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I. INTRODUCTION. Imputation has become 
one of the most popular tools used to solve missing 
value problems in survey data analyses. A popular 
misunderstanding is that the goal of imputation is to 
predict individual missing values. This is popular 
because of hot deck imputation methods which attempt 
to find the best match (donor) for each missing case. A 
better estimate for each missing value not necessarily 
leads to a better overall estimate for the parameters of 
interest. As Rubin (1996) pointed out, imputation has 
two achievable objectives. The basic objective is to 
allow ultimate data users to apply their existing analysis 
tools to any data set with missing values using the same 
command structure and output standards as if there were 
no missing data. Most imputation methods satisfy this 
basic objective and so have a certain appeal. But it is 
certainly not enough to just achieve this basic goal. The 
additional desirable objective is to obtain statistically 
valid inference. This goal can be achieved through some 
imputation methods, but not through others. 

Many imputation techniques and imputation 
software packages have been developed over the years. 
Section II gives a brief review on some thirty imputa- 
tion methods. Different methods may work well under 
different circumstances. The major part of this paper 
evaluated eleven popular imputation methods according 
to six evaluation criteria for four types of distributions, 
five types of missing mechanisms, and four types of 
missing rates, through a simulation study. 

il. Imputation methods. Imputation methods are 
conventionally classified into two categories: random 
(or stochastic) imputation and deterministic imputation. 
A deterministic imputation method determines one and 
only one possible value for imputing each missing case. 
On the other hand, a random imputation method draws 
imputation values randomly either from observed data 
or from a predicted distribution. In this paper, we divide 
imputation methods into five categories: simple 
deterministic, simple random, model-based determi- 
nistic, model-based random, and Bayesian-theory- 
based imputation methods. This is not a mutually 
exclusive partition, but it provides a clearer picture 
about the property of each imputation method. 

1. Simple deterministic imputation. This type 
of method generally distorts the distribution of the data 
and leads to underestimation of the variance (except the 

deductive imputation method). However, it is still 
widely used in practice because of its simplicity. The 
most popular ones follow. 

Deductive imputation. Missing values may be 
deduced from available information such as similar 
items in previous surveys, related items of current 
surveys, etc. The cold deck may be counted as this type. 

Mean imputation. This is the simplest but least 
attractive method. The concentration of all imputed 
values at the mean creates spikes in the distribution, and 
the variances will be materially underestimated. 

Deterministic hot-deck imputation. This method is 
used very often in early imputation practice because it 
intuitively makes sense to many practitioners. It does 
not employ any explicit statistical model. This method 
has many versions. Among the most popular ones are: 
(1) Sequential nearest neighbor hot deck imputation 
(or traditional hot deck imputation). A major attraction 
of this method is that all imputations are made from a 
single pass through the data file. A disadvantage of this 
method is that it may easily give rise to multiple use of 
donors, a feature which leads to a loss of precision for 
survey estimators; (2) Multivariate matching. This 
method is not convenient to implement using computer 
programs. An approximately equivalent algorithm may 
be used to replace it: First sort the data file with the 
same auxiliary variables, and then impute the nearest 
response value for each missing case; (3) Distance 
function matching. This method imputes the nearest 
response value according to some univariate distance 
function of auxiliary variables, such as the Mahalanobis 
distance, the difference between the predicted values 
from a regression model, etc. 

2. Simple random imputation. This type of 
method adds some uncertainty about imputed values 
and much less likely to distort the distribution of the 
data comparing to simple deterministic methods. It may 
still underestimate the variance if no within-imputation 
variation is considered. The following methods belong 
to this category. 

Mean imputation with random disturbance. A 
random disturbance is added to the mean imputation. 

Overall random imputation. The overall random 
imputation generally refers to draw imputation 
randomly from observed data using different sampling 
schemes. This is one of the easiest method to 
implement. But it does not use any auxiliary variables 
and will not be able to reduce non-response biases. 

Within-class random imputation. This widely used 
method involves two steps: to form imputation classes 
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and to draw imputations within each class. Imputation 
classes may be formed using: (i) regression predicted 
values from a multivariate regression model. This 
method was used by imputation software PROC 
IMPUTE; (ii) a propensity score. Rosenbaum and 
Rubin (1983) show that the best score function for 
constructing imputation classes is the propensity score, 
defined as the conditional probability of observing the 
target variables Y given covariates X. With a propensity 
score e(X), the property that the missing mechanism is 
independent of Y given X, carries over to independence 
given the propensity score e(X). We may use a logistic 
regression model to estimate the propensity scores. The 
random hot-deck method which randomly draws 
imputations from observed data according to the 
weighted or unweighted frequency, is a specific within- 
class random imputation method. 

3. Model-based deterministic imputation. 
Model-based approaches will produce more accurate 
imputations than randomization-based methods if the 
model assumptions hold. But those assumptions are 
usually unverifiable in practice. A good model-based 
approach is required to work well for a wide range of 
underlying data distributions and missing mechanisms. 
Again, the deterministic nature of this type of method 
will lead to distortion of the distribution and under- 
estimation of the variance. 

Ratio imputation. This widely applied method may 
be able to provide very accurate imputations if the 
missingness of the target variable mainly depends on 
only one highly correlated auxiliary variable. If missing 
values depend on several auxiliary variables, the ratio 
imputation may not be fully efficient. 

Predicted regression imputation. This method is 
also widely used in early imputation practice. It uses 
predicted values from a regression model as imputations 
for all missing cases. The disadvantage of this method is 
"the shrinkage to the mean" phenomenon. 

EM algorithm. Although the EM algorithm can be 
used to create imputation for individual missing values, 
it is more often used to obtain parameter estimates. 
Convergence may be slow and not guaranteed with the 
EM algorithm especially with sparse data. This method 
also suffers "the shrinkage to the mean" phenomenon. 
An advantage of EM algorithm is its stable converg- 
ence; that is, iterations always increase the likelihood. 

Dear's principal component method, General 
iterative principal component method, and Singular 
value decomposition (SVD) method also belong to this 
category and enjoy similar properties as EM algorithm. 
See Belio (1993) for details on these methods. 

4. Model-based random imputation. This type 
of method shares disadvantages and advantages as 
model-based approaches stated in the preceding section, 
but it enjoys the advantages of random imputation over 

deterministic imputation. The following methods belong 
to this category. 

Draw imputations from predicted distributions. If 
there is some information available about the type of the 
distribution, we may draw imputations from a predicted 
distribution. With this method, we assume a distribution 
for the data and use the observed data to estimate the 
unknown parameters in the assumed distribution. If the 
distribution assumption is approximately true, this 
method will give much better imputations than any 
method which draws imputations from observed data. 

Random regression imputation. A small random 
disturbance may be added to the regression imputation. 
The disturbance may be drawn from: (1) a distribution 
with mean 0 and variance estimated from observed data; 
(2) respondents' residuals of the regression model; (3) 
residuals of those respondents which have similar 
values on matching variables to protect against non- 
linearity and non-additivity in regression models. 

Ratio with random disturbance imputation. Similar 
to the random regression imputation, we could add a 
small random disturbance to the ratio imputation. 

Modeling non-ignorable missing mechanism. Most 
imputation methods only model the target variable with 
missing values but not the missing indicator variable. 
These methods explicitly or implicitly assume that the 
missing values occur at random given the conditioning 
variables. Greenless, Reece and Zieschagn (1982) used 
two models: a logistic regression model for the missing 
indicator variable and an ordinary regression model for 
the target variable. The method is more sensitive to the 
model specification. It is rarely used in practice because 
of the unverifiability of missing mechanismsand the 
complexity of the model specifications. 

5. Bayesian-theory-based imputation. This 
type of method not only adds variation to the imputed 
data but also to the parameters of the model by drawing 
parameter estimates from their posterior distribution. 
The following methods belong to this category. 

Approximate Bayesian Bootstrap(ABB). The ABB 
method first draws a resample from the observed data 
and then draws imputation from the resample. The extra 
step of taking a resample first introduces additional 
variation to the imputation, which makes the ABB 
method approximately "proper" for multiple imputation 
according to Rubin's theory (1987). 

Bayesian Bootstrap (BB). The ABB and the BB 
are approximately equivalent. The only difference 
between them is that the underlying parameter of the 
data, which gives the probabilities of each possible 
value in the observed data, is being drawn from a scaled 
multi-nomial with the ABB rather than a Dirichlet 
distribution with the BB. These distributions have the 
same means and correlations, but the variances for ABB 
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are (1 + 1/r) times the variances for the BB, where r is 
the number of observed data. 

Data augmentation. This Bayesian iterative method 
is proposed by Tanner and Wong (1987). Their method 
of constructing the complete data sets is closely related 
to the Gibbs sampler. It efficiently uses relationship 
among variables for constructing imputations. It 
generally gives both good point estimates and variance 
estimates if the distribution assumptions on the data are 
approximately satisfied. The disadvantage of the data 
augmentation method is that it requires iterations, and 
similar to the EM algorithm, convergence can be slow. 

Adjusted data augmentation. If the distribution 
assumption in the data augmentation method is in 
question, it is desirable to let the observed data Fob s 

influence the shape of the distribution of values imputed 
for Finis. Rubin and Scheker (1986) adjusted the normal 
model as follows. First, the parameters /t* and o -*2 are 

drawn from their posterior distributions as in the data 
augmentation method. Second, X~,..., Xm are drawn 

with replacement from Yobs, and standardized through 

Z i = ( X , - ~ , ) / 4 ( r - l ) s  2 / r .  Finally, the m missing 

values are imputed using /t* + o-*Z,, i =1, 2 . . . . .  m. 

Sequential imputation method. Kong, Liu and 
Wong (1994) proposed this method. According to the 
authors, the sequential imputation has three advantages 
over the data augmentation" (1) it does not require 
iterations; (2) it can directly estimate the model 
likelihood; (3) it can cheaply perform sensitivity 
analysis and influence analysis. But, so far, this method 
only has its theoretical value. 

!il. SIMULATION STUDY. We compared 11 
popular imputation methods according to 6 evaluation 
criteria for 4 types of distributions, five types of missing 
mechanisms, and four types of missing rates. Detailed 
description of the design factors follow. 

Distribution Four sets of variables were generated: 
(1) Normal: Norm 1, Norm2, Norm3, Norm4, Norm5; 
(2) Double Exponential: Dexpl, Dexp2, Dexp3, 
Dexp4, and Dexp5; 
(3) Contaminated Normal: MixNorml, Mix-Norm2, 
MixNorm3, MixNorm4, and MixNorm5 from a mixed 
normal distribution of 95% N(p, 1) and 5% N(Iu, 32); 
(4) Mixer of Normal and Chi-square: MixNChil, 
MixNChi2, MixNChi3, MixNChi4, and MixNChi5 
from mixed normal distributions of 95% N(p, l) and 

5% Z 2 ( 4 ) - 4  +/ t .  

The first three sets of variables are symmetric 
about their means, while the fourth set of variables are 
right skewed. Each set of five variables are correlated 
with the following correlation matrix: 

1 0.9 0.7 0.5 0.3 

0.9 1 0.8 0.6 0.4 

0.7 0.8 1 0.7 0.5 

0.5 0.6 0.7 1 0 

0.3 0.4 0.5 0.6 1 

Missing Mechanism. The five types of missing 
mechanisms are: (1) MCAR; (2) Tail values more likely 
missing: missing values were created with probability of 
exp(-2 [x-/tD, where )~ was determined so that the 
desired missing rates were created; (3) Large values 
more likely missing: missing values were created with 
probability of exp[-A (X-~O]; (4) Center values more 
likely missing: missing values were created with 
probability of l-exp[-,~ [X-/t[]; (5) Tail values more 
likely missing: missing values in Y were created with 
probability of l-exp[-A [Y-/tl]. Only mechanism (5) is 
confounded; that is, missingness of Y depends on itself. 

Missing Rate. For missing mechanisms (l), (2), 
(4), and (5), the four missing rates are 10%, 20%, 30%, 
and 40%, while for missing mechanism (3), the four 
missing rates are 5%, 10%, 15%, and 20%. 

For each setting formed by the above simulation 
design factors, 200 data sets were generated and the 
imputation methods were assessed based on their 
average performance over the 200 replications. The 
sample size for each replicate data set is 100. 

Imputation Methods: The I I imputation methods 
included in this simulation study are: 
(1) Mean Imputation (deterministic); 
(2) Ratio Imputation (deterministic): Norm l, Norm2, 
Norm3, and Norm4 served as auxiliary variables for 
Norm2, Norm3, Norm4, and Norm5, respectively. No 
imputations were created for Norm l. Other types of 
variables are handled similarly; 
(3) Sequential nearest neighbor hot deck method 
(deterministic); 
(4) Overall random imputation (simple random); 
(5) Mean imputation with disturbance (random); 
(6) Ratio imputation with disturbance (random); 
(7) The ABB method (random); 
(8) The BB method (random); 
(9) PROC IMPUTE (random); 
(lO)Data Augmentation (random): Schafer's software 
was used to implement this method in our simulation; 
(1 I )Adjusted data augmentation method (random). 

IV. SIMULATION RESULTS. The evaluation 
criteria are: bias of parameter estimates (mean, median, 
first and third quartiles), bias of variance estimates, 
coverage probability, confidence interval width, and 
average imputation error. Biases of quartile estimates, 
and average imputation error are not given in this paper 
because of space limitation. Results based on the other 
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criteria are given in Tables 1-6 and a brief summary is 
described below. 
1. Bias of parameter estimates. Table 1 shows that 
ratio imputation with or without disturbance, Schafer's 
software, PROC IMPUTE, and hot deck are all very 
effective in improving the biases of mean estimates 
caused by missing mechanism (3) where large values 
were more likely to be missing. For all other missing 
mechanisms, biases are very small with the incomplete 
data. The ratio imputation method does so well because 
we used the same auxiliary variables to create and to 
impute the missing values in this method, and because 
the correlation coefficients between the target variables 
and the auxiliary variables are high (at least 0.6). 

In terms of bias of quartile estimates (Table 2), the 
mean imputation method is obviously the worst across 
all five missing mechanisms. For missing mechanism 
(2) and (3), Schafer's software, ratio with and without 
disturbance imputation, PROC IMPUTE, and hot deck, 
have evident advantages over the other methods. For 
missing mechanism (4), the hot deck method has the 
best overall performance, followed by PROC IMPUTE 
and Schafer's software. For the confounded missing 
mechanism (5), the ratio with disturbance imputation 
method obviously has the best performance. 
2. Bias of variance estimates. Table 3 reports the 
relative biases of variance estimates based on the data 
imputed via single imputation. For the MCAR, all 
methods provide acceptable variance estimates except 
the mean imputation whose estimates need to be 
adjusted with a factor of (n-1)/(r-1). For unconfounded 
missing mechanisms, Schafer's software has the best 
performance, and ratio imputation, PROC IMPUTE, 
and the hot deck method are all able to improve the 
biases of variance estimates dramatically, but the ratio 
with disturbance imputation tends to overestimate the 
variance. For the confounded missing mechanism, only 
the ratio imputationwith or without disturbance have 
substantial improvement on the biases of variance 
estimates. The random, ABB, B B, and mean imputation 
with disturbance have almost no improvement over the 
variance estimates based on the incomplete data, while 
the adjusted data augmentation method always helps a 
little, but never much. 

Table 4 presents the relative biases of variance 
estimates of the mean based on five sets of imputations. 
The ratio with disturbance imputation method always 
overestimate the variances for all types of missing 
mechanisms. For this method, the idea of multiple 
imputation is obviously inappropriate. PROC IMPUTE 
seems to have the least between-imputation variation 
and provides approximately unbiased variance estimates 
for the MCAR and all unconfounded missing 
mechanisms. The ABB and B B methods introduce the 
most between-imputation variation for the MCAR and 

missing mechanism (4) when the incomplete data are 
more diversified than the true distribution. 
3. Coverage rates. Schafer's software has almost 
perfect coverage rates across all five missing mechani- 
sms. The adjusted data augmentation method also has 
almost perfect coverage rates for all except mechanism 
(3). These seem to suggest that imputation methods 
based on Bayesian theory give better coverage rates. 
Ratio and ratio with disturbance imputation methods 
have great coverage rates for missing mechanisms (2), 
(3), and (5). PROC IMPUTE has very good coverage 
rates except for missing mechanism (5). The sequential 
hot deck method is significantly worse than PROC 
IMPUTE in terms of coverage rates, but it is better than 
the other methods which do not use any auxiliary 
information, especially for missing mechanism (3). Not 
much difference has been found among the other 
methods. Some rates of these methods are too low, 
especially for missing mechanisms (3) and (5). 
4. Confidence interval width. From Table 6, overall, 
Schafer's software and the adjusted data augmentation 
method have the shortest confidence intervals across the 
five missing mechanisms. We also found in the 
preceding section that the two methods also gave the 
best coverage rates except for missing mechanism (3) 
with the adjusted data augmentation method. Therefore, 
the two methods are least likely to provide bad 
estimates. The other methods seem not to have 
substantial advantage over each other in terms of 
confidence interval width. 
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Table 1 Bias of population mean estimates (overall #) 
Missing 
Mechanism Distribution 
1. MCAR Normal 

Dexp 
MixNorm 
MixNChi 

2. Unconfounded Normal 
(tail values Dexp 
more likely MixNorm 
missing) MixNChi 

3. Unconfotmded Normal 
(large values Dexp 

more likely MixNorm 
missing) MixNChi 

4. Unconfounded Nonnal 
(Center values Dexp 

more likely MixNonn 
missing) MixNChi 

5. Confounded Normal 
(tail values Dexp 
more likely MixNorm 
missing) MixNChi 

Mean 
Imp. 

-0.005 
-0.004 
0.003 
0.009 

Ratio Hot 
Imp. Deck 

Mean Ratio 
Random +error +error 

0.012 -0.007 -0.009 
0.014 0.001 0.000 
0.025 0.003 0.009 
0.079 0.011 0.011 

0.005 -0.002 0.000 0.008 0.006 -0.007 
-0.003 -0 .011  -0.008 -0.007 -0.004 -0.009 
0.003 -0.009 0.001 0.000 0.001 -0.003 

-0.014 -0.034 0.016 - 0 . 0 1 1  -0.012 -0.033 
-0.094 0.002 - 0 . 0 2 1  -0.095 -0.094 0.004 
-0.118 0.003 -0.034 -0.116 -0.119 0.002 
-0.109 0 . 0 0 1  -0.024 -0.109 -0.110 0.004 
-0.159 -0 .001  - 0 . 0 6 1  -0.160 -0.157 -0.001 
0.013 0.032 0.009 0.016 0.010 0.032 

-0.006 0.022 -0.014 -0.007 0.000 0.027 
0.010 0 . 0 3 1  0.008 0.007 0.010 0.030 
0.016 0.048 0.022 0.025 0.024 0.054 

ABB BB 
Proc 

Impute 
Adj. DA 

Schafer 
-0.003 -0.008 -0.003 -0.006 -0.004 
-0.009 -0.015 -0.003 -0.004 0.003 
0.009 0.002 -0.004 -0.005 0.001 
0.011 0.033 0.014 0.008 0.022 

-0.003 0.002 0.001 0.000 -0.005 0.004 
0.005 0.016 0.012 0.010 0.004 0.012 

-0.010 -0.005 -0.004 -0.009 -0.013 -0.007 
-0.076 -0.022 -0.045 - 0 . 0 7 1  -0.070 -0.015 

0.006 0.007 -0.002 -0.001 0.006 
0.004 -0.007 0.001 -0.003 -0.007 
0.004 0.006 0.002 -0.004 0.001 

-0.011 -0.011 -0.023 0.000 -0.010 
-0.093 -0.094 0.010 0.001 -0.085 
-0.119 -0.112 0.020 0.003 -0.103 
-0.112 -0.104 0.011 0.001 -0.098 
-0.151 -0.154 -0.045 -0.007 -0.143 
0.012 0.012 -0.002 0.004 0.013 
0.000 -0.007 -0.016 -0.005 -0.010 
0.018 0.016 -0.004 -0.002 0.007 
0.020 0.018 -0.012 -0.004 0.022 
-0.008 - 0 . 0 0 1  -0.008 -0.006 -0.004 
0.006 0.003 0.006 0.006 0.006 

-0.011 -0.006 -0.014 -0.019 -0.006 
-0.072 -0.078 -0.065 -0.032 -0.062 

Table 2 Biases of the first quartile estimates (overall #) 
Missing 
Mechanism Distribution 
1. MCAR Normal 

Dexp 
MixNorm 
MixNChi 

2. Unconfounded Normal 
(tail values Dexp 
more likely MixNorm 
missing) MixNChi 

3. Unconfounded Normal 
(large values Dexp 

more likely MixNorm 
missing) MixNChi 

4. Unconfounded Normal 
(Center values Dexp 

more likely MixNorm 
missing) MixNChi 

5. Confounded Normal 
(tail values Dexp 
more likely MixNorm 
missing) MixNChi 

Mean Ratio Hot Mean Ratio Proc 
Imp. Imp. Deck Random +error +error ABB BB Impute Schafer 

0.251 0.038 - 0 . 0 0 1  -0.006 0.007 -0.004 -0.016 -0.013 
0.289 0.028 -0.004 -0.062 -0.004 -0.010 0.004 -0.045 
0.271 0.033 -0.003 -0.012 0.007 0.004 0.004 -0.015 
0.290 0.044 -0.003 -0.084 0.002 0.008 0.049 -0.058 

Adj. 
DA 

0.001 
-0.007 
-0.011 
-0.027 

0.221 -0.027 -0.014 0.066 0.066 -0.019 0.068 0.056 -0.034 -0.003 0.054 
0.272 -0.017 0.003 0.094 0.074 -0.015 0.092 0.092 - 0 . 0 0 1  -0.002 0.076 
0.247 -0.015 -0.003 0.071 0.061 -0.004 0.072 0.072 -0.004 - 0 . 0 0 1  0.059 
0.245 -0.018 0.022 0.082 0.033 -0.016 0.076 0.086 0.021 0.003 0.047 
0.005 0.005 -0.008 -0.066 -0.073 - 0 . 0 2 1  -0.068 -0.074 0.001 0.000 -0.060 
0.015 0.015 -0.013 -0.080 -0.097 -0.018 -0.084 -0.077 0.006 0.003 -0.073 
0.008 0.008 -0.009 -0.088 -0.085 -0.022 -0.083 -0.079 0.002 0.001 -0.082 
0.009 0.009 -0.020 -0.087 -0.123 - 0 . 0 5 1  -0.085 -0.086 - 0 . 0 1 1  -0.022 -0.084 
0.209 0.123 0.008 -0.039 -0.038 - 0 . 0 3 1  -0.044 -0.046 0.036 0.001 -0.033 
0.173 0.118 -0.024 - 0 . 0 9 1  -0.099 -0.082 -0.083 -0.092 0.017 -0.032 -0.085 
0.193 0 . 1 1 1  0.006 -0.064 -0.065 -0.062 - 0 . 0 6 1  -0.056 0.023 -0.024 -0.056 
0.238 0.138 -0.014 -0.118 -0.207 -0.197 - 0 . 1 2 1  -0.121 0.049 -0.137 -0.112 
0.331 0.096 0.120 0.131 0.116 0.045 0.115 0.123 0.142 0.111 0.121 
0.463 0.143 0.173 0.201 0.177 0.061 0.190 0.189 0.203 0.153 0.191 
0.388 0.096 0.137 0.140 0.127 0.033 0.146 0.150 0.157 0.103 0.135 
0.467 0.124 0.189 0.206 0.162 0.021 0.192 0.197 0.135 0.143 0.172 

Table 3 Relative bias of variance estimates with single imputation (overall #) 
Missing 
Mechanism Distribution 
1. MCAR Normal 

Dexp 
MixNorm 
MixNChi 

2. Unconfounded Normal 
(tail values Dexp 
more likely MixNorm 
missin/~) MixNChi 

3. Unconfounded Normal 
(large values Dexp 

Mean Ratio Hot Mean Ratio Proc 
hnp. Imp. Deck Random +error +error ABB BB Impute Schafer 

-0.250 -0.039 -0.019 -0.010 -0.008 -0.009 -0.027 0.012 
-0.234 -0.020 0.019 0.024 0.006 0.010 0.001 0.014 
-0.247 -0.039 -0.004 -0.004 -0.006 -0.028 -0.027 0.004 
-0.242 0.195 -0.011 0.007 -0.008 0.064 -0.044 0.026 

Adj. 
DA 

-0.010 
0.024 
0.006 
0.018 

-0.279 0.033 - 0 . 0 0 1  -0.123 -0.132 0.172 -0.130 -0.121 0.080 0.004 -0.097 
-0.372 0.057 -0.065 -0.244 -0.237 0.174 -0.244 -0.240 -0.012 -0.009 -0.199 
-0.341 0.064 -0.025 -0.205 -0.193 0.206 -0.205 -0.196 -0.006 -0.002 -0.162 
-0.519 0.008 -0.204 - 0 . 4 2 1  -0.429 0.097 -0.415 -0.426 -0.110 -0.005 -0.357 
-0.137 -0.018 -0.029 -0.050 -0.048 0.080 -0.046 -0.046 0.029 0.004 -0.041 
-0.131 -0.022 -0.024 -0.040 -0.040 0.058 - 0 . 0 4 1  -0.045 0.042 0.003 -0.032 

more likely MixNorm 
missing) MixNChi 

4. Unconfounded Normal 
(Center values Dexp 

more likely MixNorm 
missing) MixNChi 

5. Confounded Normal 
(tail values Dexp 
more likely MixNorm 
missing) MixNChi 

-0.138 -0.020 -0.024 - 0 . 0 5 1  -0.051 0.068 -0.049 -0.041 0.041 0.004 -0.044 
-0.190 -0.023 -0.052 -0.117 -0.107 0.057 -0.108 -0.098 -0.072 -0.009 -0.108 
-0.136 -0.082 0.014 0.114 0.118 0.171 0.119 0.119 -0.036 0.004 0.092 
-0.113 -0.084 0.017 0.109 0.110 0.133 0.110 0.11"1 - 0 . 0 4 1  -0.006 0.088 
-0.123 -0.083 -0.002 0.121 0.115 0.162 0.122 0.123 -0.036 -0.002 0.095 
-0.144 -0.126 0.011 0.165 0.137 0.148 0.186 0.123 -0.099 - 0 . 0 2 1  0.117 
-0.444 -0.146 -0.255 -0.282 -0.278 0.106 -0.269 -0.278 -0.309 -0.247 -0.267 
-0.510 -0.162 - 0 . 3 2 1  -0.358 -0.360 0.055 -0.354 -0.353 -0.373 -0.317 -0.344 
-0.514 -0.178 -0.330 -0.353 -0.351 0.054 - 0 . 3 6 1  -0.353 -0.375 -0.323 -0.338 
-0.750 -0.228 -0.629 -0.678 -0.676 -0.075 -0.676 -0.680 -0.488 -0.550 -0.644 

# The "Overall"  combined missing rate is about 10% for missing mechanism 4 and 25% for the others. Results for each missing rate category 
are available from the authors. 
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Table 4 Relative bias of variance estimates with five sets of imputations (overall #) 
Missing 
Mechanism Distribution 
1. MCAR Normal 

Dexp 
MixNonn 
MixNChi 

2. Unconfounded Normal 
(tail values Dexp 
more likely MixNonn 
missin/~) MixNChi 

3. Unconfounded Nonnal 
(large values Dexp 

more likely MixNonn 
missing) MixNChi 

4. Unconfotmded Normal 
(Center values Dexp 

more likely MixNonn 
missing) MixNChi 

5. Confounded Normal 
(tail values Dexp 
more likely MixNonn 
missing) MixNChi 

Mean Ratio Proc 
Random + error +error ABB BB Imoute 

A -  - -  

0.254 0.272 0.459 0.365 0.018 
0.327 0.323 0.458 0.449 0.021 
0.283 0.303 0.400 0.348 -0.003 
0.304 0.320 0.393 0.557 -0.010 

Schafer 
0.065 
0.087 
0.059 
0.069 

Ad) DA 
0.280 
0.327 
0.289 
0.324 

0.060 0.046 0.364 0.102 0.065 0.094 0.030 0.122 
-0.088 -0.086 0.343 -0.014 -0.059 0.000 0.016 0.010 
-0. 026 -0.017 0.359 0.024 -0.021 0.010 0.033 0.062 
-0.291 -0. 307 0.205 -0. 290 -0. 296 -0. 082 0. 022 -0.147 
0.069 0.064 0.164 0.083 0.047 0.038 0.035 0.086 
0.065 0.059 0.160 0.084 0.049 0.059 0.036 0.079 
0.062 0.059 0.177 0.067 0.057 0.053 0.040 0.079 
0.000 -0.016 0.173 0.004 -0.003 -0.050 0.022 0.018 
0.409 0.415 0.484 0.558 0.494 0.011 0.130 0.358 
0.350 0.354 0.379 0.452 0.410 -0.006 0.113 0.306 
0.433 0.396 0.438 0.475 0.463 0.012 0.120 0.373 
0.569 0.477 0.482 0.752 0.571 -0.079 0.096 0.446 

-0.055 -0.064 0.342 0.046 -0.009 -0.248 -0.093 -0.029 
-0.170 -0.172 0.326 -0.102 -0.093 -0.322 -0.187 -0.148 
-0.156 -0.171 0.314 -0.021 -0.127 -0.328 -0.181 -0.126 
-0.586 -0.584 0.105 -0.548 -0.561 -0.450 -0.491 -0.504 

Table 5 Coverage rates with single i 
Missing 
Mechanism Distribution 
1. MCAR Normal 

I)exp 
MixNonn 
MixNChi 

2. Unconlbunded Normal 
(tail values Dexp 
more likely MixNonn 
missing) MixNChi 

3. Unconlbunded Nonnal 
(large values I)exp 

more likely MixNorm 
missing) MixNChi 

4. Unconfounded Nonnal 
(Center values Dexp 

more likely MixNorm 
missing) MixNChi 

5. Confounded Normal 
(tail values Dexp 
more likely MixNonn 
missin$) MixNChi 

m p u t a t i o n  (overa l l  #) 
Meat] Ratio Hot Mean -~ Ratio Proc 

hnp. Imp. Deck Random error .~ error ABB BB hnpute Schafer 
84.5% 93.5% 87.5% 86.5% 85.5% 85.5% 92.0% 96.0% 
85.0% 87.5% 88.5% 88.0% 84.5% 86.0% 93.0% 94.5% 
85.0% 91.5% 89.5% 85.0% 84.0% 87.0% 93.0% 95.0% 
84.0% 87.0% 88.5% 87.5% 86.5% 86.0% 92.5% 94.5% 

Adj. 
DA 

93.5% 
94.5% 
95.5% 
95.5% 

89.5% 96.5% 92.0% 92.0% 89.0% 95.0% 96.0% 93.0% 93.5% 96.5% 96.5% 
94.0% 96.5% 88.5% 92.0% 93.5% 96.5% 91.5% 94.5% 96.0% 97.0% 97.0% 
84.5% 94.5% 85.5% 87.5% 88.0% 96.0% 84.5% 87.0% 94.0% 95.0% 92.5% 
87.5% 94.0% 88.5% 90.0% 89.0% 93.5% 88.5% 91.0% 90.5% 93.5% 97.0% 
80.5% 94.5% 93.5% 81.5% 79.5% 94.5% 81.0% 81.5% 95.0% 96.5% 87.0% 
82.0% 94.5% 92.0% 80.5% 81.0% 93.0% 80.5% 82.5% 92.0% 94.0% 85.5% 
76.0% 92.0% 91.0% 80.0% 77.0% 93.5% 80.0% 76.5% 93.0% 94.0% 82.5% 
82.0% 93.0% 91.5% 83.0% 84.0% 94.0% 83.5% 81.5% 93.5% 96.5% 89.0% 
88.0% 91.5% 88.5% 90.5% 89.0% 91.5% 89.0% 90.5% 94.0% 97.0% 96.5% 
88.5% 91.0% 86.0% 90.0% 90.0% 93.5% 89.5% 90.5% 90.0% 93.5% 95.0% 
88.5% 92.0% 85.5% 88.5% 87.0% 93.5% 88.0% 89.0% 90.0% 96.5% 96.5% 
86.0% 89.5% 88.0% 89.0% 86.5% 87.0% 87.5% 91.0% 92.0% 94.0% 95.5% 
87.0% 95.0% 89.0% 91.5% 87.5% 92.5% 90.0% 86.0% 91.0% 95.5% 96.0% 
84.0% 96.0% 91.0% 89.0% 84.5% 94.0% 87.5% 88.0% 88.5% 95.5% 98.0% 
84.5% 95.5% 85.0% 88.5% 88.0% 95.5% 85.0% 86.0% 84.0% 94.5% 96.0% 
74.5% 96.0% 81.0% 75.0% 81.0% 95.0% 74.0% 77.0% 85.0% 95.0% 90.5% 

Table 6 Confidence interval width with single i m p u t a t i o n  (overa l l  #) 
Missing 
Mechanism Distribution 
!. MCAR Normal 

Dexp 
MixNonn 
MixNChi 

2. Unconfounded Nonnal 
(tail values Dexp 
more likely MixNorm 
missing) MixNChi 

3. Unconfounded Normal 
(large values Dexp 

more likely MixNonn 
missing) MixNChi 

4. Unconfotmded Nonnal 
(Center values Dexp 

more likely MixNorm 
missing) MixNChi 

5. Confounded Normal 
(tail values Dexp 
more likely MixNorm 
missing) MixNChi 

Mean Ratio Hot Mean Ratio Proc 
Imp. hnp. Deck Random +error +error ABB BB hnpute Schafer 

0.453 0.417 0.496 0.518 0.491 0.488 0.466 0.390 
0.629 0.689 0.610 0.713 0.681 0.685 0.598 0.557 
0.494 0.532 0.598 0.618 0.634 0.585 0.478 0.428 
1.015 1.504 1.179 1.094 1.134 1.289 0.847 0.841 

Adj. 
DA 

0.393 
0.497 
0.481 
0.959 

0.383 0.374 0.441 0.425 0.419 0.415 0.355 0.402 0.437 0.364 0.358 
0.463 0.545 0.635 0.494 0.490 0.550 0.495 0.472 0.530 0.496 0.444 
0.481 0.459 0.618 0.515 0.507 0.515 0.544 0.538 0.465 0.447 0.444 
0.658 0.878 1.122 0.801 0.729 0.953 0.720 0.766 0.834 0.878 0.722 
0.434 0.394 0.423 0.477 0.447 0.448 0.446 0.431 0.395 0.377 0.422 
0.567 0.572 0.550 0.589 0.545 0.571 0.663 0.588 0.643 0.562 0.546 
0.527 0.532 0.493 0.525 0.550 0.543 0.567 0.510 0.519 0.488 0.465 
0.781 0.866 0.805 0.877 0.848 0.870 0.832 0.846 0.895 0.770 0.825 
0.443 0.402 0.519 0.507 0.499 0.438 0.549 0.517 0.408 0.360 0.377 
0.707 0.632 0.762 0.727 0.720 0.616 0.688 0.783 0.584 0.582 0.562 
0.554 0.496 0.617 0.612 0.600 0.523 0.601 0.622 0.564 0.436 0.474 
1.118 0.997 1.130 1.114 1.310 1.123 1.324 1.026 0.974 0.919 0.936 
0.379 0.361 0.395 0.377 0.407 0.441 0.418 0.424 0.355 0.312 0.283 
0.460 0.469 0.552 0.501 0.495 0.565 0.483 0.547 0.547 0.446 0.381 
0.432 0.388 0.512 0.436 0.473 0.450 0.529 0.492 0.429 0.376 0.353 
0.627 0.677 0.678 0.685 0.658 0.769 0.698 0.637 0.773 0.622 0.578 

# The "Overal l"  combined  miss ing  rate is about 10% tbr missing mechan i sm 4 and 25% for the others. Results for each miss ing rate category 

are available from the authors. 
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