
nonnegative and bounded. But the last integral can 

be minimized by minimizing 

E { (G in ( t ) -  Gin(t))2 I X } (4.2) 

for each t. Note that  the solution does not de- 
pend on W(t).  It is known from standard results 
in Bayes estimation that (4.2) is minimized by the 
choice (~m (t) - E{ Gm (t)IX}. For the simple normal 
model, the latter quantity is given by (4.1). 

Note: For W(t) - t, Shen and Louis (1998) 
obtain 

1 m 

0re(t) - E{Gm( t ) JX}-  ~ P r ( e ~  _< tlX) 
m 

i--1 

for a two-stage hierarchical model. 
It is of interest to compute the (conditional) 

expected loss because this provides a measure of the 
closeness of estimation, analogous to mean squared 
error. I f  a m ( t )  - E{am(t) lX},  then 

E {  (Gm(t) - G m ( t ) )  2 IX} - v a r { G m ( t ) l X } ,  so 

E(IIGm - Gmllw,2 I X) - var{Gm(t)lX} dW(t). 
(X) 

(4.3) 

But 

va {am(t)lX} 

1 m 

m 2 E var{I( o/_< t)lX} 
i = 1  

m 

m2 E P r ( O / <  t I X ) { 1 -  Pr(Oi < tIX)} 
i = 1  

m 2  i = 1  V / ~  

,/5 

(4.4) 

From (4.3) and (4.4), E ( l l G m -  GmllW, 2 IX) can be 
computed. 

5. M o r e  G e n e r a l  S i t u a t i o n s  

5.1 N o r m a l  Mode l ,  U n e q u a l  b u t  K n o w n  
V a r i a n c e s  

As before, let each 8/~-, N(#, T 2) and let the 8i 
be independent. Now let Xi given 8i be N(8i, a 2) 

2 and let the Xi be independent and ai > 0, i - 
I , . . .  ,m. 
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Let 

T 2 

"~/'i - -  2 T 2 °  
rY i + 

2 the posterior distribution For known # ,  T 2, and hi, 
of 0i given X is normal with mean 

E(0~IX) = # + ~(X~ - #) 

and variance 

lX)-- 

All the results of Section 4 continue to hold for 
this more general model, with 

replacing 

t -  - # )  

a i x / ~  

t -  7(x  - 

in (4.1) and (4.4). 

5.2 Empi r i ca l  and  Hiera rch ica l  Bayes Tech- 
niques 

Most frequently, # and T 2 will be unknown and 
require estimation. There are standard empirical 
and hierarchical Bayes methods for doing this. See, 
for example, Ghosh and Rao (1994). The (condi- 
tional) expected loss can be estimated by means of 
Markov chain Monte Carlo methods. 

6. C o n c l u d i n g  R e m a r k s  

This paper has built upon the work of Louis 
(1984), Ghosh (1992), and others that study ways 
of estimating the distribution of small area parame- 
ters. Our focus has been on using loss functions that 
measure the distance between the distribution of the 
estimates of the parameters and the distribution of 
the parameters themselves. There are many aspects 
of this problem that have yet to be explored. 
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