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1. Introduction 
In a longitudinal survey sample subjects are 
observed over two or more time prints. Such 
surveys are suited to study individual changes 
over time, unlike cross-sectionM surveys. Ap- 
plications of longitudinal surveys include: (a) 
Gross flows: estimation of transition counts be- 
tween a finite number of states for individu- 
als in a population from one point in time to 
the next. Such flow estimates are important 
to researchers and policy analysts for under- 
standing labor market dynamics. (b) Event 
history modelling; for example unemployment 
spells. (c) Elimination of the effect of latent 
variables in regression models using individual 
changes in the response and explanatory vari- 
ables between two consecutive time points. (d) 
Modelling the marginal means of responses as 
functions of covariates. (e) Conditional mod- 
elling of the response at a given time point as 
a function of past responses and present and 
past covariates. Such models can provide bet- 
ter understanding of the underlying dynamics 
than the marginal models (d). Binder (1998) 
gave an excellent account of the issues related 
to longitudinal surveys. 

Longitudinal surveys typically lead to depen- 
dent observations on the same subject, in ad- 
dition to the customary cross-sectional corre- 
lations induced by the clustering in the sam- 
ple design. In this paper we focus on marginal 
modelling and analysis of such longitudinal sur- 
vey data. The case of a simple random sam- 
ple of individuals has been studied extensively 
in the literature, especially in the analysis of 
data  occuring in biomedical and health sci- 
ences. Liang and Zeger (1986) used general- 
ized estimating equations, requiring only cor- 
rect specification of the marginal mean. They 
obtained standard errors of regression parame- 
ter estimates and associated "Wald" tests, as- 
suming a "working" correlation structure for 
the repeated measurements on a sample sub- 
ject. 

Rotnitzky and Jewell (1990) developed "quasi- 
score" tests and "Rao-Scott" adjustments to 
working quasi-score tests, under marginal mod- 
els. These methods are asymptotically valid re- 
gardless of the true within-subject correlation 
structure, but assume independence of sample 
subjects which is not satisfied for complex lon- 
gitudinal survey data  based on stratified clus- 
ter samples. 

In this paper Wald and quasi-score tests for 
longitudinal survey da ta  axe proposed, using 
the Taylor linearization and jackknife methods. 
These methods take account of the survey de- 
sign features (clustering, stratification, unequM 
sampling weights etc.) as well as the longitudi- 
nal feature and thus are asymptotically valid. 

2. Independence  Est imat ing  Equations 

Suppose the survey population U consists of 
M individuals and a sample, s, of individu- 
Ms is selected using stratified multistage sam- 
pling. Let Whik denote the basic design weight 
attached to the k-th sample individual in the 
i-th sample cluster (i = 1 , . . . ,  nh) from the h- 
th s tratum (h = 1 , . . . ,  L). In a longitudinal 
survey, the sample s is observed over a speci- 
fied number of time points, say T, but  in prac- 
tice some of the sample individuals may not 
respond. The sample weights of respondents, 
s~, oil the first occasion axe first adjusted for 
unit nonesponse, and then subjected to post- 
stratification adjustment to ensure consistency 
with known benchmark totMs, e.g., age-sex 
counts obtained from external sources. We de- 
note the final weights as w~ik, often called as 
longitudinal weights. 

Suppose that the i-th respondent is observed 
for T~ occasions (1 < T~ < T and i e st).  
We assume that  the responses are missing com- 
pletely at random (MCAR), i.e., the response 
probabilities for an individual do not depend 
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on the missing responses and the observed re- 
sponses, following Liang and Zeger (1986). The 
data  for the i-th sample individual ( i  E s , . )  

consists of { y i t , x i t ) ,  t = 1 , . . . , T }  where y i t  is 
response on occasion t and x i t  is & p X 1 vector 
of associated covariates. In the case of binary 
r e s p o n s e ,  yit -- 1 if subject i has the at t r ibute 
at time t, and 0 otherwise. 

The InarginM model assumes that the mean re- 
sponse l t i t  = E m ( Y i t )  is a, specified function of 
Xit and regression parameters /9; in particu- 
lar g ( p ~ t )  = x~t~ where g(.) is called the link 
function. With binary responses, the logit link 
function g(#) = log{#/(1 - p)} is a natural 
choice, leading to a logistic regression model. 
In this section, we assume "working" indepen- 
dence so tha.t cov(y~) = V0~ = diag ( V o l t ) ,  

1,<t<T, 
where V0~t = V0(p~t)= var(y~t)is the working 
variance. For example, in the binary response 
ca e, v0 = , .  (_l - , . ) .  

The ~bove formulation permits time varying re- 
gression coefficients. For exmnple if T = 2 ~nd 
g ( # i t )  = a t  + fltZit, t --= 1,2, then we can de- 
fine x~ - (1 Z~l 0 0) T, x~: - (0 0 1 z~2) T a n d  

/~ - -  (C~I /~10~2 f12) T .  In this case, it might be of 
interest to test the constancy of the slope coef- 
ficient over time, i.e., H0 :/31 = ~2 which is of 
the f o r m H 2 " c T ~ - 0 w i t h c - ( 0 1  0 --1)T. 

We assume that  the marginal model holds for 
the whole population of M subjects so that  we 
get the "census" model 

g ( # ~ t  ) = x4 . t~ ,  t - 1 ,  . . . T i  ; i = l , . . . , M 

(2.1) 
where T/ now refers to the number of con- 
secutive occasions the i-th population subject 
would respond if contacted. We further as- 
sume that  the population of M subjects is a 
self-weighting sample from a super population 
obeying the marginal model. It is not necessary 
to regard the population as a random sample 
from the super population. The census gen- 
eralized estimating equations (GEE) are then 
given by 

M 

- o, 
i--1 

g - l , . . . , p  (2.2) 

where 

T, O#it (Yit - i t . )  

t = l  

(2.3) 

Under general conditions, the solution of (2.2), 
/3M, is a consistent est imator of /3. We de- 
note /~M as  the census regression parameter 
and make statistical inferences on tiM, follow- 
ing Binder (1983). Such inferences are also 
valid for ~ under certain conditions. For sim- 
plicity, we do not distinguish between /3M a,nd 
/3 ill this paper. 

Noting that  the left hand side of (2.2) is the 
population total of u i z ( ~ ) ,  a design-consistent 
estimator of (2.2), sample GEE, are given by 

W ~ i k U h i k ( ~ )  - O, (2.4) 
hikes,- 

where Uh~k(/3) -- [Uhik l  ( ~ ) ,  . . . , Uhikp(~)] T 
with U m k Z ( 1 3 ) o b t a i n e d  frOIYl (2.3) by chang- 
ing "i" to " h i k " .  The solution of (2.4),/3, is a 
design-consistent estimator of/3M. 

3. Inference Under Working Independence 

It is a common practice among social scientists 
and others to use normalized weights "~hik - -  

* where rn is the size of s,. Whik~ 
and then apply s tandard methods using SAS 
or other s tandard programs. Using the normal- 
ized weights in the s tandard "sandwich" covari- 
ance estimator of ~, we get the following naive 
covariance estimator: 

VN(;9) (3.1) 

- ( Z :  
8 r  

1:(/3) is the estimated information m~trix w h e r e  

with 

- - (3.2) 
8 r  

This follows by applying the Liang-Zeger sand- 
wich covariance estimator formula to the cen- 
sus parameter: 
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V( M) (a.a) 
= [I(f~h')]-l-[ E Uhik(~M)Uhik(~M)T] 

hikEU 

x [I(f~M)]-' 

and then replacing each term in (3.3) by its es- 
timator based on the normalized weights, USher, 
where I(/3M) is the census information matrix 
with 

• 

hikE[," 
(3.4) 

In the case of a simple random smnple and no 
post-stratification adjustant, we ha,ve wi = 1 
for all the sample subjects i and (3.3) reduces 
to the Liang-Zeger formula. 

Suppose we are interested in testing a hypothe- 
sis of the  form H0 :/32 = ~20, using the sample 
data {(Yhikt,Xhikt); hik ¢ s~, t =  1 , . . . ,  Thik}, 
where/3 is partitioned as/3 - (fitlr,~T) r with 
/32 a r x 1 vector and /31 and q x 1 vector 
(q+r  = p). For example, ~2 could represent in- 
ter~mtion terms and we are interested in testing 
for the absence of interactions, i.e.,/320 = 0. A 
"naive" Wald test of H0 treats 

I/VN -- (/~2 --/~20)T[VN22(/~)]-l(/~2 --/~20) 
(a.5) 

as a X 2 variable with r degrees of freedom (d.f.), 
where VN22(/~)is the submatrix of v<(/~)cor-  
responding to/32. This test, however, is asymp- 
totically incorrect under stratified multistage 
sampling or any other complex sampling de- 
sign. In fact, WN is asymptotically distributed 
as a weighted sum of independent X12 variables, 
where the weights are the eigenvalues of a "de- 
sign effects" matrix. As a result, the naive test 
could lead to inflated significance levels relative 
to the nominal level, say 0.05. 

We assume that the sampling design provides 
consistent, asymptotically normal estimators 
of totals. Following Binder (1983), under cer- 
tain regularity conditions,/~l is then asymptot- 
ically normal with mean tiM and its covariance 
matrix, cov(/{t), can be consistently estimated 
by 

Hence 

" V L ( ~ ) -  [J ( f~)] - lv(S)IJ (~)] - ' .  

- 

= _  r 

hikes,. 

( 3 . 6 )  

(3.7) 

and v(S) is the estimated covariance mattrix 
of S(/3) under the specified sampling design 
evaluated at D - /~. Note that v ( S ) i s  ob- 
tained from standard survey variance estima,- 
tor, noting that S(fl) is the vector of estimated 
totals of Uhik£(~), g --- 1 , . . . , p .  However, 
the variance estimator used should account 
for post-stratification and nonresponse adjust- 
ment. For example, if the post-stra,tifica, tion 
indicator variables are denoted by Zhik, hik  E 
S, and nonresponse is absent, then v(S) is 
the estimated covariance matrix of E(¢~) = 

2 Whikehik(~),  evaluated ~t f l -  ~, where 
hikes 
ehikt(~)  -- Uhikt(~) -- zLkBt  with 

-- (EWhikZhikZThik ) - - I  
8 

8 

g - 1 , . . . , p .  

Letting e ~ i -  nh E wh~ke~k(~)), we have 
k 

E 1 E * * *)Y v ( S ) -  nh(nh -- 1) (e*h~--eh)(eh~--eh 
h i 

( 3 . 8 )  
where e ~ . -  E e ~ / n n .  The formula (3.8) as- 

sumes that  the first stage clusters are either 
drawn with replacement in each stratum or 
the first stage sampling fractions are negligi- 
ble. In the case of nonresponse with weighting 
classes cutting across post-strata, the formula 
for v(S) becomes more complicated (see Yung, 
1996, Chapter 4). 
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An alternative version of 73L(~)is obtained by 
changing ,J(/3) to 1:(/~), where 1:(/3)- Era,J(/3) 
in (3.6). We suspect that i (~)  is more stable 
than ,J(/3). Note that ,}(/3) - Em,}(fl) for lo- 
gistic regression with binary response, but this 
is not necessarily true under a working correla- 
tion structure on the repeated measurements. 

It may be noted that post-stratification may 
not lead to increased efficiency because the 
model residuals Uhikg(~) may be unrelated to 
the post-stratifiers Zhik, particularly when the 
model fits the data well. 

The jackknife method can be used in a straight- 
forward manner to estimate the variance ma- 
trix of /3.  An advantage of the jackknife is 
that  post-stratification and unit-nonresponse 
adjustment are automatically taken into ac- 
count, unlike the linearization method. 

Using the estimated cov(/3), Wald tests of hy- 
pothesis of the form H0 : ~P = C/3 = 0 are 
readily obtained, where C is a r x p full rank 
matrix of known constants and ~ is p x 1 vector 
(r < p). Under H0, 

xb - (a.0) 

is distributed asymptotically as X~, a X 2 vari- 
able with r d.f., where ¢ - C¢). Therefore, 
the p-value associated with H0 is computed 
as P[X  > (obs)], where (obs)is 
the observed value of the Wald statistic X~v. 
More general hypotheses of the form H0 : ~ = 
h(~)  = 0 can also be tested using the Wald 
method, where h(/3) is a r x 1 vector. Under 
H0, we have 

x b  - ,bT ;l  (3.1o) 

is asymptotically X~, where ~ - h(~)  and 
~ ¢  - H(/})vp(~)H(/~)  T with H(/3) - 

O h ( ~ ) / O ~  T, a r x p full rank matrix. 

4. Q u a s i - S c o r e  Tes t s  U n d e r  
W o r k i n g  I n d e p e n d e n c e  

For the Wald tests, we have to fit the full model 
g(#~t) - xTI3 which could lead to unstable esti- 
mates if the full model contains a large number 
of terms. For example, with a factorial struc- 
ture of explanatory variables containing a large 
number of in ter~t ions  we may be interested 
in testing the significance of interaction effects, 
denoted as H0 :¢12 =/320 = 0. On the other 
hand, for the quasi-score tests we need only 
to fit the simple null model, g ( # i t )  - -  Xlit/3 I T  , 

where xit (xlTt, T T - -  X2~t) and 1 3 -  (flT,~T)T 
Moreover, the quasi-score tests are inw~riant 
to nonlinear transformations of/3, unlike the 
Wald tests (Boos, 1992). Rao and Scott (1996) 
studied quasi-score tests in the context of cross- 
sectional survey data. It may be noted that 
score tests were first introduced in a, seminal 
paper by C.R. Rao (1947). 

Let ~ - (/}1T,/3 T)T be the solution of 
$1(/3T,/32 T) -- 0, where g - (sT, s T ) i s  parti- 
tioned in the same wa.y eus/3. The m~alogue of 
the score test, called quasi-score test, is given 
by 

X ~ -  ST[v(g2)]-~S2, (4.1) 

where S2 - S2(/~) and v ( S 2 ) i s  a design- 
consistent estimator of cov(S2). We now sketch 
a proof to show that X~ is asymptotically X~ 
under Ho. 

Expanding Sl (/~) and $2 (/}) around the true 
- 

0 -- S l (~)  ~ S l ( ~ * ) -  J~l (~l  - ~ )  (4.2) 

and 

S2(~) ~ S2(~*) -- J~l (~1 -- j~]~) (4.3) 

where J* - J ( / 3* ) i s  the value of J(/3) - 
-05;(~) /0¢1T and J* is partit ioned as 

J~l J ~ 2 "  
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Now replacing J* by its expected value I* and 
substituting for ~ -  ~ ;  from (4.2)into (4.3), 
we get 

g -- S2(~) ~ $2(~*) - I ~ l I ~ l l g l ( ~  *) 

: ~ w~fi~h~(D*),  (4.4) 
hikEsr 

where fiO_h~(D*) -- U2h~a(~*)- A*u~h~(~*) 
with A * - I 2 1 I l l  1 .  * and Uhik -- (UlThik, Uo.hikT )T. 
It follows from (4.4) that $2 is approximately 
equal to a vector of estimated totals so that $2 
is asymptotically normal with mean 0 and co- 
variance matrLx coy(S2). Thus, Z~ is asymp- 
totically X~ under H0. Note that E(S2) ~ 0 
under H0. 

Calculation of the quasi-score test X~ requires 
an estimator of cov(Se). A jackknife estima- 
tor, vj(So.) is obtained in a straight forward 
manner. The jackknife final weights, w~ik(~3 ), 
when the (gj)-th sample cluster is deleted are 
obtained in the stone manner as w~a, using 
the jackknife basic weights Whik(gj) -- Whikbgj 
where bg3 - 0 if (hi) - (gj); - ng/(ng - 1) 
if h . -  g and i ~- j; - 1 if 1~ :/- g. R.epla~ing 
Whi by Wh~(~3 , we get S(gj)(/~), ~(g j )  a n d  

S2(~y) (~(~3)). Using S~(gj) we get 

v3(S..) (4.5) 
L n9 T 

g=] ng j=l  

Computation " - T T )T of ~¢g¢) = (~ltgj)' ~20 can 
be simplified by performing only a single 
Newton-Raphson iteration for the solution of 
SI(g3)(~IT,~T0) -- 0, using ~ as the start ing 
value. The jackknife quasi-score test (4.1) is 
invariant to a one-to-one reparametrization of 

with non-singular Ja~obian, unlike the Wald 
test X~v. 
A Taylor linearization estimator of cov ($2), 
denoted as vL(S2), can be obtained using the 
asymptotic representation (4.4) of $2 as a vec- 
tor of estima~d totals. We replace fi2hik(fl*) 
by fi2hia(/~)- U2hik(/3)- AUlhik(~), where A 
is an estimator of A*, and then use (3.8) with 
Uh~(/~) changed to fiehia(/~). There are several 
possible choices for A. It might seem natural 

to use J(/~) in place of I*, where J(/3) is given 
by (3.7). For the special case of scalar/~2 (i.e., 
r = 1) and one time point (i.e., Ti = 1), Binder 
and Patak (1994) used this form of quasi-score 
test to construct confidence intervaJs for rio_, 
although their approach is different from that 
given here. This choice, however, does not have 
the desired invaxiance property in general. We 
can get an invaxiant quasi-score test by taking 
the expectation of J(/3) under the mean speci- 
fication defined by (2.1), i.e., by using 

i(~) (4.6) 
= E E w~kDh~kt(~)Dh~kt(~)T/V°(fih~kt) 

hikes,- t 

where Dhikt(]~) -- O#hikt/O~ with fithikt de- 
noting the value of the mean ]thikt at f l -  t3. 
Moreover, the resulting test is likely to be more 
stable. Of course, for the binary response lo- 
gistic regression case i ( j 3 ) -  J03). 

Under the stratified multistage sampling set- 
up it can be shown that vj (S2)  - vL(So.), 
so that the jackknife and Taylor lineariza.tion 
quasi-score tests axe asymptotically equivalent. 

More general hypotheses of the form H0 "~P - 
h(~)  - 0 can also be tested using the quasi- 
score method. The estimate ~ under H0 is ob- 
tained by solving 

S ( ~ ) - H ( f l ) T A - 0 ;  h ( ~ ) - 0  (4.7) 

for /~ and ,k, where ,k is the r x 1 vec- 
tor of Lagrange multipliers. Let Sh = 

then the jackknife quasi- 
score is given by 

- (4.8) 

where v j  (Sh) is the jackknife estimator of cov 
(Sh) which is obtained in a str_aightf_orwaxd 
manner from (4.5) by changing $2 to Sh and 
S2(gj) t o  Sh(gj) .  

A Taylor lineaxization estimator of cov(Sh), de- 
noted as vL(Sh), can also be obtained using the 
following asymptotic representation of Sh" 

Sh ~ H*I*--ls(~ *) -- H*(~ - ~ )  
-- i * I * - l s ( ~ * ) ,  (4.9) 
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noting that  0 - h(/3) ~ h(/3*) + H*(~ - / 3 )  
so that H*(~ - /3*) ~ 0 under H0,where 
H* - H(¢3"). Now letting fih~(~) - 
H(~ ) i (~ ) -~uh~( f l ) ,  it follows from (4.9) that 
VL(~;h) is given by (3.8) with uhi~(~)changed 
to fih~k(/3), assuming complete response. 

5. Working  Correlat ion Structure  

In this section we generalize the previous re- 
sults on quasi-score tests to the case of a "work- 
ing" correlation matrix of yi, assuming T i  - -  

T. The working covariance matrix of Yhik - -  

(Yh ik l , . . . ,  YhikT) T is assumed to be of the form 
1_ i 

V o h i k  - -  A~hikRA~ik with common correla- 
tion structure a~ross units (hik), i.e., Rhi~ -- 
R, where Ahi~ -- diag(Vohik~,... ,VohikT) and 
t~,,,kt - var(yhi~t ). 

We use /3, obtained under working indepen- 
dence and H0, to get an estimator of R: 

d O )  - Z 
,St- 8r-  

where R)hik - Rhik (~) with 

1 1 

A,~ik(yhik - tthi~,.(~) )(yhik - tthik(t~))T Ah--i~. 

Note that R(~)  is a design consistent estimator 
of the census parameter RM -- ~ R h i k ( ~ ) / M .  
Now using lk(~), we get 

u~ik(~) --(ottTik/O~)fV~O~ik(Yhik -- #hik ), 
(5.3) 

~ 1 , .  ~ , . .  1 

w h e r e  - T h e   es lts 

of Section 3 under working independence can 
be extended by changing Uh~k(/3) to u~k(¢3 ) 
given by (5.3). The information matrix I(/3) 
now changes to 

t O )  - 

where 

E whikDhik(3)f~ro2ikDhik(3)T 
hikes, .  

(5 .4 )  

D h~k (fl ) -- OuT~k / Ofl. 

Properties of the resulting score tests are under 
investigation. 
Limlg and Zeger (1986) consider the case 
of general Ti, assuming working exchange- 
able correlation structure, moving average pro- 
cess (MA-1)or autoregressive process (AR-1). 
However, this approach can lead to inefficient 
estimators of ~ under misspecifica,tion of the 
correlation structure, as demonstrated by Su- 
tradhar and Das (1998). 

6. C o n c l u d i n g  R e m a r k s  

The Wald and quasi-score tests become unsta- 
ble if the effective degrees of freedom is small. 
In the context of stratified multistage sampling, 
effective degrees of freedom, f,  is usually taken 
~s the total number of sample primary units 
minus the number of strata. For a subgroup 
(or domain), f can be much less if the subgroup 
is not uniformly distributed across the samples 
primary units. If f is not large, an F-versio~l 
of the Wald or quasi-score tests might perform 
better in controlling the size of the test. An 
F-version of.the quasi-score test trea,ts 

Fs - [ ( f -  r + 1) / ( fr)]X])  

as an F-varia,ble with r and f - r + 1 degrees 
of freedom. 

Alternative Rao-Scott (1984) corrected tests or 
Bonferroni-t tests (Korn and Graubard, 1990) 
might perform better than X~ or Fs when f is 
small. Rotnitzky and Jewell (1990) proposed 
Rao-Scott corrected score tests in the case of a 
simple random sample of subjects. We plan to 
study the properties of these alternative tests. 
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