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1. Introduction 

Small area estimation is a long-standing problem 
in survey sampling which arises in a variety of 
contexts, including accurate estimation of quantities for 
municipalities or census divisions, estimation for areas 
which are small in spatial extent, or, more generically 
estimation of stratum level effects. Special approaches 
to small area estimation are needed for surveys in 
which (at least some) strata have very small sample 
sizes. In such a case, direct estimates of strata effects 
(using only the data from each stratum) are likely to be 
highly inefficient and techniques which "borrow 
strength" across strata may be advantageous. 

Let me begin with an example which is richly 
featured and serves to illustrate some of the difficult 
decisions involved in choosing a satisfactory analysis 
for such data. Habitat Conservation Plans (HCPs) are 
agreements between non-federal landowners and the 
U.S. Government which allow incidental taking of 
endangered species as long as the taking of such 
species is minimized and mitigated. These were 
authorized in 1982 under a modification to the 
Endangered Species Act. From their implementation 
in 1982 until September 1997, 225 HCPs had been 
approved. Many conservation activists and 
independent scientists have charged that HCPs are not 
based on sound science and are not aiding in the 
recovery of endangered species (Mann and Plummer, 
1997). 

To address this concern, a group of ecologists 
headed by Peter Kareiva selected a sample of 43 of the 
plans and embarked on a systematic assessment of the 
use of scientific reasoning in HCPs (Mann and 
Plummer, 1997). Because of the magnitude of the 
effort, sampled HCPs were distributed to eight 
universities for assessment. To further complicate the 
issue, each HCP covers from one to many species. For 
HCPs with a single species that species was evaluated. 
For HCPs with multiple species, a sample of the 
species was evaluated. To fix ideas, I will focus on a 
single question among the multitude which were 
assessed. For each species covered by the HCP, I will 
consider the following question: "Is there an 

unambiguous plan to change the HCP strategy in 
response to new monitoring information?" 

For the HCP example the individual HCPs form 
our strata and we have very few (often only one) 
subunit per stratum. Small area estimation in this 
context means estimation for each of the HCPs of the 
proportion of species for which there is an 
unambiguous plan. 

The goals of this paper are to describe some mixed 
models appropriate for the analysis of binary survey 
data and compare and contrast estimation methods for 
those models. The estimation methods considered are 
maximum likelihood (ML), generalized estimating 
equations (GEEs), penalized quasi-likelihood (PQL), 
and Bayes. I will make a few comments in Section 2 
but otherwise not attempt to discuss the broader issue 
of model- versus designed-based inference. 

2. Model-based versus design-based 
inference 

There is a long-standing debate on of the merits of 
model- versus design-based inference in survey 
sampling. For an excellent discussion paper in the 
context of small area estimation see Ghosh and Rao 
(1994). I would like to acknowledge these 
fundamental differences and the fact that there are 
distinct advantages to each approach without spending 
significant amounts of time arguing them. I will 
instead mostly concentrate on comparing methods of 
model-based estimation. 

However, I do want to point out several features of 
the HCP example which make model-based inference 
moderately attractive. First, small area estimation, 
given the fundamental idea of borrowing strength 
across strata, is a situation where model-based 
inferences are, perhaps, somewhat more compelling. 
Second, while the 43 sampled HCPs are obviously 
selected from the finite population of 225 HCPs, we 
might be interested in regarding the 43 as a sample 
from the (conceptually) infinite population of HCPs 
which could be accumulated if policies and situations 
were to stay the same. Using a model-based approach 
is natural for this latter case and, even for the finite 
population case, makes for a more convenient 
comparison of the finite and infinite population cases. 
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Finally, there is the post-sampling complication of 
assessment of the HCPs in eight groups. Viewed one 
way, this introduces a (necessarily model-based) 
correlation among all the assessments within a group, 
which must be accommodated. Viewed another way, 
we would certainly want to make inferences beyond 
the particular raters who assessed the plans and would 
like to regard school as a random effect. 

3. Methods  of  model-based analyses 
and comparisons  

Suppose we have decided on a model-based 
approach. There are several competing methods for 
fitting such models, including maximum likelihood, 
GEEs, penalized quasi-likelihood, and Bayes methods. 
What are the advantages and disadvantages of each? 

3.1 A model 

First we need to describe a prototype model 
against which to frame the discussion. Consider the 
HCP example where the response is yes or no to the 
question about the existence of a response plan for new 
monitoring information, clearly a binary variable. To 
acknowledge the binary nature of the response, we will 
need to assume a Bernoulli distribution as the marginal 
distribution for the data. Let Y!/k be 1 if the response to 
the question was yes for species k in HCPj  from school 
i. We therefore have 

Yi/k ~ Bernoulli(p!jk). 

The predominant way to model such a setting is to 
build a mixed model using a random effect for stratum 
(Ghosh and Rao, 1994). Unsampled strata or subunits 
are then regarded as values to be predicted using the 
model. 

For our HCP example we will also need a random 
effect for school. A convenient way to model school 
and HCP effects and to broadly allow the inclusion of 
covariates is to use a generalized linear mixed model. 
For a generalized linear model the next step is to 
decide how to link the probability of a "yes" response 
with the school, HCP and covariate effects. A 
possible, though by no means exclusive way is to 
assume that a linear mixed model applies to the logit of 

Piik: 
¢ 

logit(po, k ) = Xo.k f l  + s i + h j ( i ) ,  

where x~ik is a vector of fixed covariates (which might 

be observation specific), s i are the school effects, and 

h m ) are the plan-nested-within-school effects. These 

latter two are going to be assumed to be random 
effects. So to them we assign a distribution, which we 
will choose to be normal, though others are possible: 

2 
s i ~ i.i.d. N ( O , o  s ) 

h j ( i )  .-~ i.i.d. N(O, o'~ ). 

If we are to perform a Bayesian analysis, then we 
would need prior distributions for /7 (typically a 
normal distribution if the random effects and errors are 
assumed to be normally distributed) and prior 
distributions for the hyperparameters in the 

2 
distributions of the fl's, the si, and the hi( 0 (i.e. for o- s ). 

We now consider methods of estimation for this model. 

3.2 Maximum likelihood estimation 

A very common method of estimation for linear 
mixed models is maximum likelihood (ML) or variants 
like restricted maximum likelihood (REML) either of 
which is typically based on the assumption of normally 
distributed random effects and errors. For example, the 
package SAS fits such models using PROC MIXED 
and has either ML or REML options. Likewise, for 
many generalized linear models, maximum likelihood 
is also the method of choice. For example, a logistic 
regression or Poisson regression model is invariably fit 
using ML. What about generalized linear mixed 
models? Unfortunately, for the model of Section 3.1 
the likelihood cannot be written in closed form. 

When the model has a single random effect or two 
nested random effects (our HCP example has schools 
and plans nested within schools), it is relatively easy to 
numerically evaluate the integrals in the likelihood. 
For example, with a single random factor (e.g. strata in 
the simplest small area estimation situation) the 
likelihood is a product of one-dimensional integrals. 
One can then maximize the likelihood numerically to 
find ML estimates and to perform likelihood ratio tests. 

When there is a single, normally distributed 
random effect, the likelihood is the product of integrals 
of the form: 

+ 0 0  

I g ( x ) e x p {  - x 2  }dx .  
- - 0 0  

These can be accurately evaluated using Gauss- 
Hermite quadrature that approximates the integral with 
a summation: 
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g ( x )  exp{-x 2 }dx ~ X w i g(x  i ) .  
i 

- -  0 0  

The weights, wi, and the evaluation points, xi, are given 
in references, i.e., Abramowitz and Stegun (1964). 

If the ML estimates can be calculated numerically, 
then inference using them would proceed using the 
usual asymptotic approximations: 

• ML estimates are asymptotically normal, with SEs 
coming from second derivatives of the log 
likelihood. 

• Tests would be based on the likelihood ratio test, 
comparing -21oglikelihood for nested models. 

• Results for testing variance components are the 
same as the linear mixed model. (Being careful as 
to the large sample distribution of the likelihood 
ratio statistic!). 

• Best predicted values would be estimated by 
calculating E[random effect[data] and plugging in 
ML or REML estimates for the unknown variance 
parameters. In general, the conditional expected 
values can't be evaluated in closed form either. 

This last step can be problematic because it makes it 
difficult to calculate SEs for the best predicted values 
that incorporate the extra variability associated with 
estimating the variance components. 

In summary, ML estimation 
• Has known large sample properties, 
• Can be used with likelihood ratio tests, 
0 Can be hard to compute for many generalized 

linear mixed models, 
0 Must have its small sample performance assessed 

for any particular model, 
0 Has difficult to assess SEs for prediction. 

ML estimation is not widely available, but there are 
some special purpose packages, for example MIXOR 
(available free from www.uic.edu/-hedeker/mix.html) 
and SABRE (available from 
www. cas. l an cs. ac. u k/so ftw are/sabre 3_ 1/sabre.html/) 
that perform such computations. 

3.3 Generalized estimating equations 

GEEs are a computationally less demanding 
method than ML estimation. They are applicable 
(mainly) to longitudinal data, where I define 

Longitudinal data = data collected on a subject on 
two or more occasions, and the number of occasions is 
typically small compared to the number of subjects. 

GEEs work most easily for models specified on the 
unconditional distribution. In contrast, we have been 
specifying models that are conditional on the random 
effects. 

For our HCP example, the identification with 
longitudinal data is that strata are the equivalent of 
subjects and subunits within a stratum are analogous to 
the repeated measures on the subject. We could 
specify: 

E[Y,./k] =p!/~ 
f 

logit(p!jk) = xok]~ (1) 

and use this mean specification along with an 
empirically estimated correlation structure. This may 
look the same as our model in Section 3.1, but it is not 
quite. In Section 3.1, the conditional probability of a 
yes is assumed to follow a logistic form, whereas in 
(1), it is the unconditional probability that is modeled 
as a logistic form. More importantly for small area 
estimation is that the model (1) does not explicitly 
include any random effects to facilitate the estimation 
for a small area. Therefore, to use GEE estimation for 
small areas we must identify an approximate model of 
the form given in (1) which corresponds to the model 
of Section 3.1 (Zeger, Liang, and Albert, 1988). We 
then estimate the model in the form of (1) but have to 
do further work to get estimates of the random effects 
variances and covariances, which are needed to 
estimate the best predicted values. Methods are 
described in Zeger, Liang and Albert (1988, Section 
3.2). 

A key feature of GEE estimation and the reason it 
is commonly used for longitudinal data is that it uses 
an empirical estimate of the within stratum correlation. 
This empirical estimate is built up from the replication 
across independent blocks of data. Since it is empirical 
is does not depend on strong model assumptions and is 
robust in that sense. Situations where the data do not 
break up into a large number of relatively .small and 
independent blocks are not amenable to the use of 
GEEs (Diggle, Liang and Zeger, 1994, p.77). For 
example, the HCP example would only break up into 
eight blocks (for the eight schools), each of which 
would be of a different size and configuration of plans 
and species within plans. Hence it would not be 
amenable to GEE estimation. 

GEE estimation is available in several common 
statistical packages, for example, SAS (in PROC 
GENMOD), SUDAAN, STATA, and S-Plus. In 
summary GEEs 
• Have robust standard errors, 
• Are often relatively efficient, 
0 Work best when the data can be broken up into a 

relatively large number of blocks, each with 
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relatively homogenous arrangement of a small 
number of observations 
Are easiest for marginal models, not random 
effects models. 

3.4 Bayes estimation 

A number of authors (e.g., Datta and Ghosh, 1991; 
Hulting and Harville, 1991) have argued for the 
superiority of Bayes methods over frequentist based 
methods. This seems to revolve mainly around the 
difficulty of assessing prediction error with estimated 
variance components within frequentist based methods. 
I regard the decision as more basic and more 
philosophical and do not want to raise the long- 
standing Bayes versus frequentist debate. However, I 
do have some caveats on the use of Bayes procedures. 

Some statistical workers have wanted to "have 
their cake and eat it too" in the sense that they want to 
take advantage of the straightforward way in which 
Bayes procedures can be developed and can handle 
problems like estimated variance components but do 
not want to inject (possibly subjective) information in 
the foi'm of a proper prior distribution for the 
parameters. The usual solution is to hypothesize flat, 
improper, non-informative, or diffuse prior 
distributions and to "let the data speak for themselves." 

This can cause problems. Flat and other improper 
priors for variance components can cause the posterior 
to fail to exist, rendering the Bayes methodology 
useless. This has been demonstrated in both the linear 
mixed model (Hobert and Casella, 1996) and mixed 
models for binary data like the one described in Section 
3.1 (Natarajan and McCulloch, 1995). This is not to 
say that all improper priors lead to improper posteriors, 
but just that care needs to be taken when improper 
priors are considered. 

A suggestion for the avoidance of improper priors 
is to use diffuse priors instead. For example, one might 
choose a flat prior truncated within some range, or a 
normal distribution prior whose variance is quite large. 
Unfortunately, these can lead to problems also. For 
Bayes estimation for the model of Section 3.1, a typical 
way to calculate Bayes estimates is through the use of 
the Gibbs sampler. Natarajan and McCulloch (1998) 
show that there are data sets for which the Gibbs 
sampler either breaks down because the prior is too 
"close" to improper or it converges, but to a posterior 
that is influenced by the prior. Said another way, there 
is no happy middle ground were the analysis is not 
influenced by the choice of the prior but the Gibbs 
sampler still works. Worse yet, in some of the 
situations in which the Gibbs sampler fails it gives no 
obvious signs that something is amiss. It can even be 

run for the improper posterior situation within giving 
any obvious warning. 

Again, I do not mean to imply that all diffuse 
priors cause problems, but merely that it is possible. 
This is unfortunate, because Gibbs samplers are used in 
such a context precisely because analytic results are 
hard to derive. If analytic results were available, we 
would be able to avoid the numerical problems and be 
forewarned about the nonexistence of posterior 
distributions.. Or if the Gibbs sampler behaved in an 
anomalous way for such problems we would at least 
have a warning that something was amiss. 

Bayes estimation is not widely available in 
standard software though the package BUGS for 
constructing analyses is available from the web site 
http://www.biostat.umn.edu/mirror/methodology/bugs. 
In summary, Bayes procedures 
• Are able to incorporate prior information, 
• Can straightforwardly accommodate unknown 

variance components, 
<) Can encounter numerical problems. 

3.5 P e n a l i z e d  quasi-likelihood 

Quasi-likelihood estimation has gained wide 
popularity in the fitting of generalized linear models 
(McCullagh and Nelder, 1989). This popularity is 
rightly deserved since the validity of the estimation 
depends only on the mean to variance relationship and 
not on further model assumptions. Further, it is often 
fully or highly efficient compared to the optimal, 
model-based procedures, so the robustness to model 
variation comes at a small or zero price. 

However, the strength of quasi-likelihood 
estimation is a weakness when it comes to random 
effects models. Since there is nothing specified in the 
model concerning the distribution of the random effects 
the methods must be modified for use in mixed models. 
Thus has arisen the idea of penalized quasi-likelihood 
(PQL) in an attempt to maintain the model robustness 
of quasi-likelihood with regard to the mean structure 
while building in minimal assumptions about the 
random effects. Roughly, to the quasi-likelihood is 
added a "penalty" term which forces the random 
effects to behave somewhat as if they were selected 
from a distribution. 

Despite early promising work (Schall, 1991; 
Breslow and Clayton, 1994), PQL has not generated 
estimators with good properties. For binary data it can 
often give highly biased estimators (Rodriguez and 
Goldman, 1995; Breslow and Lin, 1994). They thus 
cannot be recommended in practice. 

PQL is available via the SAS macro GLIMMIX 
and in the packages MLn, Varclus, and HLM. In 
summary, PQL 
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* Is computationally fairly easy, 
0 Does not work well for highly non-normal data 

(e.g. binary), 
0 Is mainly for normally distributed random effects. 

4. Conclusions 

The conclusions can be easily stated. Mixed 
models are relatively straightforward to specify for 
binary data by adding random factors to a generalized 
linear model. By adding in random strata effects, such 
a model can be quite useful for small area estimation. 

If a model-based approach is taken to small area 
estimation with binary data, then some care is needed 
in estimation of the model. Maximum likelihood, 
proper prior Bayes procedures, and generalized 
estimating equations (where appropriate- see below) 
are the methods of choice. Penalized quasi-likelihood 
methods cannot be recommended in practice. Bayes 
methods with improper or diffuse priors should be used 
with care and generalized estimating equations should 
only be used when the data break up into a relatively 
large number of blocks, each with relatively 
homogenous arrangement of a small number of 
observations. 
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