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1. Introduction 

Missing data is a common problem in virtually all 
surveys. In cross-sectional surveys, missing data may 
mean no responses are obtained for a whole unit being 
surveyed (unit nonresponse), or that responses are 
obtained for some of the items for a unit but not for 
other items (item nonresponse). Unit and item 
nonresponse cause a variety of problems for survey 
analysts. Missing data can contribute to bias in the 
estimates and make the analyses harder to conduct and 
results harder to present. 

The most frequently used method to compensate for 
item nonresponse in National Center for Education 
Statistics (NCES) surveys is imputation. 

In practice, imputed values are often used as true values 
to estimate the population parameters. However, it is no 
longer appropriate to use the standard formulae to 
estimate the variance when there is imputed data. 
Treating imputed values as observed values can lead to 
underestimating variances if standard formulae are used. 
This underestimation may become more appreciable as 
the proportion of imputed items increases. 

Analysts have developed a number of procedures to 
handle variance estimation of imputed survey data. In 
particular, Rubin (1987) proposed a multiple imputation 
procedure to estimate the variance due to imputation by 
replicating the process a number of times and estimating 
the between replicate variation. Sfirndal (1992) outlined 
a number of model-assisted estimators of variance, while 
Rao and Shao (1992) proposed a technique that adjusts 
the imputed values to correct the usual or naive 
jackknife variance estimator for hot deck imputation. 
Kaufman (1996) proposed a variance estimation method 
similar to S~rndal's method that can be used with a 
nearest neighbor imputation approach. Shao and Sitter 

(1996) proposed to perform an imputation procedure on 
each bootstrap sub-sample to incorporate the imputation 
variability. This proposed bootstrap procedure is 
consistent irrespective of the sampling design, the 
imputation method, or the type of statistic used in 
inference. Shao and Sitter's method does not require any 
model or explicit variance formulae. Once the 
imputation procedure is programmed appropriately, 
Shao and Sitter's method is easy to implement. 
However, since B imputations should be performed for 
each item, extensive computation is required for large 
scale surveys. Maintaining the large amount of imputed 
data can be operationally difficult. 

In this study, we applied Shao and Sitter's bootstrap 
method to the Schools and Staffing Survey (SASS) 
1993-94 Public School Teacher Survey component to 
assess the magnitude of imputation variance. 

2. 1993-94 Schools and Staffing Survey (SASS) 

SASS 1993-94 Public School Teacher Survey has a two 
stage stratified sampling design. First, public schools 
are stratified. Within each stratum, schools are sorted 
and systematically selected using a probability 
proportionate to size algorithm. Then within each 
selected school, teachers are stratified. Within each 
school and teacher stratum, teachers are selected 
systematically with equal probability. The SASS 1993- 
94 Public School Teacher Survey data contains 
information on the 47,105 public school teachers who 
responded to the survey. The range of item response 
rates is 71-100%. 

3. SASS 93/94 Imputation Procedure 

Four types of imputation methods are used in SASS 
1993-94. They are (paraphrasing from Abramson et al., 
1996, page 80): 

(1) Using data from other items of the same unit on the 
questionnaire; 
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(2) Extracting data from a related component of SASS; 
(3) Extracting data from the frame file (the information 

about the sample case from the sampling frame); 
(4) Extracting data from the record for a sample case 

with similar characteristics ("hot deck "). 

Imputation methods (1) - (3) are deductive or logical 
imputation. Whenever it was possible, a item 
nonresponse was imputed by methods (1) - (3). If a 
missing item can not be imputed by methods (1) - (3), 
then imputation method (4) was used. Method (4) is a 
(sequential) hot deck method. The procedure started 
with the specification of imputation classes defined by 
certain relevant variables (matching variables). Then the 
records were sorted by STGROUP (Groups of states 
with similar schools) / STATE / TEALEVEL 
(Instructional level for teacher) / GRADELEV (Grade 
levels taught this year) / URB (Type of community 
where school located) / TEAFIELD (Teaching 
assignment field) / ENROLMNT (Number of students 
enrolled in the school). The records were then treated 
sequentially. A nonmissing y-variable was used as a 
starting point for the process. If a record had a response 
for the y-variable, that value replaced the value 
previously stored for its imputation class. If the record 
had a missing response, it was assigned the value 
currently stored for its imputation class. If there was no 
donor in the class, the class was collapsed with another 
class. 

For imputation method (1), the imputed values are from 
other observed items of the same unit and in method (3) 
the imputed values are from the sampling frame file 
(PSS or CCD). For imputation method (2), the LEA's 
(Local Education A g e n c y -  another component of 
SASS) missing item is imputed through information 
from the sampled school which belongs to that LEA. 
According to Abramson et al. (1996), this type of 
imputation was performed only to the one-school LEAs. 
Therefore, the imputed values by methods (1), (2), or (3) 
are independent of the sample and the sample design. 
Assume the simplest response mechanism: respondents 
always respond and nonrespondents never respond. 
Then if the population is {Yl,Y2 . . . . .  Y N } '  the imputed 

values can be assumed to b e  {Zl, z 2 . . . . .  z u }. Here if Yk is 

actually observed, then zk = Yk, otherwise zk equals 

the value imputed by any method of (1), (2), or (3). Let 

t~. = zkN1Yk be the population total of y, t_ = Zku__~Zk be 

the population total of z, and ~'. =Z,  zk/rck be the 

Horvitz-Thompson estimator of tz (here rc k is the 

inclusion probability of unit k). We have the following 
decomposition 

MSE(iz )= V(t~ )+ (t_ - t y ~ . 

The first part, V(/'=), can be estimated by treating the 

imputed values as observed values while the second part 
is the bias of the imputation and assessing this bias is out 
of the scope of this study. If the imputation bias is small, 
then treating the values imputed by any method of (1), 
(2), or (3) as observed values and using a standard 
variance estimation formula will not Underestimate the 
variance. 

For method (4)--the hot deck imputation, however, the 
imputed data can not be treated as observed data. 
Actually every imputed value is a function of the 
sample, therefore the imputed values cannot be 
represented as a set of fixed values a s  {Zl ,Z  2 . . . . .  ZN}. 
Therefore in this study, we investigated the imputation 
variance of method (4) - the hot deck method. 

4. Imputation Variance Estimation Procedure 

SASS surveys are designed to produce reliable state 
estimates, and samples are selected systematically 
without replacement with large sampling rates within 
strata. To reflect the increase in precision due to large 
sampling rates, a without replacement bootstrap 
variance estimator procedure has been implemented for 
the 1993-94 SASS. Instead of drawing a simple random 
sample with replacement from the original sample, the 
bootstrap is done systematically without replacement 
with probability proportional to size as the original 
sampling was performed (Abramson et al., 1996).. 

In SASS 1993-94 components, 48 replicate weights 
were created to estimate variance using the bootstrap 
method. These replicate weights were subjected to 
various adjustments, including a sampling adjustment, a 
noninterview adjustment, and a ratio adjustment. In 
order to reflect these adjustments, these replicate 
weights should be used in the variance estimation. To 
this end, we used the Shao and Sitter's method in the 
following manner: 

(1) 

(2) 

For each set of replicate weights {wik }k=l,2 ..... n (i = 1, 

2 . . . . .  48), cases with wik = 0 are dropped. Denote 

the remaining cases, which make up a bootstrap 
sub-sample, as 1I!/= {Yk :k e aR~,r/k :k e AM~)} (i = 1, 

2 . . . . .  48). Here ARi is the set of observed values 

and AMi is the set of missing values. 

Apply the same imputation method as was used to 
create the full sample imputation values and use 

{ y t "k ~ ARi } to impute {l']i k "k ~ AMi } (i = 1, 2 . . . . .  
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48). This re-imputed bootstrap sub-sample is 
denoted as s i . That is 

S i ={Yk "k~ARi}~{r l~  "k~AMi},  

here r/~ is imputed value. The missing values in the 

full sample are also imputed using the nonmissing 
values in the full sample. This set of imputed 
values is denoted as 

So= { yk " k ~ AR }w {ri*k ' k ~ AM }. 

Thus, 48 sets of imputed bootstrap sub-samples and 
1 set of imputed full sample are obtained. 

(3) Calculate the t~ i of interest from s i , weighted by 

replicate weights {wik } (i = 1 .... 48), and the t~ from 

full sample So, weighted by the full sample weight 

{w k }. The variance of t~ is estimated by 

12(~)__ 1 48 -z(o -oY. 
48 i:1 

Another difference between the variance estimator we 
used above and Shao-Sitter's estimator is that in our 
formula the deviation is around the full sample estimate 

t~ whereas in Shao-Sitter's formula the deviation is 

around the average of the bootstrap estimates 0 ' .  The 
balanced repeated replication method (BRR) is 
implemented in WesVar PC, but the bootstrap method is 
not. Abramson et al. (1996) suggests that with any BRR 
software package, the BRR option should be specified 
for 1993-94 SASS data analysis. The formulae used in 
WesVar PC for the BRR option is the formula we used 
above. In general, 

here O* : B -l Z"i=l t~i . Notice 

_0) - _0) 
Here Ep is with respect to sample design, E e is with 

respect to bootstrap subsampling, and typically 

EB(0*)=6~. Therefore E e ( f f * - O ~ = V a r B ( f f *  ). An 

unbiased estimator of Var 8 (if*) is 

1 1 ~_,B=I(Oi __g.)2 " 

Therefore 

1~(0~ O~ ~ 1+ - ~ 
Bi:l B 1 B " 

- -  i=l 
When B is large the bias in variance estimation is small 
and can be easily corrected by factor ( B - 1 ) l B .  In our 

study, we compare standard error estimates instead of 
variance estimates and B = 48, so the adjustment factor 

is 447/48 ~0.99. We do not apply this adjustment 

because it is close to 1. In addition, we use the same 
formula to calculate both the standard error estimates 
cooperating imputation variance and the standard error 
estimates without cooperating imputation variance. And 
the ratio of these two types of standard error estimates is 
used as the measurement of the difference. Therefore, 
the adjustment factor has no effect on this ratio. 

The variables used for this study include 6 categorical 
variables and 7 continuous variables. Their stage 2 
imputation--method (4), rates range from 2 percent to 
25 percent (see table 1). 

Most of the variables used for sorting or matching the 
records are not included in the data file; they had to be 
reconstructed by using other variables in the data file. 
This caused a discrepancy between the data imputed for 
this study and the original imputed data in the file. To 
prevent confounding the imputation difference with 
imputation variance, we imputed the full sample with 
our sorting and matching variables and denote this 
imputed full sample as s o . This is the sample used in 

the variance estimation (see imputation procedure step 3 
above). 

5. Imputation Variance Estimates 

From Table 2 to Table 4, we compare standard errors 
which do not take the imputation variance into account 

( s t e (O) )  with the standard errors incorporated with 

imputation variance ( s t e t (O) ) .  It is important to 

emphasize that both ste I (t~) and ste(O) are estimates of 

standard errors instead of true standard errors and 
therefore both of them are also subjected to sampling 
errors. 

Table 2 compares standard errors for the total estimator 
and the average estimator of continuous variables. The 
output shows the imputation does not inflate the 
variance for the total very much. For variable T0985, 
the standard error increases only 7 percent even though 
the imputation rate is as high as 27 percent. For the 
average per person estimators of continuous variables, 
the underlying estimator is actually a nonlinear 
estimator. When the imputation rate is high, inflation to 
the variance can be very high, too. For example, 

variable T0985 now shows ste t (t~) is 41 percent higher 

than ste(O).  So if the imputed data are treated as true 

values, the underestimation can be severe. 

Table 3 compares standard errors for the ratio estimators 
of continuous variables. Variable BASIC is the ratio of 

322 



teacher's basic salary to teacher's total income. Variable 
INSCH is the ratio of teacher's total income at school to 
teacher's total income. OUTSCH is the ratio of teacher's 
total income from outside of school to teacher's total 
income. ADITION is teacher's other income from 
school (total income inside school minus base salary) to 
teacher's total income. IN OUT is teacher's total 
income inside school to teacher's total income outside 
school. Although some Variables used for the ratios have 
high imputation rates (T 1440, for example, has a 21.3% 
imputation rate) the increase in standard errors are very 
small. Again, for continuous variables, we observed 
smaller inflation in standard error. 

Table 4 compares standard errors for the total estimator 
and percentage estimator of categorical variables. Here 
the total estimates are estimated total counts in each 
category and the percentage is the estimated percent of 
units in each category. Notice the inflation in variance is 
larger than the continuous variables. This might be due 
to the fact that the sample sizes of the categorical 
variables are smaller (there is more legitimate skipping 
for these items). It also shows that when imputation rates 
get higher, the increase in standard errors also gets 
larger. Now variable T0040 shows the biggest inflation: 
2.04. 

6. Summary 

The techniques developed so far for the variance 
estimation of imputed data are not yet easy to implement 
or operationally convenient. Shao and Sitter's method is 
appealing but requires repeated imputations, so for large 
scale surveys the data files become too large. 

For the deductive imputation methods (1) - (3), the 
imputed value can be treated as observed value and the 
use of standard formula should not cause variance 
underestimation. 

Our empirical study shows that using the hot deck 
imputation method in the 1993-94 SASS can seriously 
affect the standard error especially for the discrete 
variables with small sample size. 

But notice that the majority of items have very low hot 
deck imputation rates. For the SASS 1993-94 Public 
School Teacher component, only 11 out of 249 items 

had hot deck imputation rates above 10 percent (see 
Gruber, Rohr, and Fondelier, 1996, figure VIII-24, pp. 
231-235). We used six of those items for this study. 
And, when the imputation rate is low, the inflation in 
variance is not severe, especially for continuous type 
variables with large sample size, no matter it is a linear 
or ratio estimator. 
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Table 1- Variables used in this study 

Hot Deck imputation 
Name Label rate (%) Type 

T0030 2 Full/Part-time teacher at this school 11.8 

T0035 3A Have other assignment at this sch 9.8 

T0040 3B What is other assignment at this sch 24.0 

TO 140 11D Consecutive yrs teaching since break 5.2 

T0435 28A Any mathematics courses taken 5.7 

T0645 32B Programs changed views on teaching 2.0 

T0860 40B(4) Number of students in the class 13.6 

T0985 41C Number of separate classes taught 27.0 

T 1420 53 B(1 ) Academic yr base tchng salary 8.3 

T1430 53B(2) Additional compensation earned 4.0 

T1440 53B(3) Earning from job outside sch sys 21.3 

T1455 53B(5) Income earned from other source 5.9 

T1520 55 Total income of all HHD family member 25.0 

5 Categories 

Dichotomous 

6 Categories 

Continuous 

Dichotomous 

5 Categories 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

12 Categories 

Source" Abramson et al. (1996). 

Table 2: Standard error comparison for total estimates and average estimates of continuous variables 

Hot Deck 
imputation Total stei(~)/ste(~) Average 

Name rate (%) Estimate Estimate* 
ste,( ),ste(O) 

T0140 5.2 8985367 0.99 11.01 

T0860 13.6 24958128 1.01 22.79 

T0985 27.0 2107888 1.07 12.79 

T1420 8.3 86349560396 1.00 33713.26 

T1430 4.0 1865774738 1.03 2093.88 

T1440 21.3 2179435663 1.03 4384.44 

T1455 5.9 588847739 1.01 1676.05 

0.96 

1.10 

1.41 

1.01 

1.05 

1.05 

1.03 

• These estimates are average per teacher. 

Table 3" Standard error comparison for ratio estimates of continuous variables 

Hot Deck 
Name Imputation rate (%) Estimate stel(~)/ste(~) 
Basic -- 0.94907 1.01 

Insch -- 0.96957 1.03 

Outsch -- 0.02395 1.02 

Addition -- 0.02051 1.05 

In out -- 31.87 1.03 

Basic = T I 42 0 / ( T1 4 2 0  + T1430 + T1440 + T1455) 

Insch = (T1420 + T1430) / (T1420 + T1430 + T1440 + T1455) 

Outsch=T1440/ (T1420 + T1430 + T1440 + T1455) 

Addi t ion=T1430/ (T1420 + T1430 + T1440 + T1455)  

In_out=(T1420 + TI430) / (T1440  + T1455) 
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Table 4: Standard error comparison for total estimates and percentage estimates of discrete variables 

Hot Deck Percentage 
imputation Total ste, (0)/ ste(O) Estimate ste I (O)/ ste(O) 

Name rate (%) Categories Estimate (%) 

T0030 11.8 

T0035 9.8 

T0040 24.0 

T0435 5.7 

T0645 2.0 

T1520 25.0 

1 12994 1.10 5.61 1.10 

2 31489 1.14 13.60 1.18 

3 97607 1.12 42.15 1.19 

4 52767 1.11 22.79 1.13 

5 36706 1.38 15.85 1.35 

1 54006 1.08 24.45 1.09 

2 166845 1.00 75.55 1.09 

l 9613 1.44 13.49 1.54 

2 l 1737 2.04 16.47 2.09 

3 5093 1.26 7.15 1.29 

4 12311 1.73 17.28 1.66 

5 26962 1.27 37.84 1.52 

6 5543 1.62 7.78 1.71 

1 2001004 0.99 78.12 0.98 

2 560289 1.00 21.88 0.98 

l 122310 0.99 5.42 0.98 

2 822249 1.01 36.41 t.01 

3 498908 1.00 22.09 1.03 

4 711355 1.01 31.50 1.01 

5 103472 0.98 4.58 0.97 

1 173 1.45 0.01 1.60 

2 863 1.63 0.03 1.68 

3 8850 1.03 0.35 1.04 

4 72952 1.18 2.85 1.15 

5 123771 1.19 4.83 1.22 

6 154036 1.10 6.01 1.12 

7 174850 1.18 6.83 1.16 

8 404821 1.18 15.81 1.30 

9 434259 1.08 16.95 1.14 

10 523142 1.27 20.42 1.26 

11 438739 1.12 17.13 1.19 

12 224836 1.22 8.78 1.21 
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