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ABSTRACT 
Under a semiparametric framework, estimation of para- 
meters for mixed nonlinear models poses, in general, 
serious problems in ensuring consistency (not to mention 
asymptotic optimality) of fixed parameter estimates (both 
first and second order), and unbiasedness of random 
parameter estimates. The reason for this seems to be the 
practice of making the random parameters part of the 
nonlinear predictor function in order to satisfy certain 
range restrictions on the conditional means. 
Consequently, computation of the marginal mean and the 
covariance becomes intractable in general which renders 
usual estimation methods for fixed nonlinear models 
inapplicable. Note that for the usual nonlinear models the 
random parameters are first specified through the 
nonlinear predictor function, and then attempt is made to 
obtain the (marginal) covariance. However, such 
specification of random parameters is not necessary in 
view of the following three observations. (i) The target 
random parameters can be alternatively defined as the 
hierarchical differences of conditional means, and then 
they can be made additive to the fixed nonlinear predictor 
function. Note that this may give rise to variance-mean 
relationships that should be accounted for in modelling 
the covariance structure. However, the additivity feature 
should help to overcome the estimation problem 
mentioned above. (ii) For BLUP-type optimal estimation 
of additive random parameters, it is sufficient to specify 
only the covariance structure, and later the random 
parameters can be specified (in a wide sense) to match the 
covariance structure. (iii) Although the usual BLUP is not 
designed to meet range restrictions, it being a Stein-type 
shrinkage estimator may often work well provided the 
fixed predictor function (i.e., the marginal mean) does 
meet the restrictions. However, if necessary a suboptimal 
B LUP via ridge-modification of the shrinkage coefficient 
can be constructed to meet range restrictions while 
preserving unbiasedness. We, therefore, propose a. wide 
sense specification of random parameters by first 
modelling the conditional covariances in a hierarchical 
manner while accounting for variance-mean relationships, 
instead of the customary reverse route in which the 
covariance structure is obtained after the nonlinear 
functional form of random parameters is specified. 
Estimating functions with suitable properties can be 
constructed for both fixed and random parameters. An 
illustrative example for estimation for the widely analysed 
salamander mating experiment data is presented. 
KEY WORDS: Estimating and predicting functions; 
Logistic regression; Random effects; Ridge BLUP; 
Shrinkage estimation. 

1. INTRODUCTION 
Mixed nonlinear models (i.e., models with fixed and 

random parameters; the random parameters may or may 
not be part of the nonlinear predictor function) arise 
naturally in analysing the effects of covariates on discrete 

outcomes from clustered data. Random parameters are 
introduced to represent clustering effect, and if ignored, 
over-dispersion is generally manifested. If sample 
cluster sizes were large, then cluster effects can be 
reasonably estimated without treating them as random. 
However, in practice, often the cluster sizes are small but 
the number of clusters are large which results in a large 
number of parameters, number being proportional to the 
sample size. Parsimony in parameters is achieved by 
treating similar clusters as connected through a random 
parameter. This approach is known to have worked well 
in different applications, see e.g., Breslow and Clayton 
(1993). Note that estimation of random parameters may 
or may not be of direct interest in any particular 
application. 

To help focus on the problem discussed in this 
paper, consider a semiparametric model (with only up to 
second moment assumptions) for a binary outcome 
variable Yik for unit k in cluster i given by 

Yik = ~'lik + e ik '  eik l ~.li k N (0 ,  kt ik(1 - ~l ik)) ,  (1.1a) 

where 

logit ~ik - X '  , , 2 ik ~3 + z ikui  u i ~ (0, ~ ) ,  (1.1b) 

where D is a p-vector of fixed parameters, u~ (i = 1 ..... q) 
are random parameters. Above is an example of a nested 
design and only one dimension of the random parameter. 
In general, however, the design need not be nested and/or: 
there may be more than one dimension of the random 
parameter which may interact with each other. We 
illustrate this point by the following example. 
Example 

In the widely analysed Salamander Experiment data, 
the objective is to compare the mating habits of two types 
(Roughbutt and Whiteside) of salamander- a lizard-like 
animal. Forty salamanders (10 of each type and gender) 
wcre paired in different ways and observed on three 
occasions in a given season. The experiment was repeated 
three times, once in Spring '86, and twice in Fall '86. 
The design is crossed, details of which can be found in 
McCullagh and Nelder (1989, ch. 14). The outcome 
variable is binary taking the value of 1 if the mating is 
successful, and 0 otherwise. The covariate for fixed 
parameters is indicator for the pair type with four levels, 
and the covariate for the two dimensional random 
parameter (dimension corresponding to gender) is simply 
the gender indicator. In all there are forty random 
parameters, 10 for each of the two levels (or the 
salamander type) of the female and male factors, i.e., one 
for each animal. Each female salamander was allowed to 
mate with several males and vice-versa, thus creating a 
clustering effect for each animal. In terms of model (1.1), 
this problem can be expressed as follows: Denoting by y.. 

. . I J  

the observation for i-th female andj-th male, we can write 
for i , j =  1 ..... 20, 

logit 13ij = ~3 o + Xl i  j ~1 + x2ij ~2 + Xl i jX2i j  ~3 4- Ul i + t/2j , (1.2) 
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where uli - (0, oul ), u . - (0, c~uz) are random parameters 
corresponding to tl~ i-th female and j-th male 
respectively, x ,  .. is the indicator of the female whiteside lq  
type, and x~.. for the male whiteside type Here 

• . ] • " . 

estimation of~lxed parameters (first and second order, i.e. 
[3s a n d  o 2 s )  and not of random parameters ( i.e. u/s) 
is of direct interest. 

Under a completely parametric setup, likelihood- 
based methods can be used. For example, under a 
frequentist approach, MLE for fixed parameters (first and 
second order) can be obtained from the marginal 
distribution although this would require in general a high 
dimensional integration. Some important contributions 
are briefly described. Geyer and Thompson (1992) 
suggested use of simulated likelihood to compute MLE 
while use of Metropolis algorithm was suggested by 
McCulloch (1997). Jiang (1998) proposed a method 
based on simulated moments to get consistent estimates 
( although their efficiencies may not be high.) For the 
special case of Poisson mixed models, under small-sigma 
asymptotics Sutradhar and Qu (1998) propose a 
simplified method by approximating the likelihood using 
a log-transformation of the Gamma distribution for 
random parameters with first two moments matched with 
respect to the normal distribution. Under a Bayesian 
approach, some important contributions are due to Zeger 
and Karim (1991) who used Gibbs sampling to compute 
posterior means assuming a flat prior on fixed parameters 
of generalized linear mixed models, and Ghosh et al. 
(1998) noting that the posterior need not be proper, 
proposed a hierarchical Bayes approach with diffuse 
priors and identified general conditions which ensure 
proper posteriors. The random parameters under both 
frequentist and Bayesian approaches are estimated by 
conditional (or posterior) means to minimize the MSE, 
although analytic expressions for these estimates are 
generally intractable due to the problem of high 
dimensional integration needed for marginal moments. 
The main virtue of parametric approaches (especially 
Bayesian) seems to be that the MSE of estimated 
parameters can take account of estimated second order 
parameters. However, all these results are subject to the 
validity of the model. It may be remarked that the model 
for the conditional means given the random parameters is 
especially hard to validate because of the unavailability of 
consistent estimates of random parameters under usual 
scenarios. 

Our objective in this paper is to estimate under a 
semiparametric setup (i.e., up to second moment 
assumptions) both fixed and random parameters in 
nonlinear regression for a discrete response variable. The 
fixed parameter estimates should be asymptotically 
consistent and at least for first order parameters 
asymptotically optimal. The random parameter estimates 
should have BLUP-type optimality. (BLUP being a 
shrinkage-type estimator may often meet the range 
restrictions on the conditional mean. However, in practice, 
a ridge-type modification may be used if necessary without 
sacrificing unbiasedness.) Inference on second order 
parameters is not considered in this paper as it will require 
higher (third and fourth) moment assumptions; see e.g., Lin 
(1997). Existing methods using a Bayesian-type argument 
are the maximum quasi-posterior likelihood method of 
Schall (1991), penalized quasi-likelihood method of 
Breslow and Clayton (1993), the BLUP-likelihood method 

of McGilchrist (1994),and the Henderson-likelihood 
method of Lee and Nelder (1996), while using a frequentist 
argument the estimating function method of Waclawiw and 
Liang (1993), and the method of predicting functions of 
Singh (1995). However, for first order fixed parameters, 
none of the methods (except that of Waclawiw,Liang 
which works with the marginal quasi-likelihood after 
integrating out random parameters at least approximately 
under the assumption of normality) provides consistent 
estimates, for first order random parameters, all produce 
biased estimates, and for second order parameters, all have 
problems in providing consistent estimates under the usual 
asymptotic framework of a large number of clusters and 
bounded sample cluster sizes. These problems arise 
because of the difficulty in specifying marginal means 
and covariances, even more so now for the 
semiparametric case than for the parametric case. 

As shown in the next section, the main reason for the 
inconsistency problem mentioned above is the practice of 
making the random parameters part of the nonlinear 
predictor function presumably in the interest of meeting 
range restrictions on the conditional means without 
putting any restrictions on the distribution of random 
parameters. It may be reasonable to do so for the 
parametric case because it seems natural to specify 
various conditional means given random parameters 
hierarchically from the lowest to the highest level of 
aggregation. However, for the semiparametric case, it is 
more natural to go from the highest to the lowest level of 
aggregation in specifying conditional means because of 
the unavailability of various conditional distributions. 
This way random parameters (now defined as differences 
of hierarchical conditional means) remain outside the 
nonlinear predictor function. Note that this definition of 
random parameters does meet the practical need, although 
it differs from the usual definition involving u- 
parameters. Now range restrictions on various 
conditional means impose restrictions on distribution of 
random parameters, but model for the conditional mean 
is easier to validate. Thus we are led to essentially two 
different approaches in specification of nonlinear 
predictor functions. 

There do exist methods which keep random 
parameters outside the nonlinear predictor function and 
thus avoid the problem of inconsistency. For example, 
McCullagh and Nelder (1989, Ch. 14) use a first order 
Taylor expansion under small-sigma asymptotics to 
linearize the nonlinear predictor function and then use the 
standard generalized linear model method to estimate 
fixed parameters taking account of variance-mean 
relationships. However, the linear representation may be 
inappropriate because the interaction term (defined in 
terms of differences of conditional means) is forced to be 
zero. Thus, estimation of random parameters may not be 
well-founded although this was not of direct interest in 
the example considered by the authors. Sutradhar and Rao 
(1996) consider second order Taylor expansion which 
would allow for the interaction term to be present; 
however, an offset term is added to the mean (i.e., the 
fixed predictor function) which may no longer satisfy the 
range restrictions. Drum and McCullagh (1993 p. 680) 
state that the assumption of small-sigma for random 
parameters may not be reasonable in general and the 
positive definiteness of the Taylor linearized covariance 
matrix is not ensured. Vonesh and Carter (1992) propose 
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a generalized mixed effects nonlinear regression model 
where random effects are additive to the fixed nonlinear 
predictor function and variances of random effects are 
assumed to be constant as in the case of mixed linear 
models. However, again this may not yield positive 
definiteness of the covariance matrix because it does not 
respect relationships between variance and mean in view 
of the range restrictions on conditional means. Moreover, 
importance of the interaction term was not considered 
although their model can accommodate it. In view of the 
above concerns, estimates of random effects may become 
questionable, although such estimation was not 
considered by the authors. 

In this paper, we first show that meeting range 
restrictions on the conditional means should not be the 
sole motivation for including random parameters inside 
the nonlinear predictor function. The reason for this is 
that there are many practical applications where 
estimation of random parameters is not of direct interest. 
Moreover, when random parameters are additive to the 
fixed nonlinear predictor function, the BLUP estimator 
being a shrinkage estimator would often meet the 
restrictions, and if necessary can easily be modified via 
ridge. We, therefore, propose keeping random parameters 
outside the nonlinear predictor function, and use a 
hierarchical breakdown to propose a (proper) 
decomposition of the conditional mean given random 
parameters. Here, as mentioned earlier, random 
parameters are defined simply as hierarchical differences 
of conditional means. Second order moment assumptions 
are based on variance-mean relationships to ensure 
nonnegative definiteness of the covariances and are 
motivated from realistic considerations. Estimation of 
random parameters is well-founded because of a proper 
decomposition of the conditional mean and a proper 
specification of covariances. Estimates of random 
parameters have BLUP-type optimality, and that of fixed 
parameters are consistent and have appropriate optimality. 

Section 2 presents a motivation for the proposed 
method of hierarchical covariance modelling while 
Section 3 contains its description. Estimation of parameters 
is discussed in Section 4 and an illustrative example in 
Section 5. Finally, Section 6 contains concluding remarks. 

2. THE INCONSISTENCY PROBLEM 
We motivate the proposed method described in the 

next section by analysing the reasons of the problem of 
inconsistency in estimation of fixed parameters for mixed 
nonlinear models. First, let us examine why there is no 
such problem in the case of general mixed linear models 
defined as 

y -XI3 + Zv + e, (2.1) 

where e ~ (0, ] ~ e )  , V N ( 0 ,  ]~v )  , and are uncorrelated with 
each other. 

Using the method of predicting functions (Singh, 
1995), the estimating equations for 13 and v as originally 
derived by Henderson (1975) can be easily obtained as 

y - X ~ - Z v  =0 (2.2) 
Z' I 0 0 - v  

Consider the asymptotic behaviour of the estimating 
equation for 13 as number of random parameters (i.e., the 

clusters) increase to co but number of sample observations 
(i.e., the sample cluster size) corresponding to any given 
random parameter remains bounded. Notice that because 
of additive random parameters, only a fixed number of 
linear combinations of 9(13) (an unbiased estimate 
obtained from (2.2) for given 13) appears in the estimating 
equation for 13, and therefore the law of large numbers can 
be applied under regularity conditions. This will imply 
that the estimating function for 13 goes to zero in 
probability which, in turn, implies consistency of 13. An 
alternative way to see this is as follows. Since the 
random parameters are additive to the fixed predictor 
function, they are separate and can be combined with the 
model error to get a suitable covariance matrix 
Z 'Z  Z + Z , which can be used in the optimal estimation e 
of 13v i.e., by solving 

X' (Z' ZvZ + Ze) -1 (y - X13) - 0, (2.3) 

from which the consistency of l] follows under mild 
regularity conditions. For estimating the second order 
fixed oarameters appearing in Z v and ]~e (such as when 

"2 2 S,v=OvI, Y'.e=Oel), one can use ML or REML 
estimating equations under normality (cf. Jiang, 1996). 

With mixed nonlinear models, however, the random 
parameters are part of the nonlinear predictor function 
containing fixed parameters, and therefore, they can't be 
separated out and combined with the model error in order 
to estimate 13 and variance components under a semi- 
parametric framework. (In the parametric case, the 
random parameters can, in principle, be integrated out). 
The estimating equations for 13 and v in the case of mixed 
nonlinear models are analogous to (2.2), but clearly there 
is a problem in applying the law of large numbers to the 
estimate 13 because the corresponding estimating function 
is not in general a function of a fixed number of linear 
combinations of 9(13) (there is also the additional problem 
of bias in this estiamtor). Inconsistency of 13 in turn 
affects consistency of the variance component estimates. 
It may be noted that for other methods (such as Schall, 
Breslow-Clayton, McGilchrist, and Lee-Nelder), esti- 
mating equations for the first order parameters are 
(essentially) identical to the ones obtained by the method 
of predicting functions of Singh (1995). 

What is the recourse out of this inconsistency 
problem? Is it essential to put the random parameters 
inside the nonlinear predictor function? To answer this, 
let us make some basic observations. The main reason 
for the practice of keeping v inside the nonlinear predictor 
function is probably the need to meet the range 
restrictions on the conditional mean without putting any 
restrictions on v. However, the random parameters can be 
alternatively defined as differences of conditional means 
(in a hierarchical sense), and then they can stay outside 
the predictor function containing only fixed parameters, 
and become additive to the fixed predictor function. 
This, in fact, is often done in practice. For example, in 
the model y = l  u +e, e can be viewed as a random 
parameter (although hardly of direct interest) defined as 
the difference of the conditional mean y and the 
unconditional mean p. Now if y is a continuous variable 
taking values in the real line, then there is no restriction 
on the random component e. However, if y is discrete 
(e.g., binary) then this would impose range restriction on 
e and will result in variance-mean relationships. There 
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exist many distributions which satisfy different types of 
variance-mean relationships as exemplified in the 
literature on generalized linear models. A more pertinent 
example is the model y = 1] + v + e, when It = q + v is the 
conditional mean of y given the random parameter v. 
Again for discrete response variables, there would be 
range restrictions on It and rl and so both the random 
components v and e will have to satisfy some restrictions; 
in particular, their variances may depend on means• This 
is not really a problem in model specification because one 
can motivate the functional form of variance-mean 
relationships by appropriate distributions. Moreover, 
given that the covariance matrices are properly specified, 
i.e., they are nonnegative definite, the range restrictions 
can be met by BLUP (or via a ridge-modification of its 
shrinkage factor). Another point worth noting is that in 
defining random parameters as hierarchical differences of 
conditional means, it may be difficult in general to 
specify the functional dependence on some unobserved 
random effects. Fortunately, it turns out that this 
functional specification is not needed. For BLUP-type 
optimal estimation of random parameters, only 
specification of a suitable covariance structure is needed 
which, in turn, specifies random parameters in a wide 
sense in order to match the covariance structure. 

As mentioned in the introduction, there exist models 
where random parameters are additive to the fixed 
nonlinear predictor function. However, care should be 
taken in accounting for variance-mean relationship, and 
interactions between random parameters as illustrated 
below in terms of the small sigma Taylor linearization 
model of McCullagh and Nelder (1989 Ch. 14). For the 
model (1.2), using first order small sigma asymptotics, 
(i.e., ignoring terms of order Op (o)), we have 

Yij = 1"10 + h(q(i)(Ltl i  + U2j)  + eij' 
(2.4) 

where h(qo)  = q O ( 1 -  rlo), qo = g -l(xij~3), 

and g is the logit link function. Here the conditional 
means can be approximately defined hierarchically as 

E(yo lx i j )  = rio' E ( y o l x i j '  uli)" = ~10 = rl0 + h(rl0)~ 

E(yo [xo, Uli , U2j ) " = It~] = 1]0 + h(rlo)(Uli + Uzi ) (2.5) 

Similarly, E(Yii [xii, UzJ) :~2,!i : q0 + h (110)Uzj, and the 
random interac~tiori t e r m : ( :  ~_,j ~lij - c',20 + rlii) is set to 
0 under (2.4). 

We make the following observations about variance- 
mean relationships for (2.4). Variance of e~ given Iti~ is 
It..(1 - It..) which depends on It.. as expectiSd. Variafice 

• q • *2 2 q • 
o~itii (given qii) is h (qii)O~l. ~ and covarlance of Itii and 
It.. ('j ~ j ' )  is -~ h (q..) h (r[..) Oul, and so on. All t~hese q ' .  . q q '  . . 

varlance-covarmnces depend on the unconditional mean 
rl.. However, there are no range restrictions on the 

q ' .  2 2 • 
variance components Ou~, o,z. This may be reasonable 
before linearization but not afterwards. To see this, note 
that the conditional mean ~... must lie between 0 and 1. 

• . . 1{/ 
Th~s implies that for each t, the standardized variable 
uli/o,,~ must satisfy 

- min  rlij/ h (rlo ) Oul < uli/  Oul < min(1 - qii ) / h (qij )o,1 (2.6) 
J J 

This clearly suggests restrictions on the range of u, ./o 1 
and hence on its variance. Without any restrictions c~n 
OZul, o22, the positive definiteness of the covariance 
matrix of y is not ensured. Although, this may not be a 
problem for sufficiently s m a l l  O2ul,O22 , in some 
applications such as that of salamander data, it was 
observed by Drum and McCullagh (1993) that they can 
take values greater than one (when the marginal 
covariance is computed exactly), and so the small sigma 
assumption may not be reasonable. Note that in the logit 

2 2 could be large. scale (i.e., before linearization), oul, ouz 
The model (2.4) sets the interaction term to zero. 

For discrete response variables, it may not be appropriate 
to ignore interaction terms in the mean scale because of 
range restrictions. In particular, restrictions on the 
conditional mean given u.. is not likely to be the same as 

• . I J  . . 

on the conditional mean when u.. is also gwen. Thus the 
. Z J  . . 

two random variables u 1. and u~ have an Interaction 
eef~?t°nd~01~ Thueslnteract~°nctenrr~ ~~anbe app~imatemlY 

y • g " g  
asymptotics (i.e., where only terms of order Op (o ~) are 
ignored), as follows: 

2 
[rl0 + h(rl/j)(1 - 2r10)(ot2,1 + Ou2)/2 ] 

2 
+ h(qo)[uli  + (1 - 2q0)(Ul 2 - Oul)/2] 

2 
+ h (q0) [UzJ + ( 1 - 2rli ~) (u~. - Ou2 ) / 2] 

+ h(q0)(1 - 2qij)uliu2j + e~i 

(2.7) 
= qo + h(rlij)(Uli + UzJ) + h(rl/j )l 1 - 2rlo l ulzij 

The presence of the interaction term UI2 i. signifies that 
• . . J . 

the conditional mean It. given u . ,  u,. is not simply the 
. q  it z j  

sum of the separate condlUonal means ~1i a n d  ~2ii minus r l i . .  
• • ,'J ~ . 7  

In other words, It represents the adjustment to the effect 
of conditioning on u,. when u.. is also conditioned. Note 

• i t  . z l  , . 

that the marginal mean ~s changed to rl0 which may no 
longer satisfy range restrictions. Also to specify the 
covariance structure of eii in (2.7), one would need third 
and fourth moment assurfiptions about u , ,  u~. which can 

• . I t  Z J  

be motivated from normahty. Although (2.7) is an 
improved approximation over (2.4), the problem of 
variance components not being sufficiently small still 
remains. A way out is to directly define random 
parameters as additive to the fixed predictor function 1].0 
without relying on small sigma asymptotics. This was in 
fact proposed by Vonesh and Carter (1992) but the issues 
regarding variance-mean relationships in specifying 
moments of random parameters, the need for interaction 
parameters, and positive definiteness of the covariance 
matrix of y were not considered. Like mixed linear 
models, Vonesh-Carter suggested an additive mixed 
nonlinear model given by 

y =q + Zv + e (2.8) 

where rl as before is nonlinear in 13, and v - (0, 2v). The  
matrix E was left unspecified resulting in q (q + 1)/2 
second o~'der parameters arising from E v where q is the 
number of v-parameters. A method of moments based on 
residuals was suggested for estimating Z v. However, 
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under our asymptotic framework where q tends to oo, the 
resulting estimate of E will not be consistent. 

The existing methods with additive random 
parameters do not, however, consider estimation of 
random parameters. In the hierarchical covariance model 
proposed in the next section, we take a different approach 
in defining random parameters via a general hierarchical 
partitioning of the conditional mean. In the process, 
interaction terms arise naturally, and the issues of suitable 
variance-mean relationships along with a possible 
modification of BLUP to meet range restrictions. The 
model is motivated from very general considerations 
about the definition of target random parameters, the role 
of covariance in motivating the wide sense specification 
of random parameters, and the Stein-type shrinkage 
property of random parameter estimates. 

3. HIERARCHICAL COVARIANCE MODELLING 
We will describe the proposed method in terms of the 

salamander example. Assuming that the design has 
replicate observations, y... will denote the k-th replicate 

• IJK • 

observatmn for the factors f~i, f ~  applied to the pair (i, 
j)  where f ,f~ signify femaleand~ male factors Using a 

• . 1 . .  . .  . .  • 

hierarchical partition of the conditional mean 
E(Yij~lfo,f~ j , x . )  (the hierarchy defines the order in which 
the randolTi fa6tors f~i,fEj appear in conditioning), we 
have 

= E (Yij~ Ixij~ ) + [E (y~lxoef~i )  - g (Yi:lxi:)]  + Yi/k 

[Yijk - E ( Yij, [ Xijk ' f l i ' f 2j )] (3.1a) 

"= qijk + (g~O~ - rl/J~ ) + (laij~ - ~lOk) + eOk (3.1b) 

The interpretation of various conditional means is as 
follows It... is the average of Yi'" o v e r  replications 

• " i l k  . . ~ K  

having common charactensncs x .... and common factors qg 
f,. ,  f, . ;  ~ .... is the average of y..*` over observanons j tqr  
wl~ic~ have the common factor ~ i  and characteristics 
x... ; and q... is the average of y... over observations rig tJg rjK 
having common x .... Note that t~e above breakdown 
holds in general and ~e  choice of hierarchy in the order f ,  f . . . .  1 2 

is arbitrary. The random parameters are defined simply 
as hierarchical differences of conditional means, i.e., 
~lijk S q ( i k '  ~ l i j ¢ - ~ 1  .... and e/a/: (estimation of e.., is tar tJK 
us0ally not of ~Iirect mterest) wfimh have zero means ano 
suitable covariances. To complete the above semipara- 
metric set-up with second moment assumptions, it 
remains to specify the covariance structure. It can be 
done as follows. 

Denoting by E l, E 2, E 3 the hierarchical conditional 
expectations given xii k, {Xiik,  f l i }  , {Xiik,  f l i ,  f 2 i }  , 
respectively, we have the cohditiofial VariaffCe isf 3:... 
about ~,~k given {xii e fli, f2i} as ~ii*` ( 1 -  laiik), an'Jc] 
therefore'the unconditional va?iance ab6ut ~0~ fs- 

El2 V3 (Yo~) = El2 (~Ok) - El2 (la2k) 

= Ylijk - [ E l 2  (l Llijk ) ]2 _ V12 (iLl0k) 

• = rl0 k (1 - rl0k) - qijk ( 1  - rl0*`) ~/jk 

= h(qo k) ( 1 -  ~ijk), (3.2) 

~vhere h(qo*`)=T1o$(1-rl0,,  ), and ~iJk is necessarily 
etween 0 ana i because El2 V 3 (Yok) > 0. Next, 

E2 (laOk) = ~lOk and 

E1V2 (la/jk) = g12 (l-lok) - V 1 E  2 ( ~ i j k )  = V12 (~Ok) - V 1 (~l/jk ~ 

• = h (rlok) ~Ok - h(qijk) ~(ik "r Ok 

= h(qijk) ~Ok (1 - rOk)' (3.3) 

where , .... is between 0 and 1 and finally lq 
V1 (~1,~) = ~h(rliik) {,:ljk xli.k.,, Thus the total variance h(rlOk) 
is paffffioned into three 6omponents as 

h(nok) = h(rlok)[~Ok T'lijk + ~i.jk (1 - X,Ok) + (1 - ~Ok)] (3.4) 

If in the hierarchy the f~ factor was placed before fl, 
then the analogous partiti~on would be 

h(rlijk) = h(qijk)[~ijk T'2ijk + ~ijk (1 - T,2ijk ) + (1 - ~ijk)] (3.5) 

It follows that variance of t he  main effects 
( ~l i ik  - ]]iik ) and ( ~',k - q i ik  ) are respectively _ _ ztJ __ 
h (~...) ~i:i 1: .... and h (q..;~) ~../'t ..... and, that of the • . tJg , tJg I tJr. ~._ . tgg. qg ~, l.tJg ~,, x 
mteracnon ettect (u... - c. .... - c .... + n...~ is 
~ , "  x ~' /, \ t l ~ I g  . . - ' , l t l g  . a a t J . g  " t J g "  

n ~11..0 g..~ ~ - x .... - ~ .... ) wmcn ~molies that z .... + g .... t t r 1~ tJ ~ ltJK l, tJ 
mus~be ~etween ~ and: ~'. So the total variance h(rl..~ 

• . . t . / K  

can be pamtloned into four components corresponding to 
two main effects, one interaction, and the model error as 

h (q i j k )  = h (T]ijk) [~ijk T'lijk + ~ijk T'2ijk + 

~ijk (1 -'ClOg-Z20 k) +(1 -~Ok)] (3.6) 

So far the variances of components are specified. To 
specify covariances, we first assume that the different 
main effects are uncorrelated with each other and are 
uncorrelated with the interaction effect. In addition it 
seems reasonable to make the following assumptions 
about correlations. 

COlT (~ l i j k  - q i j k '  ~l i: j 'k '  - q i ' j ' k  ') = 1 if i= i' 

0 otherwise (3.7a) 

COlT (~20  k - YlOk, ~2i~j'k' - q i ' j ' k  ') = 1 if j =j '  

c o r r  (~ltj k - ~ 1 0  k - ~ 2 0  k + 1']Ok, 

0 otherwise 
(3.7b) 

['li'j'k' - ~ l i ' j ' k '  - ~ 2 i ' j ' k '  + q i ' j ' k  ' )  = 1 if ( i , j )  = ( i ' , j ' )  

0 otherwise (3.7c) 

The above assumption implies existence of random 
variables vii, Vej, Via 0 with mean 0 and variance 1, such 
that 
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~'Ok - l]ijk = {h(l]ijk) ~ijk " [ ' O k  } 1/2 V i i '  

~2ijk - l]~jk : {h (1]ijk) ~ijk "[2ijk } 1/2 V2j '  

~l~jk - ~lijk - ~2ijk + ]]Ok = 

_ {h(rl/jk ) ~0~ (1 - T1/jk - T2ijk)}l//2 V12/j. (3.8) 
That the above assumption is plausible can be 
demonstrated by the following argument. In the case of ~ ..... 

• ~ l l  K 

every i, impliesqt~{~ t t h e  condition - ~Io~, - rlijk< 1 - rlq k for all (j,  k) for 

- min rlijk/t-~l(lliJ k) ~ijk T'IOk ) }1//2 < Vi i  < 
j , k  

min( 1 - rlijk ) ]{h(rlijk ) ~ijk TOk } 1/2' (3.9) 
j , k  

which can be expressed as - L. < v < U i. 
It can be shown that if L. ~J. >~1, then there exists 

a beta variable with parameters L. (L. U. - 1)/(L. + Ui),  
and U. (L. U i - 1 ) / ( L .  + U.) taking ,~alt]es in ( - 'L. .  U.) t i t t . . . t" t 
such that It has mean 0 and variance 1. Similarly, the 
existence of v.. follows. Existence of v~2.. follows from 

• z .  

the existence o~ " '~ a random variable v2(1)/j with mean 0 and 
variance 1 such that 

~lijk - ~lOk : {h(1]ijk ) ~Ok ( ] - - x'IV~ • . tlOk) ~ V2(1)/ j ,  (3.]0) 

by using a beta-motivated distribution as above and 
noting that lu.., - ~l - ~2ij~ + q0~ is simply (P0~ - ~0~ ) 

- tc"~fmsqi~e" - - -  "~ covariance matrix E of the observation 
vector y can be obtained as 

Z : Z v l  + ~]v2 + Z v l 2  + Z e  = z Z v Z '  + Z e (3.11) 

where Zv,. .is covariance of the vector { ~li~k 7_,trlh0k } and 
others are slmmilarly defined. Here the ( i , j ,  ~:) row or 
the Z-matrix corresponds to the coefficients of v.., v~., it _ zj 
and v12.., as given in (3.8) v is the stacked column 

I "~ 

vector o~ random parameters vl., v~., and v..~., and Z l I z.~/ v 
is blockdiag {J~l, J2,  J12} where J c)'enotes the matrix of 
ones and the subscripts denote the dimension 
corresponding to vectors v 1 , v~, and v12. The matrix £ 
is positive definite because" Z (the unconditional 
covariance of e) being diagonal isepositive definite, and 
the other matrices Z ,, Z ~, 2 .~ are nonnegative definite 
by construction. Thg'dia)~on~l~elements of 2; a r e  h(rlijk ) 
while the off-diagonal ones are: 

{ h ( r l / j k )  ~ijk "[l(jkh(qi'j'k ') ~i'j'k' "[li'j'k'} 'A if i : i ' , j ~ : j ' ,  
(3.12a) 

D i ' , = j '  {h (qijk) ~ijk T'zijk h (rli,j,k,) ~i'j'k' 2i'j'k'J if i * j 

and 

{h (rlijk) ~ok "rlijk h (1]i,j,k,) ~i'j'k' Tli~j'k'} V2 + 

"r, " " i V 2 +  {h ('qijk ) ~ijk "[2ijk h (lli,j,k,) ~i'j'k' 2i'j'k'J 

{ h (rlijl ,) ~ijk (1 - zlijk - T2ijk) 

h (rli,j,k,) ~i'j'k' (1 - "tliii, k, - T.2rj,k, ) }W 

if ( i , j )  = ( i ' , j ' ) ,  k~:k'. (3.12b) 

So far the parameters ¢.., '[ ..... "[ .... lying in the interval 
t J K  : I t J K  z K 

(0, 1 ) such that 0 < '[ ,,~ + ~,,,~ < ~J, were assumed to be 
• ] U  ~" . ~ U  • 

quite general• However, their }~unctlonal form need to be 
specified to avoid overparametrization as well as in the 
interest of parismony. Choice of a suitable function can 
be motivated from the form of ~.., ~1 " in the small sigma 

• . I K  K . . 

T~.ylor llnearlzed model (2.4Y w~ere It is equal to 
%1 h (rl,,,). This sug.~ests ~{;ik'[1,k can be a function of 
h (q,,~);'however, unlike r~,, h (q::~) it is restricted to be 
bet4I~en 0 and 1. We, tt~&efo}~, propose to specify 
~/jk, r ~ ; j e  andz20 k as 

log (Zl//,/'[3/jk) = P l  log h(rl0.k) + ql (3.13) 

where p~, q l are two unknown parameters and minus 
log h (11..,) is treated like a known covariate taking values 
in .(0, oo~and 1:30 ~ denotes 1 - '[10k- "r20k" Similary, we 
write 

and 

log (T20  k / T30 k) = P2 log h (rl0k) + q2 (3.14) 

log (~ijk / (1 - ~iik ) ) : P3 log h (q0k) + q3 (3.~5) 

I tmaybe remarked that the above specification of ~ .... '[1 .... 
• K IJK 

and'c .... is just one of several possibilities. In t~e beta 
t ]K  

correl~ated binary model of Prentice (1988), specification of 
second order parameters can be seen as a special case of the 
above formulation with p ' s  set to zero. 

4. ESTIMATION OF PARAMETERS 
4.1 First Order Parameters 

For our model (3.1), the first order fixed parameters 
are [3, and the first order random parameters are 
v,., v~.,and v .... as defined in (3.8) via hierarchical ,.q.,. zj Jzq _ . 
Olrierences of conditional means. Suppose, the second 
order (fixed) parameters appearing in ~3vl; E z, Z , .  and 
E e, namely, p s and q s of equations (3.1 (3.14), (3.15) 
are known. Denote these parameters by )~. It follows 
from standard maximum quasi-likelihood theory (or the 
method of estimating functions) that the optimal 
estimating function for estimating 13 is given by 

(0q/013') £ -1 (y - q ) :  0 (4.1) 

where logit rl = xik' [3, and 0 rio k / 0 f3' = h (rl0 k) X~ik" 
and Z as in (31J(1)~. The usual Newton-Raphson metfiod 
can be used to get 13 where negative of the Hessian matrix 
is s imp lyG 'E-1G w h e r e G = O q / 0 1 3 " ;  this is also 
known as the Godambe Information matrix (Jorgensen 
and Labouriau, 1995). The estimator ~ is asymptotically 
consistent and optimal with covariance given by inverse 
of the Godambe Information matrix. 
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Now, for estimating the random v-parameters 
(assuming 13 are known in addition to k ), BLUP (best 
linear unbiased prediction) equations (see 2.2) are 

0) l ) 
y - r  i - Zv =0. 

(z'  I) 0 x 0 - v 
(4.2) 

More specifically, BLUP of v is given by 

: ]~v Z '  ( ~ e  + Z ] ~ v  Z ' ) - I  (Y - 1]) ,  (4.3) 

and its MSE matrix is obtained as 
2; Z' (Z + Z 2; Z') -1Z Z v. When a consistent estimate 
O? " e . v 13 is subsntuted in rl, the estimator ~ has the property 
of being empirical BLUP which is also the case when 
estimates of second order parametric k are substituted. 
EBLUPs are asymptotically BLUP because of the 
consistency of fixed parameter estimates. 

Next~ for estimating parameters p (=ri + Zv), it 
follows from (4.1) and (4.3) that the EBLUP estimator is 
given by 

~1 = fl + Z 2;v Z '  (2;e + Z X v  Z ' ) - I ( y  - f]) 

= 2;e(2e + Z 2 v Z ' )  -1 l] + Z ~ . % Z  t (2;e + ZZvZ')-~Y ( 4 . 4 )  

• : ( l - A ) f l  + Ay 

and the MSE matrix about r I + Zv is approximately 
(because 1"1 is nonlinear in 13) 

[(I-A)Z2;vZ' (I- A)' +A 2;eA']+(I-A) Cov(fl) (I-A: 
• (4.5)  

: ( Z 2 ; v Z ' ) 2 ; - 1 2 ; + ( I - A ) G ( G ' 2  -I G) -1G' ( I -  A)' 

where Z : 2: + Z 2: Z' as defined earlier• Note that the • e V 
elgen-values of the shrinkage matrix A of (4.4) are 
between 0 and 1 (because Z 2; Z' and 2; are nonnegative V . 
definite by construction), the estimates 1 fie have the Stein- 
type shrinkage property in the transformed scale. In other 
words, when the orthogonal matrix of eigen-vectors of A 
is used to transform y and 11, the transformed ~ is 
elementwise between the transformed y and q. However, 
this need not be so in the original scale. In practice it 
may often happen that the individual components of 
1~ may not be between 0 and 1, but averages over domains 
of interest may be in the range. More specifically, interest 
may center on estimating a weighted average of ~t.., 's, • . IJK 
1.e., ~..  a.., ~ .... over a population domam D, ~2.. a.., = 1, u K tjK qK. 
where only sampled y's are observed. Thus, tffere is no 
information on y for the non-sampled part of D, although 
the corresponding x... and z..- are known and hence 13... 

• UK 7~¢ . UK 
and ~li. k c a n  be estimated. "I~e BLUP estimate ofH.., f6r 
the nonsampled part takes advantage of the corre~atlon 
with y - q for the sampled units and is given by 

O N _ n = ~ l N _ n + Z N _ n 2 ; v  Z t  (2;en+ZnZvZ') l(yn-fln) (4.6) 
where N denotes the size of the domain D, and Yn is the 
n-vector of sampled observations, and so on. In the above 
equation, subscripts n, N -  n, N are inserted whenever 
appropriate to emphasize reference to sample, nonsample, 
and population units. 

If the weighted average of 1~ N does not satisfy 
restrictions, it suggests need of a restricted BLUP. Note 
that in our semiparametric framework with only second 
moment assumptions, it seems difficult to define directly 
a restricted B LUP (i.e., with a built-in feature to satisfy 
restrictions) without making further distributional 
assumptions. We, therefore, start with the usual BLUP 
and suggest a ridge-type adjustment to the shrinkage 
matrix A to define a suboptimal BLUP as follows. 

(7) -- fl + A(y) (y - fl) (4.7a) 

where 

A(y) = Z Z v Z '  (Z + yl)- i  (4.7b) 

and 3' is a positive constant specified a priori. This also 
implies that the estimate of v from (4.3) is modfied 
accordingly. Clearly for a given 7, B(Y) is unbiased but 
is less efficient than BLUP. However, its MSE will be 
close to that of BLUP for small 7- The MSE of 0(7)for 
known q is given by 

[(I - A(7))  ZZuZ' ( I - A ( y ) ) '  + A(y)  g A(y) ' ]  (4.8) 

4.2  S e c o n d  O r d e r  P a r a m e t e r s  
It follows from Jiang (1996) that as in the case of 

mixed linear models, we can get under regularity 
conditions consistent estimates of the second order 
parameters X appearing in ~ using Normal-based MLE 
for the observation vector y --- (q, Z) asuming that q 
(alternatively, the first order fixed parameters [3) are 
given. In practice, it may be advisable to transform y to 
Ay so that A Z A' is diagonal. This can be achieved, for 
example, by the Gram-Schmidt procedure. Then, the 
working loglikelihood under normality can be computed 
without matrix inversion. Specifically, if the n-vector 
y * = A(y -q)  -- (0,diag (~1, "" ~t,,)),then )~ is obtained by 

n~n ]~i:1 Yi / Illi + log ~i (4.9) 

The Newton-Raphson method with numerical derivatives 
can be used to minimize the above objective function. To 
find REML in the case of nonlinear r I, one can first 
linearize it using ~ from (4.1), and then use REML 
(similar to Schall, 1991) for estimating X. However, for 
obtaining consistent estimates, MLE would be adequate. 

If the data do not have replications, i.e., there is only 
one observation per pair (i, j) ,  then interaction parameters 
cannot be estimated because E is not estimable. 
However, Z 12 and Z e can be collapsed together to define 
a new mode~' error, and then the remaining parameters can 
be estimated using MLE. 

5. APPLICATION 
The example mentioned in the introduction was 

analysed by many authors; however, estimation of 
random parameters does not seem to have been 
considered before. Here we consider estimation of 
random parameters for illustration purposes only as they 
may not be of direct interest. Two cases are considered. 
In the first case, the three repetitions (corresponding to 
Spring '86 and Fall I and II '86) are treated as separate 
observations from different animal pairs. In other words, 
it is assumed that there are no replications, and therefore, 
random parameters corresponding to the interaction 
cannot be estimated in general. In the second case, the 
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three repetitions are treated as replications, and therefore 
interaction parameters can be estimated• 
Case I - Without  Replication 

We consider three models• (i) Small-sigma Taylor 
linearization (first order) model and the corresponding 
covariance as defined by McCullagh and Nelder (1989), 
(ii) Additive Mixed Nonlinear model of Vonesh and 
Carter (1992) with some modifications and (iii) the 
proposed hierarchical covariance model. 

The covariance matrix Z was compared for the three 
models. In the case of additive mixed nonlinear model, 
the offdiagonal elements of Z were modelled in a manner 
somewhat similar to that for the hierarchical covariance 
model (see equation 3.12) except that 
~i~kSl i jk  , ~ l i jk '~ . i jk ,  ~0k(1 - T~lijk - "172ij~ ) were rep!ace~ by 
aroltrary posluve parameters o .., o ~. ana o .... . . . . .  - -2  u|t  uzj . ~ Jzq 
respectively M o r e o v e r  O u l i w a s  a l l O W e d  t o  a e p e n a  o n  

: 2 • 2 
x.. through t only, o,2. on x.. through j only, and o, ]e/- 

q ;J • J 
on x.. through both i and j. ~[n fact, for the present case 

q 
of no replication, interaction is combined with the model 
error). For all the three models, the diagonal elements of 
the covariance matrix are common (the four distinct 
values are 0.222, 0.247, 0.167, and 0.222 corresponding 
to pairs WW, WR, RW, and RR respectively) because 
the four distinct ft.. are same due to data being balanced 
(cf. Drum and McCullagh,'J 1993, p 678). This' is' true 
when the data from the three repetitions are analysed 
separately as well as when pooled. The estimates of the 
first order fixed parameters 13 (which are used in 
computingfl.~ ) are 0.693, -2.011,-0.470, and 2.481 for 
the pooled data and are identical for the three models. 
Also for the pooled data, estimates for the second order 
fixed parame~,ers ~. are : (i) for the Taylor method, (0.699, 
0.631) for (o~1, o,"2), (ii) for the ~tdditive method, (0.130, 
0.000) for the two values of O u l  i corresponding to W 
(whiteside) and ~R (roughbutt) and (0.194, 0.095) for the 
two values of o~2 i, and (iii) for the hierarchical method, 
(0.143, 0.121, 0.218, 0.143) for the four values of ~,'rli i 
corresponding to pairs WW, WR, RR, and RR; ahd ( 
0.131, 0.115, 0.176, 0.130) for ~.. -c2,. For the nonpooled 

• / J  _ 

data, estimates look similar although not shown here. It 
can be seen that there are only twelve distinct covariance 
elements (i.e., offdiagonals) as shown in Table 1 for the 
pooled data based on estimates of ~. parameters for each 
model. The eigenvalues of the shrinkage matrix A were 
also computed to check if they lie between 0 and 1. For 
the hierachical method,  this is of course expected but it 
turns out that for this data even for other methods, there 
is no problem with the range of eigenvalues. 

EBLUP estimates of ~t .. for the sampled pairs were also 
q " t computed. For the pooled data, Figure 1 shows box plo_s of 

estimates (90 of them) for each of the four pair types and for 
each of the three models. The subscripts T, A, and H denote 
respectively the methods Taylor, Additive, and 
Hierarchical. Note that some estimates lie outside the 
interval (0,1). This, however, can be easily modifiedusing 
ridge although the results are not shown here. Similar 
results were obtained for the nonpooled case. 
Case I I -  With Replication 

In this case, we allow interaction terms of the type 
u .... in all the models and the corresponding variance 
components. For model (i), this is done by the second 
order small-sigma Taylor expansion. For this mod~l, 
variance of the interaction term is a function of o~1 and o, 2 
and as such it does not introduce any new parameters. 

However, their estimates would be different from case I 
because the model is different now. Also, the present 
model (i) introduces an offset term in the mean r I and 
therefore the estimates of the first order fixed parameters 13 
differ from those for the case of without replication 
(pooled data). They are obtained as 0.764,-2.200, 0.517, 
and 2.717. For models (ii) and (iii) estimates for these 
parameters 13 remain the same as in the without 
replication case. Estimates for the second order (fixed) 
parameters )~ ar~: (i) for the Taylor method, (0.091, 
0.305) for (O~l, o~2), (ii) for the a~ditive method, (0.016, 
and 0.025) for the two values of o~, ]i corresponding to W 
(whiteside) ~.nd R (roughbutt), (0.043, 0.082) for the two 
values of o~2., and nearly zeroes for the four values of 

-2 ~ . .  
O u l 2 i i ,  and (in) for the hierarchical method, (0.200, 
0.13/5, 0.469, 0.200) for the four values of "rli i 
corresponding to pairs WW, WR, RR, and RR, (0.80i3, 
0.864, 0.531, 0.800) for "czij, and (0.082, 0.077, 0.098, 
0.082) for ~ij" In the covanance matrix 2, there will now 
be 16 distinct offdiagonal terms. Table 2 shows these 
values under the three models. The eigenvalues of the 
shrinkage matrix as in the previous case do lie between 0 
and 1 for models (i) and (ii). Also, as in the previous 
case, Figure 2 compares EBLUPs of pii for four types of 
sampled pairs (i, j) for the three models. Note that the 
estimates are now different from case I because of the 
presence of interactions. In fact they all lie in the interval 
(0, 1) as desired and so ridge-modification is not required. 
The difference in estimates from the three methods is also 

, 

affected by the modified flij for model (i). 

6. C O N C L U D I N G  R E M A R K S  
In the usual mixed nonlinear models, the random 

parameters are specified as part of the nonlinear predictor 
function in much the same way as the specification of 
fixed parameters. Although this approach seems 
attractive because of the simplicity in the specification of 
random parameters (in the nonlinear scale, it is not 
necessary to introduce restrictions for random parameters 
because the conditional means would automatically 
satisfy the appropriate restrictions), this simplicity does 
not carry over to the estimation stage. In practice, the 
prediction of random parameters (main effects and 
interactions) is generally done in the mean scale, and it 
may be analytically intractable to get these parameter 
estimates (in the mean scale) and the corresponding MSE. 
More importantly, complete parametric assumptions are 
necessary for estimation purposes. However, if only 
semiparametric assumptions up to second moments are 
made, then with the available estimation methods problems 
of inconsistency in the estimation of fixed parameters, and 
bias in the estimation of random parameters arise. As an 
alternative, hierarchical covariance models were proposed 
in this paper, which shift the burden of computing marginal 
and conditional means and their covariances (when the 
random parameters are specified as part of the nonlinear 
predictor function) to that of first specifying the conditional 
covariances in a hierarchical manner and then specifying the 
random parameters (additive to the fixed nonlinear 
predictor function) in a wide sense to match the covariance 
structure. It was shown that this alternative is not really 
burdensome because a reasonable guidance can be obtained 
from small-sigma asymptotics applied to the usual mixed 
nonlinear models. Most of all, only a semiparametric 

71 



framework is needed which may be quite desirable in many 
applications. 

The existing method of small-sigma Taylor 
linearization (McCullagh and Nelder, 1989, Ch. 14) 
shares some properties of the proposed method and, in 
fact, is useful in motivating the form of the covariance 
structure. Its main limitation seems to be the lack of a 
proper specification of the covariance matrix in that it 
need not be positive definite. Similarly, the additive 
mixed nonlinear model of Vonesh and Carter (1992), like 
the proposed model, makes random parameters additive 
to the fixed nonlinear predictor function (as in the case of 
mixed linear models), but the question of a proper 
specification of the covariance structure is not 
considered. In the proposed model, we take a reverse 
route in that a proper covariance is first specified using 
hierarchical considerations, and then the form of the 
random parameters is specified although in a wide sense 
only. 

It would be very useful to compare the customary 
mixed nonlinear model and the proposed hierarchical 
covariance model, and in principle, this can be carried out 
term by term by computing hierarchical differences of 
conditional means for the mixed nonlinear model and the 
corresponding covariances. However, for actual compari- 
son, more work is needed which we plan to undertake in 
the future. Another area requiring further work is that 
of adjusting MSE approximations to take account of the 
estimation of second order parameters. Note that for the 
special case of mixed linear models, various 
approximations are available, see Singh et al. (1998). 

Finally, it may be remarked that although the proposed 
model was described in the context of binary data, the 
method is applicable in general to other discrete response 
variables 
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Table 1. Distinct Offdiagonal Elements of Covariance 
Matrix (Pooled, without replication) 

Animal ~I'ype Method* 

Hierar- 1st pair 2 "a pair Taylor Additive 
chical 

Common 

Female 

Common 

Male 

WW WW 0.035 0.029 0.032 

WW WR 0.038 0.030 0.031 

WR WR 0.043 0.032 0.030 

RW RW 0.019 0.000 0.036 

RW RR 0.026 0.000 0.034 

RR RR 0.035 0.000 0.032 

WW WW 0.031 0.043 0.029 

WR WR 0.038 0.023 0.028 

WW RW 0.023 0.037 0.029 

WR RR 0.035 0.022 0.029 

RW RW 0.018 0.032 0.029 

RR RR 0.031 0 . 0 2 1  0.029 
Taylor = First order Taylor linearization 
Additive - Mixed nonlinear model with additive 
random effects 
hierarchical- Hierarchical covariance model 

Table 2. Distinct Offdiagonal Elements of the 
Covariance Matrix (Poo!ed, with replication) 

Animal Type Method* 

Hierar- 1st pair 2 no pair Taylor Additive 
chical 

Common WW WW 0.004 0.004 0.004 
Female WW WR 0.005 0.004 0.003 

WR WR 0.006 0.004 0.003 
RW RW 0.002 0.004 0.008 
RW RR 0.003 0.005 0.005 
RR RR 0.004 0.006 0.004 

Common WW WW 0.015 0.01 0.015 
Male WR WR 0.019 0.02 0.016 

WW RW 0.01 0.008 0.011 
WR RR 0.016 0.019 0.016 
RW RW 0.008 0.007 0.009 
RR RR 0.015 0.018 0.015 

Common WW 0.019 0.013 0.018 
Male & WR 0.024 0.024 0.019 
Female RW 0.01 0.011 0:016 

RR 0.019 0.024 0.018 
Tay lo r -  Second order Taylor linearization 
Additive = Mixed nonlinear model with additive 
random effects 
Hierarchical = Hierarchical covariance model 
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