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I will begin my discussion with Dr. McCulloch's 
paper. He does an excellent job of outlining the strengths 
and weaknesses of alternative estimation methods. I will 
emphasize some of his points and relate them to the other 
two papers and my own experience. 

The methods he contrasts include" 
• MLE and REML 
• Penalized Quasi-Likelihood (PQL) 

• Generalized Estimating Equations (GEEs), and 
• Bayes estimation. 

I will not comment on the unadorned GEE approach since 
it does not estimate random effects for the small areas. 
The Singh and Wu paper overcomes this weakness of 
GEE's marginal or unconditional mean model by 
estimating additive random effects that can be 
appropriately bounded. 

Maximum Likelihood's strengths include the 
consistency and asymptotic normality of the 13s and o'-s. 
Likelihood ratio tests are also available for comparing 
nested x[3 models. It's weaknesses include the 
observation that MLEs are difficult to calculate for all but 
the simplest two level nested random effect models. 

Dr. McCulloch's (1997) JASA paper presents a 
Metropolis-Hastings type monte-carlo method for 
computing MLEs of the 13s and oZs for more complex 
models. The computation burden for his method is 
similar to the Gibbs/Metropolis sampling of the Bayes 
solution. 

Another weakness of the MLE solution is that mean 
squared errors for the small area predicted values that 
account for the sampling error in the estimated oZs (a'la. 
Prasad and Rao 1990) are not well developed. There are 
some recent unpublished results by Lahiri and Jiang for 
simple models. Also, bootstrapping may be required to 
produce interval estimates with good small sample 
properties. 

Penalized Quasi-Likelihood's main strength is that 
the computations are relatively easy. It works best when 
the associated first or second order 'small o '  linearization 
behaves well; that is, when o is small and 
y ,-, Bin (n , P ] has n > 1 for most-j and the expected 

ij ~ q iJl q 
number of tiits per cluster-i 

is greater than one. It's weaknesses include a tendencyto 
substantially underestimate the o2s and to yield biased 

[3s when o is not small and the expected number of hits 
per cluster-i is substantially less than one for m ost-i. The 
evidence is fairly convincing that PQL cannot be 
recommended for small area estimation. 

Bayes estimation's strength is its ability to estimate 
the exact (small sample)joint distribution of the 13s, o2s, 
and the random effects conditional on the data. It 
therefore, provides estimates of the tail percentiles, say 
the 2.5 and 97.5 percentiles, for the exact distribution of 
the small area estimates. 

The Bayes solution's weakness is that tile joint 
posterior can fail to exist when improper uniforln priors 
are used for the variance components as recommended by 
Zeger and Karim in their (1991) JASA paper. Use of 
proper priors for the variance components that are too 
diffuse or too close to improper can also cause failure of 
convergence or convergence to a posterior that depends 
on the prior. These numerical problems are likely to be 
extreme when the likelihood for a o-" parameter is 
relatively fiat due to insufficient replication; for example, 
when not enough of the binomial n,js are greater than 
one. 

Turning to my discussion of the Ghosh, Natarajan, 
and Maiti paper, my comments concern the unified 
hierarchical Bayes models presented by the authors, 
particulary their binomial version where 

T ~  + It +C Oo = xo i ,g 

is linear in the fixed and random effects with the random 
small area effects 

ind N(O,o  2) 
lli ~" u 

and the random error terms or demographic domain 
effects 

ind N (O, o2c) 
Cij 

In the author'smodel, the conditionalposteriorsfor 13 
and the u random effects are all normal. The authors 

i 

Gibbs sampling scheme is therefore much easier than 
Zeger and Karim' s (1991 ) solution for the logistic mixed 
model. In the Zeger & Karim model which does not 
include the random error terms e ,  the [3 and u 

9 i 

conditional posteriors are not known exactly and must be 
sampled via the Metropolis algorithm. For many area 
probability samples, I believe the author's model will be 
difficult to fit. For these samples useful x ~s are often 
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available from the Decennial Census for sample block 
groups/i with cluster sample sizes n + that are usuallyless 
than 10. With the j subscript typically indexing over 30 
age by gender by race/ethnicity domains, the number of 
replicate observations per domain ,,(n0) is seldom greater 
than 1. 

While the joint posterior may exist if only one 
cluster-i by domain cell-j has n ° greater than 1, this case 
will undoubtedly lead toa  posterlorfor o'- that is heavily 
influenced by the prior for 02 . When the error terms 
c are removed from the model due to insufficient 

;J r has just the small area u replication so that O = x.. 13 + u 
o posteriors are no longer random effect, then the 13 v and u 

normal and one must use the time consuming Metropolis 
routine. 

Turning to Ghosh, Natarajan, and Maiti's model 
averaging example, I found the idea of incorporating 
model uncertainty into the posterior variance of small 
area estimates (SAEs) very appealing. On the other hand, 
I was uncertain about how to set the prior probabilities 
for two models. I would be inclined to set 
r~ = (1-r~) = 1/2. Also, I wondered how one would 
develop the strong prior belief that the interaction 

(~) 
parameter vector [3 = 0 before lookin~ at the current 

• 2 . ( M ~  ~ . 

data. This was reflected by making [3 2 s prior mean 
vector zero and its prior covariance matrix 1"12 2 small. I 
think I would need experience with a previous 
incarnation of the data to form such a strong prior belief. 

Turning to the Singh and Wu paper, I thought the 
authors' formulation of additive random effects for 
logistic mixed models was quite ingenious. Their work 
seems to restore the unconditional or marginal mean 
models of the GEE method to a viable competitor for 
small area estimation. Singh and Wu show that additive 
random effects can be rigorously defined as differences 
between hierarchical conditional means. In this fashion 
they legitimize an additive error structure motivated by 
the first and second order 'small o '  partitioning of 
random effects used in the marginal mean version of 
PQL, namely MQL. The authors carefully parameterize 
the random effect variances so that they add to the correct 

unconditional variance, namely ri;j ,(1-1"1o }, where rio is 
the unconditional mean of Y0" 

To motivate the existence of additive random effects 
whose ranges are properly constrained, Singh and Wu 
show that beta random effect variables v , v , and v 

l i  2 1 2 0  

can be defined for the salamander data so that t~eir ranges 
are suitably constrained and the proper mean and variance 
relationships are preserved. The authors also ensure that 
by construction the associated covariance matrix for the 
additive errors Z(/.) v + e,namely, 

£ = Z(~I)EvZ(I~,I)T + Y]e(/~,2) 

is positive definite. They can then us e normal theory 
MLE or REML solution equations to get consistent 
estimators of the unknown parameters Z and Z in £ .  

1 2 

The familiar GEE type optimum estimation equations 
thenyield consistent 13s. 

My main quarrel with the authors regards their rose 
estimator for the small area predictors• I think they 
should have acknowledged that their Empirical Bayes 
(EB) type mean-squared-error estimator may be a 
serious underestimate since it ignores the sampling error 
in the ,~ variance parameters. While there is hope that a 
Prashad and Rao type correction could be developed for 
their model, it is interesting to note that the standard 
mixed model formulation with Z known and 2 a 

v 

function of X parameters does not apply for the Singh 
and Wu covariance matrix where Z is a function of 
unkhown parameters. I would also like to see the authors 
test the small sample properties of their solution on 
simulated binomial data with additive beta random 
effects. Finally, given a good rose estimate for the Singh 
& Wu small area predictor vector, la = fl + Z(,1. )~ one 

1 ' 

will still probably need to bootstrap to be assured of good 
small sample interval estimates for the elements of la. 
This may largely offset the relative ease of the author's 
estimation methods compared to the hierarchical Bayes 
solution. 

In summary, I believe that good interval estimates 
are critical to small area predictions since SAEs are 
highly subject to misuse. I have come to believe that 
given careful attention to the use of proper and not too 
diffuse priors, the full Bayes solution is currently the 
method of choice in this regard. 
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