
QUESTIONNAIRE DESIGNERS VERSUS INSTRUMENT AUTHORS:
BOTTLENECKS IN THE DEVELOPMENT OF COMPUTER-ADMINISTERED QUESTIONNAIRES

Irvin Katz, George Mason University, Linda Stinson, Frederick Conrad, US Bureau of Labor Statistics
Irvin R. Katz, Department of Psychology, George Mason University, Fairfax, VA 22030-4444

Keywords: CAI, questionnaire design, software

Development of computer-assisted interviewing
(CAI) instruments is often resource-intensive and time-
consuming (Nicholls & Appel, 1994), especially
compared with developing paper questionnaires. In
addition to many of the same activities needed to create
a paper instrument, the computer instrument must be
programmed. Thus, developing a CA! instrument
involves both the staff typically associated with
questionnaire design (e.g., content specialists,
statisticians) as well as programming staffto create the
computerized instrument (Mockovak, 1996). Typically,
however, people who are expert in questionnaire design
are not also expert in the programming skills needed to
implement a questionnaire on computer. As a result,
the actual designers of questionnaires must work
through intermediaries (programmers), with
concomitant delays and the potential for
miscommunication.

Although CA! technologies have expanded, many
procedures for designing CAI instruments are little
more than the same procedures used for paper
questionnaires. New technologies, such as graphical
user interfaces and pen-based systems, provide the
programmer with more flexibility in constructing
sophisticated survey instruments. However, there has
not been a similar increase in tools that aid
questionnaire design tasks (see Table 2)---writing
questions, specifying skip patterns, defining complex
edit rules (constraints), and so forth.

This report examines the processes of CAI design
and development with the goal of providing software
support to facilitate activities. We first conducted
interviews with staff involved in CAI design and
development to investigate the general nature of the
interactions between questionnaire designers and
programmers. The interviews resulted in a preliminary
task analysis of questionnaire design, which identifies
some critical activities involved in the specification and
initial implementation of CA! instruments. Based on
the results of the interviews, we conducted a survey on
questionnaire design to determine the specific tasks that
cause trouble for designers and programmers. The
survey results revealed a few key tasks that might
benefit from software support, especially for
questionnaire designers. The final section of this report
briefly describes a software tool aimed at aiding
nonprogramming questionnaire designers as they
specify CAI instruments.

INTERVIEWS
The purpose of the interviews was to collect

preliminary data on the CAI design and development
process. We focused our attention on structure of the
CAI instrument--the questions, their ordering, the data
to be collected, and so forth. Thus, interviews
concerned the questionnaire design process as opposed
to tasks related to programming. For example, what
activities occurred and when did they occur? What
other staff were involved in the projects and at what
points? What methods had stafflearned over the years
to make the design process flow more smoothly?

Twenty staff members from the Census Bureau
(Census) and Bureau of Labor Statistics (BLS) were
interviewedwll questionnaire designers (people who
write specifications for CAI instruments) or managers of
questionnaire designers and nine programmers or
managers of programmers. Interviews typically lasted
approximately one hour and were unstructured:
although the questions listed above guided the overall
content of the interview, the interviewer prompted for
information about those areas of questionnaire design
that the individual appeared to be particularly interested
in discussing.

Some of these individuals provided examples of
questionnaire specifications they helped design or were
asked to implement on computer. Approximately 10
example specifications were collected (here,
"specifications" refers to the documents used to
communicate a questionnaire to someone else, such as a
programmer); these specifications were for
questionnaires covering various topics such as food
security and health issues. The example specifications
ranged from 10 to 80 pages of text.

Results
At BLS and Census there is a clear separation

between programming staff and questionnaire design
staff. Although each CAI development project is unique
in its details, most followed the high-level process
depicted in Figure 1. Questionnaire designers develop
specifications for the CAI instrument; these
specifications are passed along to programmers, who
implement the instrument using a questionnaire
authoring system, such as CASES.

The interviews suggested that a bottleneck in the
CAI development process may center on the formal
"communication channel" between questionnaire
designers and programmerswthe instrument
specifications. For example, questionnaire designers
reported that programmers sometimes misinterpret the
specifications and so produce instruments that do not

1029

work correctly. Programmers reported that specifications
are often ambiguous or incomplete, requiring that they
either (a) clarify the specifications by speaking with the
questionnaire designers or (b) decide on their own.
These miscommunications, in turn, reportedly lead to
time-consuming iterations between the designers'
review of the proposed instrument and the programmers'
~ of.another version of the instrument.

-

Write (paper)

Review Implement/ Deliver
(computer) Revise

Figure l :CAI development process
Thus, there are at least two sources of errors that

lead to the bottleneck between designers and
implementers. First, the instrument produced by the
programmers may not meet the specifications--a
communicat ion error, in which the programmer
misinterprets the specifications. Second, the instrument
may meet the specifications, but upon review, designers
decide that the instrument does not meet their
expectationsma visualization error. In other words, the
designers mis-specified the instrument, perhaps because
of difficulties in imagining from the text specifications
how the actual instrument would behave (e.g.,
imagining the implications for a skip pattem of deleting
one or more questions).

What is the source of the iteration that occurs
between designers and implementers? Which aspects of
questionnaire design are particularly difficult and what
parts of a questionnaire are particularly difficult to
specify (if any)? To expand on the informal information
collected through the interviews, a survey on
questionnaire design was conducted. The purpose of
this survey was to provide guidance on the specific
aspects of questionnaire design that could potentially
benefit from software support.

SURVEY ON QUESTIONNAIRE DESIGN
A new software tool will have the greatest

influence on questionnaire design if using it specifically
addresses problems in the current design process. To
identify those places in the design process where
software support would add the most value, a
questionnaire was administered to questionnaire
designers and programmers. The purpose of the survey
was to identify the "trouble spots" in designing a
questionnaire. That is, what tasks do questionnaire
designers f'md most difficult? What do they spend their
time doing? Thus, our goal was to gather information
to inform a software tool that would (a) facilitate tasks
that designers find difficult or time-consuming when
using current tools (e.g., a word processor, paper and

pencil) and (b) promote comprehension of those aspects
of specifications that programmers find hard to
implement or understand.

The interviews with questionnaire designers and
programmers uncovered several critical elements of
questionnaire specifications. These elements are defined
in Table 1. Based on these elements, a list of
questionnaire design tasks (see Table 2) was
constructed. This list of tasks represents one of the few
explications of questionnaire design activities, and is
therefore a contribution on its own.

It is recognized that these elements do not occur
in all specifications (e.g., many questionnaires do not
employ rosters) nor do all designers conduct all
associated tasks. Furthermore, there are specification
elements and design tasks not represented in these lists.
However, during the interviews, these elements and
tasks were mentioned most often as relevant specifically
to the specification of CAI instruments.

Method

Population
The instrument was geared toward staffwho write

specifications for, or program, computer instruments.
We compiled a list of 74 individuals from BLS and
Census~21 CAI programmers and 53 questionnaire
designers. Staff were visited at work by the first author,
who described the purpose of the survey and handed the
individual the questionnaire, if he or she was willing to
participate (all staff evidenced an interest in the project).
After two weeks, a follow-up letter was sent to those
who had not yet responded.

Respondents
Response rates were fairly high for both groups

(programmers: 86%; questionnaire designers: 77%). Of
the questionnaire designers, 27 indicated that they had
most recently worked on a CAI instrument as opposed
to a paper questionnaire. Because the focus of this report
is on CAI instruments, the analyses presented below
will be from the data of the 27 CAI questionnaire
designers and 18 CAI programmers.

Instrument 1
Two forms of the instrument were constructed,

one for questionnaire designers and the other for
programmers. There were only slight wording
differences between the two forms (e.g., the
questionnaire designer form referred to communicating
with a programmer while the programmer form referred
to communicating with a questionnaire designer).

The focus of the instrument was on the design of
questionnaire structure rather than tasks associated with
design of questionnaire content, such as determining an
analysis plan or conducting pretests. Questions focused
on questionnaire specificationsmthe documents that
represent the current version of a questionnaire and are

IThe instrument is available from the first author.

1030

used to communicate the questionnaire among project
staff (e.g., sponsors, questionnaire designers,
programmers). Respondents were asked about the
differentelements that make up a set of specifications
(see Table 1), the ways those specifications are created,
and the changes that occur to the specifications in the
process of designing a questionnaire.

To facilitate completion of the survey, respondents
were asked to answer each question with respect to their
most recent questionnaire project. During the
interviews, we found that people had trouble answering
general questions about theft design experiences, but
found it easier to answer detailed questions about a
recently completed questionnaire. Thus, the first 10
questions "calibrated" respondents by asking about
their most recently completed questionnaire.

The next three questions asked respondents to rate
several questionnaire design tasks (see Table 2) along
different dimensions. The purpose of these questions
was to uncover the "trouble spots" in the questionnaire
design process--the tasks for which staff spend the most
time and effort. In this report, we will focus on two of
the questions: "Compared with the other tasks, about
how much time, if any, did you spend working on each
tasks?" and "Compared with the other tasks, how easy
or difficult was each task?".

In developing a CAI instrument, the questionnaire
designer must not only create the questionnaire, but
also write out the specifications for the programmer on
how that questionnaire should be implemented. These
specification documents are often the primary channel
along which questionnaire designers and programmers
communicate. However, sometimes parts of a
specification are ambiguous or incomplete, and so the
programmer must ask the questionnaire designer for
clarification. As was discussed earlier, this clarification
process may be one of the primary bottlenecks in the
overall CAI development process. Our instrument
included a question that asked designers to rate how
frequently programmers ask for clarification of particular
elements of the specifications. Programmers were asked
how frequently they asked the questionnaire designers
for clarification of particular elements of the
specifications.

Another set of questions focused on alternative
representations of questionnaires. Several interviewed
staff said that they created a visual representation of their
questionnaire to ease questionnaire design. A "visual
formalism" was defined as any type of symbolic
representation of a questionnaire, including outlines,
tables, flowcharts, and other diagrams. Most often, the

2Or their most recently completed portion of a
questionnaire. Collectively, either a portion of a
questionnaire or a full questionnaire was referredto as a
product. Respondents were asked to complete the
questionnaire with respect to their most recently
completed product.

questionnaire designer or programmer created a
flowchart. A flowchart provides an overview of a
questionnairemit succinctly shows the connections
among various questions that can be obscured when
viewing a linear list of questions. However, staff
indicated that these visual formalisms were largely for
their own use and rarely became part of the
documentation for a CAI instrument. We were
interested in whether use of these visual formalisms is
common among designers and programmers, for what
purposes they use these formalisms, and whether they
receive formalisms from others.

A final set of questions gauged each respondent's
level of experience. Respondents were asked for their
years of experience in questionnaire design (or CAI
programming), number of questionnaires on which they
worked, and their government salary level.

Results

Respondent background
Respondents had worked a mean of 4.8 years in

their current role (designers: 5.1 years; programmers:
4.2 yea r s) and had worked on a mean of 6.1
questionnaire products (designers: 6.3 products;
programmers: 5.7 products). Respondents had most
recently worked on a wide variety of questionnaires: the
number of questions ranged from 7 to 4500, with a
median of 100 questions. These questionnaires took
their respondents anywhere from 2 to 120 minutes to
complete (median 15 minutes).

Isolation of programmers
Several results suggested that programmers may

be less aware of the entire questionnaire project
compared with designers. This isolation may be a
source of communication difficulties between designers
and programmers. The programmers generally appeared
to be insulated from the overall project, working instead
largely on their own and interacting with just one
questionnaire designer (who perhaps served as a
representative for an entire questionnaire project). For
example, while all questionnaire designers knew the
approximate respondent burden for their questionnaires,
five of the 18 programmers were unable to answer this
question. Seventeen of the designers worked with others
on their project, while only six programmers did so, a

marginally significant different (Z 2 (1)=3.79, p<.06).
Programmers instead tended to work on their own.
When asked to estimate how many questionnaire
designers worked on the entire questionnaire project
(M=2.8), only three (of27) designers could not answer
compared with seven programmers, a significant

different(Z 2 (1)=3.8, p<.03). However, both groups
were equally able to estimate the number of
programmers working on the entire questionnaire
project (M = l . 9) - o n l y two designers and no
programmers indicated that they did not know.

1031

Critical tasks in the questionnaire design process
Because our interest is in the bottlenecks in the

CAI development process, for each question we
identified the three or four tasks rated most
"troublesome." Troublesome tasks include those rated
as (a) taking a "Great Deal" of time and (b) "Very
Difficult" or "Moderately Difficult." Additionally,
elements of questionnaire specifications were considered
troublesome if rated by many respondents as requiring
clarification "Very Often" or "Often." These categories
represent the top ends of their respective scales.

The following two points summarize the results:
• For both groups of respondents, two tasks were

consistently rated highest in terms of difficulty, time-
intensiveness, and a source of iteration between
designers and programmers: def'lning complex
branching and defining multi-item constraints
(sometimes called "complex edits"). Both of these
tasks may involve the creation of complex logical
statements, which are implemented (and often specified)
as a long series of conditional (or, "if-then") statements.
For complex branching, determination of which
question should be asked next is based on several
previous responses. For multi-item constraints, the
decision of whether to accept a particular response is
again based on several previous responses.
Questionnaire designers, who typically do not have a
programming background, may have trouble creating
the conditional statements from theft more informal
understanding of the desired routing or constraints. For
programmers, sets of conditional statements are
notoriously difficult to design, test, and debug (Sime,
Arblaster, & Green, 1977). Given the difficulties in
specifying such conditions and the difficulties in
correctly implementing them, it is no wonder that
complex branching and multi-item constraints are
identified by both groups as troublesome to design and
often needing clarification.

• For the questionnaire designers, creating the
overall flow of the questionnaire (respondent routing or
skip patterns) is considered difficult and time-
consuming. Also, questionnaire designers reported that
respondent routing is an aspect of the specifications that
programmers often ask for clarification about.
Programmers tended not to identify the creation of
respondent routing as troublesome; the task was rated
as relatively easy, taking little time. Programmers
agreed that respondent routing was a source of iteration,
but did not rate it as highly as did designers.

Visual formalisms
There were few strong differences between

designers and programmers in terms of their use of
visual formalisms. Consequently, only the results from
the total population of respondents will be reported,
except as noted below.

Approximately half of the respondents (22)
indicated that they had created some type of visual
formalism during their most recent questionnaire

project. Most of these people indicated that the
formalism contained information concerning the
questionnaire's skip pattern. In a "check all that apply"
question, 91% indicated their formalism contained
information about specific respondent routing, 77%
included complex branching (branching based on the
responses to more than one prior question), and 64%
included information about the overall flow of the
product. These were the three most frequent responses.

Of the respondents who created a visual
formalism, 61% had created a flowchart. Respondents
indicated that they created this flowchart most
frequently: "to help me remember the structure of the
product" (93%), "to help me design some aspect of the
product" (86%), and "to serve as an aid in testing the
programmed product against the specifications" (86%).

The data also suggested that more experienced
designers were more likely to have created visual
formalisms on their most recent project. Questionnaire
designers who report having created a visual formalism
on their most recent project had more years of
experience (M=6.8 years) compared with those that
reported not having created a visual formalism (M-3.3;
one-tailed t(25)=2.8, p<.01). Those who did not create
visual formalisms were almost all at the same
government salary level, while those that create visual
formalisms were relatively evenly distributed among

that level and the next two higher levels (Z 2 (3) = 9.1,
p<.03). Finally, those who created visual formalisms
tended to have worked on a greater number of projects
(7.8) compared with designers who did not create a
visual formalism (4.7), although this difference is not
significant. For the programmers, there was no
corresponding relationship between experience and
creation of visual formalisms.

Only 33% (15) of all respondents indicated that
they had received a visual formalism from someone
else, but, when received, a flowchart was by far the
most frequently received formalism (67%). Of the 15
respondents who received a formalism from someone
else, 12 indicated that the formalism was either "very
useful" or "useful."

Summary. Flowcharts appear to be useful in the
design and development of CAI instruments.
Unfortunately, only the more experienced questionnaire
designers use flowcharts, and even then, the flowcharts
are typically not used to communicate with others.
Rather, staff use flowcharts to help only their own
thinking.

Discussion
Some of the communication difficulties in the CAI

development process may be due to differences in
priorities and perceptions of designers and
programmers. Perhaps because of their differing roles on
a project, each group provided differentratings of what
they spend time doing and what tasks they perceive to
be most difficult. However, the groups agreed that

1032

certain tasks--defining complex branching and multi-
item constraints--are among the most troublesome for
CAI design.

For the questionnaire designers, the results of the
survey (and interviews) suggest that specification of
respondent routing (skip patterns)is a common yet
troublesome task. Designers reported that designing
skip patterns (i.e., respondent routing) is difficult and
may often be the source of time-consuming iteration
between themselves and programmers. Most
questionnaires contain some form of a skip pattern, even
if they do not contain some of the more complex (and
therefore, more difficult to design) elements of a
questionnaire, such as rosters and constraints. Thus,
software to support the design of skip patterns should
be useful in many questionnaire design projects.

To design skip patterns, more experienced
questionnaire designers tend to use flowcharts.
Flowcharts, as the name suggests, are useful for
capturing the overall flow of a questionnaire--they
provide the questionnaire designer with an overview
that is difficult to infer from text specifications.

The results of the survey suggest that a software
tool that aids the design of skip patterns through
facilities for creating flowcharts might meet some of the
needs of questionnaire designers. In fact, because less
experienced designers tend not to create flowcharts, such
a system may help less experienced questionnaire
designers by providing an easier means for creating and
manipulating flowcharts compared with drawing them
by hand.

The next section describes a software tool created
for questionnaire designers. The goal of the system is to
facilitate communication between questionnaire
designers and programmers by helping designersmore
accurately visualize and specify their instruments.

SYSTEM DESCRIPTION
Questionnaire Designer (QD) is a software tool

aimed at facilitating the design of CAI instruments
(Katz & Conrad, 1997). QD was designed for use by
questionnaire designers who might not have any
programming experience. The goal of QD is to provide
a questionnaire designer's "sketchpad"--a way for the
questionnaire designer to quickly put an approximation
of their questionnaire onto computer, evaluate their
current work, and to revise the questionnaire. Figure 2
shows the main QD screen along with descriptive text.

QD was designed to help the early phases of
questionnaire design, when the general needs of the
questionnaire have been worked out, but not all of the
questions nor all of the logic has been finalized. The
goal of QD is to help designers work out their ideas for
skip patterns by providing an overview of the evolving
questionnaire in the form of a flowchart. A flowchart
allows the questionnaire designer to see more of the
questionnaire at one time (e.g., greater number of
questions, all the links leading out of and into each
question), which may ease consideration and

comparison of alternative orderings of questions and
questionnaire logic. Because the flowchart is on
computer, the questionnaire designer can easily
rearrange portions of the questionnaire to try out their
alternative ideas about the questionnaire's logic. In
other words, the questionnaire designer can ask "what
if" questions such as "what if I arranged the question
this way; would the questions flow together smoothly?
Could I eliminate redundant questions?".

Preliminary evaluations have indicated that
nonprogramming questionnaire designers can, after brief
training, use QD to design questionnaires of moderate
complexity (Katz & Conrad, 1997).

CONCLUSIONS
The complexity of CAI instruments demands

involvement of staff with differing expertise and
backgrounds. We have presented potential sources of
communication difficulties between designers and
programmers, and have identified specific tasks in the
CAI design and development process that cause the
most difficulties for these groups.

QD, and the research presented in this report,
represent first steps toward improved CAI development.
QD attempts to supplement the existing CAI
development process by allowing questionnaire
designers methods for experimenting with alternative
designs for their questionnaires and for evaluating those
alternatives. Design tools, such as QD, should facilitate
the CAI development process by reducing the
bottlenecks that plague the current process.

ACKNOWLEDGMENTS
We thank Sarah Jerstad for assistance in data

collection and the staff of BLS and Census who
participated in the research. This work was funded by
the American Statistical Association, Educational
Testing Service, National Science Foundation, US
Bureau of Labor Statistics, and US Census Bureau.

REFERENCES
Katz, I. R., & Conrad, F. G. (1997, May).

Questionnaire designer." A software tool for
specification of computer-administered questionnaires.
Paper presented at the 1997 meeting of the American
Association for Public Opinion Research, Norfolk, VA.

Mockovak, W. P. (1996). Issues and steps
involved in designing a questionnaire for computer-
assisted interviewing. To appear in Proceedings of
InterCASIC '96.

Nicholls, W. L., & Appel, M. V. (1994). New
CASIC technologies at the US Bureau of the Census.
In Proceedings of the Section on Survey Research
Methods, Volume H (pp. 757-762). Alexandria, VA:
American Statistical Association.

Sime, M. E., Arblaster, A. T., & Green, T. R.
G. (1977). Reducing programming errors in nested
conditionals by prescribing a writing procedure.
International Journal of Man-Machine Studies, 9(1),
119-126.

1033

Constraint
(multi-item)

Constraint
(single-item)

Fill

Rostering Scheme

Respondent Routing

Complex
Branching

Simple Branching

Table 1: Elements of a specification document
Any type of restriction on the answers to a set of questions (in the current questionnaire or
a previous questionnaire). A multi-item constraint assures consistency among answers to
related que~tion~. Specifications sometimes include how the questionnaire should guide
the interviewer to resolve any inconsistencies.
Example: An earlier answer indicated that the respondent is a nonsmoker, yet the
respondent also indicates that he or she spent mone'y on buying cigarettes.
A specification for the acceptable answers to an individual question. In a computerized
questionnaire, the system will not allow the interview to continue if an unacceptable
answer is entered.
Example: An answer must be within a specific numeric range or contain a certain
number of digits. The interview cannot continue until the respondent gives an answer
that fits within the acceptable range or contains the correct number of digits.
Any change to the wording of a question based on answers to prior questions. A fill
generally consists of (a) the alternative wording to fill into the question and (b) the
conditions for choosing alternative wording. Sometimes answers to previous questions
are filled into the wording of later questions (e.g., a person's name).
Example. I f the respondent is answering a question about him or herself begin with
"Do you... ". I f the respondent is answering about the household, begin with "Does
an'yone in ,your household... ".
The method used to create a roster, to select elements from the roster for data collection, and
to ask questions of each selected roster element. For example, a roster might first be
collected that contains the names of everyone in a household. A series of questions might
then be asked of a subset of people in the roster.
The method by which respondents are presented with different questions depending on
answers to previous questions. Includes both complex branching and simple branching.
A type of respondent routing in which jumping to alternative questions is based on
answers to several questions. To define a complex branch, one must decide which
questions (and which answers to those questions) should be used to route the respondent
to the next question.
Example: A questionnaire needs to ask questions only of male smokers over the age of
50. The characteristics "male," "smoker," and "over 50" may represent answers to three
separate questions
A type of respondent routing in which jumping to alternative questions is based on the
answer to a single question.

Table 2: Tasks involved in creating specifications
a. Composing introductions
b. Writing questions
c. Deciding labeling conventions for questions
d. Selecting response categories
e. Deciding order of response categories
f Identifying respondent subsets
g. Deciding phrases for fills
h. Creating conditions for fills
i. Designing respondent routing
j. Defining complex branching
k. Defining multi-item constraints
1. Designing approach to verify and, if

necessary, correctresponses
m. Defining single-item constraints
n. Designing the layout of a question on the

computer screen
o. Designing rostering scheme
p. Creating a flowchart or other diagram
q. Creating scheme to record case status

The File menu contains commands to croate = new nowchan, open an
existing flowchart, save s flowchs.,'t to thc disk, save s flowchart as a
text report, print a flowchart, and quit from the system.

i

I The Edit menu contsir~ comma'ads to undo the mo~ recent clear (erase)
I command, clear (erue) the currently rclccted Ipraphic=, and clear/coW/paste
I the.currently s e l ~ text in t~ Qu~ion Edit~.

I
I I 1he Scale menu allows the user to display the flowchart st 50%, 75%, I O¢~, 150%, or

J l~ l Q u e s ~ l) n n o i ~ l r D e s i g n e r (c) 1996 Educa t iona l Tes t ing Serv ice

Fi le Edit S c a l e

4 1 . D a i s Item. Flowchart elemenl repre+senting a question.

41, 'Check Iten~ Flowchart element representing a complex branch.
Start/End Item. Flowchart element repre~entin 8 the beginning or ending of a questionnaire section.

,4mText . Used to add plain text (i.e., no surrounding f igure) to the f lowchart .

May be u~ed to add c o m m e n t s to other f lowchir t elements.

Scroll tool. Used to scroll the entire flowchart around on the canvas.

This area is where the user creates and edits
Canv~ his or her flowchart

.

area is w e e m e t en te~ information
Ouestion Editor (label, question, respon.~e categeries) a~oc ia ted with the

currently-selected f lowchart d e m e n t .

Figure 2: Questionnaire Designer screen

1034

