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A b s t r a c t :  

Adaptive sampling designs are those in which the 
procedure for selecting the units to include in the 
sample may depend on values of variables of interest 
observed during the survey. For example, neighbor- 
ing units may be added to the sample whenever high 
values are observed. In spatial sampling the neigh- 
borhood is defined by geographic proximity. In stud- 
ies of human populations the neighborhood may also 
be defined by social relationships. 

In studies of hidden and hard-to-reach human 
populations such as injection drug users and others 
at risk for HIV transmission, adaptive link-tracing 
designs in which initial respondents lead investiga- 
tors through social links to other individuals often 
provide the only practical way to obtain a sample 
large enough for the study. Data summaries or infer- 
ence from such samples can be misleading, however, 
if the sample-selection procedure is not taken into 
account. The situation is conceptualized as sampling 
in a graph, with the nodes of the graph representing 
people and the arcs or arrows representing social re- 
lationships. The problem is that data are observed 
for only a sample of the nodes and arcs, from which 
we wish to infer characteristics of the whole graph 
or population. 

Examples of link-tracing designs include network 
sampling, snowball sampling, chain-referral meth- 
ods, "random walk" designs, and adaptive cluster 
sampling. Design-based and model-based methods 
of inference with such designs will be discussed in 
this paper. 
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1. I n t r o d u c t i o n  

Studies of hidden or hard-to-reach groups often rely 
on link-tracing designs for obtaining a sample con- 
taining sufficient numbers of the people of interest 
(Friedman, et al. 1997, Neaigus 1995, Neaigus et al. 
1996, Rothenberg et al. 1995, Thompson 1997). For 
example, in studies of injection drug users in rela- 
tion to transmission of the human imunodeficiency 
virus (HIV), social leads from initial respondents 
may be traced and the linked individuals added to 
the sample. In such studies, the social links are 
not only useful--indeed necessary--in obtaining the 
sample, but are of inherent interest in themselves, 
since transmission of the disease is related to sex- 
ual and drug-injection relationships. From a sam- 
pling and inference point of view, the problem is 
that we are interested in characteristics of the en- 
tire graph-- that  is, of the larger population with its 
social structure--but can observe only a sample of 
nodes and links from the graph. 

An adaptive design is one in which the procedure 
for selecting units to include in the sample may de- 
pend on values of the variable of interest observed 
during the survey. Many of the link-tracing de- 
signs used for hidden and hard-to-reach populations 
are inherently adaptive in that the selection proce- 
dure depends on observed link-variables, as well as 
node variables, the values of which are not known 
prior to the study. In this paper sampling strategies 
for graph-structured populations will be briefly re- 
viewed, and some design-based strategies from adap- 
tive cluster sampling and adaptive allocation will be 
described and illustrated with numerical examples. 

Human populations with social structure can be 
conceptualized as graphs, with the nodes of the 
graph representing people and the edges or arcs 
between nodes representing social relationships be- 
tween people (cf., Frank 1977a, 1988, Wasserman 
and Faust 1994). In the design-based approach to 
survey sampling, the variables of interest in the 
population are viewed as fixed values and inference 
methods are evaluated in terms of hypothetically re- 
peated selection of the sample. With model-based 
approaches, the variables of interest in the popu- 
lation are viewed as random variables having some 
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joint distribution. 

In the graph setting, the variables of interest in- 
clude both those associated with nodes, such as be- 
havioral characteristics of people, and those associ- 
ated with pairs of nodes, such as the presence, ab- 
sence, or magnitude of a given social relationship be- 
tween two people. With a fixed-population, design- 
based approach in the graph setting, both the char- 
acteristics of the people and the social network struc- 
ture of the population are viewed as fixed, unknown 
values. An advantage of design-based methods is 
that properties such as design-unbiasedness do not 
depend on any assumptions about the population 
itself. Even when a stochastic population model 
is used to help in the design or inference choices, 
design-bgosed methods can ensure certain desirable 
inference properties even if the model assumptions 
turn out to be unrealistic (Godambe 1985, S/irndal, 
Swensson, and Wretman 1992). Design-based ap- 
proaches are emphasized in this paper; a model- 
based approach to sampling and inference in graphs 
is given in Thompson and Frank (1998). 

The statistical literature on link-tracing designs, 
some of it explicitly formulated in the graph frame- 
work and some not, includes various methods of 
snowball sampling, network or multiplicity sam- 
pling, chain-referral methods, and ~'targeted sam- 
pling." In snowball sampling, as described by Good- 
man (1961), an initial sample of individuals were 
asked to identify a fixed number of acquaintances, 
who in turn were asked to name the same num- 
ber of acquaintances, for a fixed number of waves. 
Frank (1971, 1977a,b, 1978a,b, 1979) developed a 
number of design-based and model-based methods 
for inference from samples in graphs and consid- 
ered generalized snowball sampling procedures with 
varying numbers of links and waves. Frank and 
Snijders (1994) developed design- and model-based 
methods for estimating the size of a hidden popu- 
lation, that is, the number of nodes in the popula- 
tion graph. Snijders (1992) described snowball de- 
signs in which only a subsample of the links from 
each individual were traced. In network or multi- 
plicity sampling (Birnbaum and Sirken 1965, Kalton 
and Anderson 1986, Levy 1977, Levy and Lemeshow 
1991, Sirken 1970, 1972a, b, Sirken and Levy 1974, 
Sudman, Sirken, and Cowan 1988) social, kinship, 
and administrative links--generally assumed to be 
symmetric--were used to obtain observations of ad- 
ditional units. Recognizing that conventional esti- 
mators were biased with such procedures, design- 
unbiased methods were developed for use with a va- 
riety of initial sampling designs. Klovdahl (1989) 
used the term "random walk" to describe a link- 

tracing design in which only one of the linked in- 
dividuals from each respondent is selected at ran- 
dom to be added to the sample. Situations in which 
there is inherently at most one link to follow from 
each respondent have been termed "chains" (Erick- 
son 1979). Additional discussion of practical issues 
of link-tracing designs are discussed in Granovet- 
ter (1976), Morgan and Rytina (1977), Frank (1980, 
1988), van Meter (1990), Spreen (1992), Wasserman 
and Faust (1994), and Spreen and Zwaagstra (1994). 
The term "targeted sampling" was introduced by 
Waters and Biernacki (1989) to describe a combina- 
tion of survey sampling and ethnographic procedures 
used to obtain a sample of members of a hidden pop- 
ulation, including ethnographic mapping that can be 
used for stratification and allocation of effort as well 
as link-tracing from one individual to another. 

Adaptive cluster sampling is a class of designs in 
which neighboring units are added to the sample 
whenever an observed value satisfies a specified con- 
dition. In the spatial setting, neighborhood relation- 
ships are defined geographically, while in the graph 
setting the relationships are typically defined by so- 
cial connections. When used in the graph setting, 
the strategy provides design-unbiased estimators ap- 
plicable when the selection procedure is dependent 
on observed node values as well as link values and 
when some of the links are asymmetric. 

Adaptive cluster sampling in which tile initial 
sample is selected by random sampling, with or 
without replacement, was described in Thompson 
(1990). Other adaptive cluster sampling designs de- 
scribed in the literature include initial unequal prob- 
ability sampling with replacement (Roesch 1993, 
Smith et al. 1995), initial cluster and systematic 
designs (Thompson 1991a), initial stratified designs 
(Thompson 1991b), initial two-stage designs (Salehi 
and Seber 1997a), strategies in which the condi- 
tion for adaptive saInpling is based oil the order 
statistics of the initial sample (Thompson 1995), 
initial "Latin square +1" designs (Munholland and 
Borkowski 1993) and strategies in which the sam- 
pling is without replacement of networks (Salehi M 
and Seber 1997b) and without replacement of clus- 
ters (Dryver and Thompson 1998b). Multivariate 
aspects are discussed in Thompson (1993). Adaptive 
cluster sampling sequentially stopped when total 
sample size exceeds a specified limit is described in 
Brown (1994) and Brown and Manly (1998). Adap- 
tive cluster sampling was applied to household sur- 
veys of rare characteristics in Danaher and King 
(1994). Adaptive cluster sampling without a fixed 
frame is described in Roesch (1993) and generalized 
in Mosquin (1998). Properties of adaptive cluster 
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sampling are further examined in Christman (1997) 
and in Thompson and Seber (1996). 

Adaptive stratification and allocation refer to 
stratified designs in which s t ra tum boundaries or al- 
location of sampling effort among s t ra ta  depends on 
values of variables of interest observed during the 
survey. Reviews of the literature on these strate- 
gies can be found in Solomon and Zacks (1970) and 
Thompson and Seber (i996). Design-unbiased adap- 
tive allocation strategies are described in Thompson, 
Seber, and Ramsey (1992) and Thompson and Seber 
(1996). An optimal adaptive design in two phases 
under an assumed model is described in Chow and 
Thompson (1997). 

2. Sampling in Graphs 

In the usual setup for finite-population sampling the 
population consists of N units with associated la- 
bel set U = {1, 2 , . . . ,N}.  Associated with the ith 
unit is a variable of interest yi and auxiliary vari- 
able xi, each of which can be vector valued. In the 
fixed-population approach the population y-values, 
denoted y = ( y l , . . . ,  YN), are viewed as a collection 
of fixed, unknown values. In the stochastic popula- 
tion or model-based approach, the population vec- 
tor Y = (Y1,. . . ,  YN) is viewed as a random vector 
having some probability distribution F(y ;  ¢), which 
may depend on one or more unknown parameters ¢. 
A sample s is a subset of units from U or, if order 
of selection should be distinguished, a sequence of 
units from U. The collection of possible samples is 
denoted ,S. The y values are observed only for units 
in the sample, while the x values are usually assumed 
known for all units in the population. The sampling 
design is the procedure by which the sample is se- 
lected and is characterized by a probability function 
p(-) defined on S. A selection procedure that  does 
not depend on any values of the variable of interest 
or on any unknown parameter  values can be written 
px(s) (or px(s; 5) if any unknown design parameters 
5 are involved). More generally, the sampling design 
is px(s l y;5) .  Designs p(s) that  do not depend on 
any values of the variable of interest will be termed 
conventional, while designs that  depend on observed 
values of variables of interest will be termed adap- 
tive. 

In the graph setting, variables are defined on pairs 
of units as well as on individual units, so that  the 
population consists not only of units in U but pairs 
of units in U 2. In this paper, the terms "unit" and 
"node" will be used interchangeably. A variable of 
interest associated with an individual node i will be 
denoted yi, while a variable of interest associated 

with a pair of nodes (i, j) will be denoted aij. Of- 
ten the variable of interest aij is an indicator vari- 
able with aij = 1 indicating an arc or arrow from 
unit i to unit j and aij = 0 indicating no such arc, 
but more generally continuous variables such as the 
size of a transaction can also be defined on pairs of 
nodes. The N x N matrix of a-variables is denoted 
a. A sample from a graph can include both a sam- 
ple of nodes and a sample of arcs and is denoted 
s = (s(1),s(2)), where s (1) is the set of labels on 
which the unit variable of interest is observed and 
s (2) is the set of label pairs for which linking vari- 
ables of interest are observed. The design p ( s l y ,  a) 
can depend on a-values, as when links are followed 
from nodes in the initial sample, and on y-values, as 
when the decision to follow links is based on observed 
characteristics of the initial nodes. In the fixed pop- 
ulation, design-based approach, both y and a are 
considered fixed, while in the stochastic population 
approach Y and A are a random vector and ma- 
trix respectively, with as assumed joint probability 
distribution F (y ,  a; ¢). 

3.  A d a p t i v e  C l u s t e r  S a m p l i n g  i n  

G r a p h s  

In adaptive cluster sampling, linked units are added 
to the sample whenever the variable of interest for a 
sample unit satisfies a specified condition. In the 
social network setting, this means that  investiga- 
tors can choose a protocol that  makes the decision 
to add socially linked people dependent on behav- 
ioral or other characteristics of the person already 
in the sample. In the spatial setting, the inherent 
linkages of units are given by geographically defined 
neighborhood relationships. In either setting, the 
linkages can be asymmetric. For example, person 
A if included in the sample will lead investigators 
to person B, but person B will not lead investiga- 
tors back to A, either because person B does not 
satisfy the specified condition or because person B 
chooses not to reveal the identity of A. The asym- 
metric linkages complicate design-unbiased estima- 
tion with such designs by making some inclusion 
probabilities unknown from sample data. 

In the simplest form of adaptive cluster sampling, 
an initial sample of units is selected by random sam- 
pling without replacement. Whenever a unit in the 
sample satisfies the condition, all units linked to it 
are added, that  is, all units to which there is an arc 
or arrow from the initial unit. If any of these added 
units satisfies the condition, the units linked to them 
are added and so on. A network of units is defined 
as a complete, strongly connected component; that  
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is, inclusion of any units in the network will result 
in the other units in the network being added. In- 
clusion of a unit may also result in units not in its 
network being added, because there is an arc from 
the first unit to a second but not an arc back to the 
first from the second. 

The actual probably that  unit i in included in the 
sample depends not only on the other units in its 
network, but also on units with arcs or paths lead- 
ing to i but without paths back. The existence of 
sone of these asymmetric paths leading in to sample 
units typically can not be determined from the sam- 
ple data. Unbiased estimation therefore starts with 
the symmetric network relationships. 

The simplest of the unbiased estimators of the 
population total with adaptive cluster sampling has 
the form 

T'I --  --N ~-~  Y i f i  

n i=1 m i  

where n is the initial sample size, mi is the number 
of units in the network that  includes unit i, and fi 
is the number of units from that  network included 
in the initial sample. The estimator may be written 

n 
more simply as  "/~1 - ( N / n ) E i = I  Wi where the sum- 
mation is understood to be over the n selections of 
the initial sample and wi is the average unit y-value 
in the network intersected on the ith selection. An 
unbiased estimator of the variance of ~1 is 

~£'r (~1) - 
N ( N -  It) n 
n(n - 1) i~1 -- f t l )2  

where/5 - ~-/N. 
A second unbiased estimator has the form 

2 - -  

g 

YkJk 
Ctk k= l  

where the summation is over the k networks in the 
population, y~¢ is the total y-value in the kth net- 
work, dk is an indicator variable equal to one if only 
if the initial sample intersects network k (that is, 
one or more units of network k are included in the 
initial sample), and c~k is the probability that the ini- 
tial sample intersects network k. This estimator has 
the form of a Horvitz-Thompson estimator but uses 
intersection probabilities instead of the actual inclu- 
sion probabilities and gives no weight to units in the 
sample that  were selected only through asymmetric 
linkages out from the initial sample, so that their 
networks were not intersected by the initial sample. 
An unbiased estimator of variance is 

~£'r(~2)- E E YkYh C~kh 1 JkJh 
k = l  h = l  OZkh  OZkOZh 

where OLkh is the probability that  both networks k 
and h are intersected by the initial sample. 

With the initial simple random sample, the inter- 
section probability is 

a ~ - l - ( N  : x k ) / ( h r n )  

where x k denotes the number of units in the kth 
network. The joint intersection probability is 

C ~ k h -  1-- ( N - - x k ) + n  (N--nXh)  

for k ¢ h and OLkk z O~k. Slightly more complicated 
expressions give the intersection probabilities with 
more complex initial designs. 

3.1 Bernoul l i  initial  sample  

In the literature on hidden human populations, 
Bernoulli sampling designs have played an impor- 
tant role as an approximation to the natural process 
by which initial respondents come into the sample 
(Frank 1971, 1977, Frank and Snijders 1992). With 
a Bernoulli sampling design, units in the popula- 
tion are selected for inclusion in the sample indepen- 
dently, with possibly unequal probabilities. Proper- 
ties of such designs are discussed in Hgjek (1981) 
under the term "Poisson sampling." Let Zi be the 
indicator random variable associated with unit i, 
so that Zi = 1 if i C s and Zi = 0 if i ~ s. 
The inclusion probability for unit i is zri = E(Zi). 
Also, var(Zi) = rri(1 - rci) and cov(Zi, Zj) = 0 
for i 76 j.  With a Bernoulli sample the Horvitz- 
Thompson estimator "~ = ~ies(y i / rr i ) i s  design- 
unbiased for the population total r and has variance 
v g r ( ' ? ) -  E N 1  y 2 ( 1 -  7ri)/Tri and unbiased variance 

2 e s t i m a t o r  ggr(~) - E N 1  y 2 ( 1  - 7ri)/Tr i . 

An adaptive cluster sampling starting with an ini- 
tial Bernoulli sample and adding connected units 
whenever a unit satisfies the condition has, for the 
kth network, intersection probability 

C~k- 1 -  H ( 1 -  zri) 
i cAk .  

in which rri is the probability that  unit i is in- 
eluded in the initial sample. The joint intersection 
probability for two distinct networks k and k' is 
OLkk, --  CtkCtk,. Thus the unbiased estimate and its 

K , 
variance for this type of design is ~ - ~ k = l  Yk/C~k, 
var(~) -- ~iN__l y 2 ( 1 -  C~k)/C~k, with unbiased vari- 

ance estimator ~£~(~) - ~N=I y2(1 --OZk)/C~2k. 
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3.2 Est imating Equation Approach 

In empirical studies of the efficiency of adaptive 
cluster sampling, the estimator /t2 related to the 
Horvitz-Thompson estimator has performed better 
than the simpler ~i related to the multiplicity or 
Hansen-Hurwitz estimator. Each of these estima- 
tors is design-unbiased for the population mean. A 
different approach starts with an estimating func- 
tion for the whole population and then uses a 
design-unbiased estimator of the estimating function 
(Godambe and Thompson 1986, Thompson (M.E.) 
1997). For instance, letting y~ denote the total of the 
variable of interest for the kth network in the pop- 
ulation, suppose it is assumed under a population 
model that  E(y~) - xkO, where Xk is the number of 
units in the kth network and 0 is a parameter of the 
population model (superpopulation). Then an esti- 
mating function having expectation zero under the 
assumed model is 

K 

Z(y  
k = l  

Setting this function equal to zero and solving 
for 0 gives the finite ~opulat ion mean ON = 

K , N 
E k = l  Yk/ Ei=l X k  - -  Ei~l y i /N  = #. A design- 
unbiased estimate of the population estimating func- 
tion is provided by 

K 
g(d,O) - E (Yk -- Oxk)Jk 

Ctk k = l  

Setting g = 0 and solving for 0 gives the generalized 
ratio estimator 

E K  k=l YkJk/ak 
~t3-- K 

Ek=l XkJk/Ctk 

This estimator would be at its best if the y value of 
each network was exactly proportional to the x-value 
for that  network. Estimators of this form were sug- 
gested by H£jek (1971) and are given for adaptive 
cluster sampling in Thompson (1991a) and exam- 
ined more widely in F~lix Medina (1998). 

3.3 Improved Unbiased Estimators 

Let so represent an original sample, in order selected 
and possibly including repeat selections, and r(so) 
the reduction function giving the unordered set s of 
distinct units. Let ?(so) be the value of estimator 

with sample so. Let d = {(i, yi),i E s} be the 
value of the minimal sufficient statistic actually ob- 
tained. Starting with any unbiased estimator ~ for 

T, the Rao-Blackwell method can be used to obtain 
an improved unbiased estimator ~* given by 

E('~ I d) 

E 
{so:r(so)=s} 

p(so l Y) 
P(s I Y) 

With the initial design simple random sampling, in 
which every sample has equal probability, the im- 
proved estimator is simply the average value of the 
original estimator over all initial samples leading to 
the same final sample. The improved estimators for 
adaptive cluster sampling, starting with "~1 and "~2, 
are described in Thompson (1990, 1991b). Compu- 
tational forms are given in Salehi (1998). An easy 
to compute improved estimator involving only the 
averaging of edge units is described in Dryver and 
Thompson (1998a). 

3.4 Example 

The following numerical example illustrates a link- 
tracing strategy in which the design-unbiased esti- 
mators of adaptive cluster sampling can be used. 
The unbiased estimates are contrasted to the con- 
ventional sample mean or expansion estimators, 
which are biased with the link-tracing selection pro- 
cedure. 

Consider a survey of drug use in a population of 
1000 people. The variable of interest is amount spent 
in the last week on the drug and the object of the 
survey is to estimate the total amount spent during 
that period by the population or, equivalently, the 
mean amount spent per person. An initial sample of 
100 people is selected using random sampling with- 
out replacement. Drug use is relatively rare in the 
population, and of the 100 people, only 6 people re- 
port any drug use at all. The values reported (in 
dollars) are 5, 15, 7, 30, 3, and 2, with the other 94 
initial respondents reporting zero. 

Now to obtain a larger sample of users the investi- 
gators will follow social links whenever 10 dollars or 
more is reported spent. So whenever a respondent 
reports $10 or more he or she is asked to name close 
social contacts (not necessarily drug use contacts), 
and those linked people are added to the sample. 
The person who reported spending 15 is asked and 
names one contact who, when interviewed, reports 
spending 25. This added person in turn reports two 
additional people. But each of those two people re- 
ports spending zero, so they are not questioned on 
their contacts. The person in the initial sample who 
spent 30 reports two new people, one who spent 100 
and one who spent 0; he also reports the person al- 
ready in the initial sample who spent 7. The added 
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Figure 1" The final sample of the example. Links are 
traced whenever a node has a value of 10 or more. 

( 

100 

Q 
. . . 

person who spent 100 reports two new people, re- 
porting 20 and 9. The added person who spent 20 
is questioned but reports no contacts other than the 
person already in the sample who had reported him. 
The directed graph structure of the sample is shown 
in Figure 1. 

Thus, starting with an initial sample of 100 peo- 
ple, the link-tracing design leads to. a final sample 
of 107 people. The naive sample mean of amount 
spent per person is 

y -- ( 5 +  15+  7 + 3 0 +  3 +  2 + 2 5 +  100 
+20 + 9 ) / 1 0 7 -  2 1 6 / 1 0 7 -  2.019 

or just over 2 dollars per person. The conven- 
tional expansion estimator of the population total is 
N9 = 1000(2.019) = 2019, so that  the conventional 
estimate of the size of this underground economy 
that  week is over 2019 dollars. 

The final sample contains 10 people who reported 
any use at all, so the ratio of dollars spent to users 
in the sample is 216/10 = 21.60, giving almost 22 
dollars per user. 

However, these conventional data summary statis- 
tics are not unbiased estimates of the corresponding 
quantities for the population, because of the way the 
sample was selected. Unbiased estimates for this sit- 
uation are provided by the design-unbiased estima- 
tors of adaptive cluster sampling. 

Estimation in adaptive cluster sampling uses the 
network structure in the sample. The person who 
spent 15 and the person who spent 25 together form 
one network, because with the design if either one is 
included in the initial sample both end up in the final 
sample. The three people reporting 30, 100, and 20 

together form another network, because inclusion of 
any one in the initial sample results in inclusion of all 
three in the final sample. Each of the other people 
in the sample forms a network of size one. 

The simplest of the design-unbiased estimators 
simply replaces the original value for each unit in the 
initial sample with the average of the values in its 
network. For the network of two units, the average 
is (15+25)/2 - 20. For the network of three units, 
the average is ( 3 0 + 1 0 0 + 2 0 ) / 3 -  50. The unbiased 
estimator of the mean amount spent per person on 
drugs in the population is 

]~1 - -  (5 -~- 20 -~- 7 + 50 + 3 + 2)/100 - 87/100 - .87 

so that  the unbiased estimate is 87 cents spent per 
person in contrast to the naive estimate of over two 
dollars. 

An unbiased estimate of the total amount spent 
in the population is given by the expansion ~1 = 
1000(.87) - 870, in contrast to the naive estimate of 
over 2000 dollars. 

There were 6 users in the initial sample, so an un- 
biased estimate of the number of users in the pop- 
ulation is 100(6)/100 - 60. The ratio of unbiased 
estimates gives 870/60 - 14.50 or $14.50 spent on 
average by each user in the population, in contrast 
to the naive estimate of almost $22. 

Another type of design-unbiased estimator from 
adaptive cluster sampling is only slightly less sim- 
ple to compute and in empirical studies tends to be 
more efficient than the first. The second estimator 
divides the total value of a network by the probabil- 
ity that network was intersected by the initial sam- 
pie, for each network intersected. In this example, 
for a network of one person, the intersection proba- 
bility is simple the probability the person is included 
in the initial sample, or n /N=0.1 .  For a larger net,- 
work, the probability of intersection is the probabil- 
ity that  one or more of the units in the network are 
included in the initial sample. This is readily com- 
puted as one minus the probability that  the initial 
sample completely misses the network. The com- 
putation is straightforward and involves calculating 
the number of ways to choose the initial sample from 
the units not in the network. For the network of two 
people the intersection probability is .19 and for the 
network Of three people it is .27. The second unbi- 
ased estimate of the total amount spent is 

¢2 - (5/.1) + (40 / .19)+  ( 7 / . 1 ) +  (150/.27) 
+ ( 3 / . 1 )  + (2 / .1 )  - 936 

The estimate of total of $936 in the hidden economic 
activity is similar to the other unbiased estimate, but 
again is in contrast to the naive estimate. 
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The second unbiased estimate of the population 
mean is/52 - 9 3 6 / 1 0 0 0 -  .934 or about 94 cents per 
person. 

An unbiased estimate of the number of users in the 
population is obtained from this method by using as 
the variable of interest for each person the indicator 
variable which is one when reported amount spent is 
greater than zero. The unbiased estimate is (1/. 1) + 
(2/.19) + (1 / .1 )+  (3/.27) + (1 / .1 )+  (1/.1) = 62 users 
in the population. The ratio of unbiased estimates 
is 936/62 = 15.10 or about $15 per user, again in 
contrast to the naive figure of about $22. 

Table 1. Values of the original estimators for the 
different types of original samples giving rise to the 
same final sample. 

f l , f2 , . . . , f7  I! P(~old) l ,1 I *2 *3 
2,1,0,0,0,0,0 3/39 1000 866 873 
1,2,0,0,0,0,0 6/39 1300 866 873 
1,1,1,0,0,0,0 6/39 870 936 935 
1,1,0,1,0,0,0 6/39 890 956 954 
1,1,0,0,1,0,0 18/39 800 866 865 

The Rao-Blackwell estimates then can be com- 
puted as weighted averages of the ordinary estimates 
using the conditional probabilities in column 2 of the 
table. The Rao Blackwell estimates are 

~{ = 9 1 7  

~ = 8 9 1  

~~ = 891 

0 Adapt ive  Stratif ication and Allo- 
cat ion 

"Targeted sampling" for hidden human populations 
relies on ethnographic mapping and other means to 
focus sampling effort in those parts of the study re- 
gion of most interest to the investigators (Waters 
and Biernacki 1989, Carlson et al. 1994). To the 
extent that  the ethographic map can be drawn prior 
to sampling of respondents for the study, the map 
can be used as auxiliary information for conventional 
stratification procedures. In reality, however, the 
mapping depends on talking to respondents who are 
also part  of the ongoing study, so that  the use of this 
information in stratification or allocation is adap- 
tive. 

Adaptive stratification refers to designs in which 
the drawing of s t ra tum boundaries depends on ob- 
servations made during the survey. Adaptive allo- 
cation refers to designs in which the allocation of 

sampling effort among strata may depend on obser- 
vations during the survey, even though the s t ratum 
boundaries may be fixed. Conventional estimators 
such as the stratified sample mean that  are unbi- 
ased with ordinary stratified sampling are typically 
not unbiased with the adaptive stratification and al- 
location procedures. In simulation studies, the intro- 
duced biases have been small (Francis 1984, 1991), 
and the conventional estimator has some justifica- 
tion from a model-based viewpoint (Thompson and 
Seber 1996). It is also possible, however, to use 
design-unbiased strategies for adaptive stratification 
and allocation. 

Unbiased strategies for adaptive allocation include 
applying the Rao-Blackwell method to an unbiased 
estimator based on the initial (conventional) strati- 
fied sample (Kremers 1987), basing subsequent al- 
location on initial observations in different s trata 
(Thompson, Seber, and Ramsey 1992), and multi- 
phase adaptive allocation or stratification strategies 
with estimators based on fixed-weight averages of 
the unbiased estimators from each phase (Thomp- 
son and Seber 1996, p. 189-191). 

When link-tracing or other adaptive designs are 
used along with stratification, values of observa- 
tions in one stratum may induce investigators to add 
linked units not only in the same s t ra tum but in 
other strata as well, since the inherent graph struc- 
ture of the population may cross s t ratum bound- 
aries. Stratified adaptive cluster sampling strategies 
(Thompson 1991b) provide design-unbiased estima- 
tors and estimators of variance for such designs, even 
though links are followed across s t ratum boundaries. 
With the fixed-weight adaptive stratification or allo- 
cation strategy, the adaptive cluster sampling strat- 
egy or any other design-unbiased strategy may be 
used at each phase. 

In the fixed-weight strategies, the stratification 
and allocation for each phase after the first can de- 
pend adaptively on previous phases, but the weights 
chosen for averaging the estimators are fixed prior to 
the survey. Just as the choices of design and sample 
sizes in a conventional survey can make use of data 
from past surveys of the same population without 
biasing the results of the new survey, so the data 
from previous phases of a single survey can be used 
in determining stratification boundaries and alloca- 
tion for the next phase. Let ~j be a design-unbiased 
estimator of the population total for the j t h  phase. 
Then the estimator 

G 
f n  

- 

j = l  

is design-unbiased for T, where the wj are any set 
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m of fixed weights with ~ j = l  wj - 1. Since the de- 
sign and allocation at phase j depend only on the 
data dj-1 from the first j -  1 phases, the estima- 
tors  and estimators of variance ~j and ff£'r(~j) are 
unbiased, over all samples that might be selected in 
the j th  phase, conditional on dj-1. Thus uncon- 
ditionally the overall variance estimator ~ ( T w )  -- 
~j=lm Wj2~(~j)  is design-unbiased as well. Notice 
that, because the weight that a given data value 
is given in the estimator depends on the phase 
and hence the order it was obtained in, the Rao- 
Blackwell method could also be applied to produce 
an improved unbiased estimator not depending on 
order. 

4.0.1 Example 

A simple numerical example with stratified random 
sampling at each of two phases illustrates the dif- 
ference of the unbiased fixed-weight estimator from 
the biased conventional stratified estimator. Con- 
sider a population partitioned into L = 3 strata each 
with Nh = 10 units. At the first phase a conven- 
tional stratified sample is used, allocating the to- 
tal first-phase sample size n l = 6 equally, so that 
nlh -- 2 units selected at random without replace- 
ment in each stratum. The observed y - values for 
the three strata are respectively (10, 5), (0, 2), (3, 6) 
giving first-phase sample means fljh for the three 
strata of Y l l  - -  7 . 5 ,  Y12 : 1, and y13 = 4.5 and 
sample standard deviations s~ = 3.5, s12 = 1.4, 
and s + 13 = 2.1. Allocating a second-phase total 
sample size of n2 = 6 approximately proportional 
to the first-phase sample standard deviations gives 
n21  : 3 ,  1t22 - -  1, and n23 = 2. The y-values 
observed at the second phase for the three strata 
are (2, 0, 6), (11), (4, 8), giving second-phase sample 
means of y21 = 2.7, y22 = 11, and y23 = 6. The 
first-phase estimate is T1 - -  E N h ~ ] l h  - -  130 and 
the second-phase estimate is ~-2 - ~ Nh~2h -- 197. 
With equal weights wl = w2 = 1/2, the unbiased es- 
timate of the population total is ~ - ~ wj~j - 164. 
The conventional but biased estimator on the other 
hand would use the overall sample means in the three 
strata of Yl : 4.6, ~2 = 4.3, and ~3 = 5.3, giving the 
estimate ~ = ~ Nhflh = 142. 
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