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I • INTRODUCTION 

In this paper, we present the 

correlations for inter- and intra- 

levels and for intra-cluster, and 

show its closed forms of variance 

derived by Delta method. In Section 

2, we define a population and three 

types of correlation. Section 4 

introduces sample estimate of these 

correlations and its variance. In 

Section 4, asymptotic distributions 

are discussed. Finally in Section 5, 

we present a drug test example. 

2. POPULATION 

The population U of interest is 

decomposed into A clusters 

U = (Ul, ..., Ui, ..., UA). The 

cluster U i consists of Bi final units 

as U i = (Uil, . . . , Uij , . . . , UiB i ) . 

Within the final unit, Uij, the 

generic measurement level will be 

denoted by h, with a total of r 

levels or cells, and the cells are 

mutually exclusive and exhaustive. 

Total number of population units is 

N = F i~ A Bi. 

Let the random variable Yhij be 

the realization of the unit Uij, 

continuous or discrete, and define a 

model for Yhij as 

Yhij = rIh + ~hi + eh i j  

for h = i, ...,r, i = I, ..., A, and 

j = I, ..., Bi. 

We assume the random variables 

~i's and ehij'S are uncorrelated and 

the existence of the first two 

2.1. DEFINITION OF CORRELATION 

We assume that the clusters are 

independent. But any two units in the 

same cluster are correlated by the 

common intra cluster correlation 

matrix R with Q hh on the diagonal for 

h = h' and Qhh' on the off-diagonal for 

h ~ h': 

lOhh / : 

0 2 
@hh 

2 + O2 
O~hh ehh 

2 
Ol3hh / 

13hh ehh 13h/h / + Oeh/h 

The correlation over all cells is 

defined: 

p ~ 

0 2 
Eh ~hh 

2 +a~hh) 
Zh (a~hh 

The sum of the trace in nonsingular 

matrix is the same as the sum of its 

eigenvalues, that is the sum of 

diagonal elements. Thus, the sum of 

diagtonal elements is used for the 

estimation of overall correlation. 

This definition provides only 

positive correlation, which arises in 

most practical situations. Negative 

correlation sometimes occurs in 

actual data and we might set p = 0 

for conservative inferences. 

2.2. CATEGORICAL VARIABLE 

Let the random variable Yhij = 1 

if the Uij-th unit falls into the h-th 

moments of Yhij.S. The expectation and cell, and = 0 otherwise. 

variance are expressed as E(yhij) = nh Let Yh = ~i=I,A~'j=I,B Yhij 
2 0 2  i 

and var(yhij) = Obh h + ehh" be the population counts in the h-th 

cell, and the cells are mutually 

exclusive and exhaustive and 
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N = ~'h=l,r Yh be the entire units in 

the population. Denote the vector of 

population cell frequencies by 

yT = (Yl,--, Y h,'', Yr) and the 

corresponding proportions by vector 

[IT = (nl, . . , Hh, . . , n r) . We impose some 

restrictions on these proportions: 

nh = yh/N, l'I n > 0 for all h, and 

Zhnh=l • 

Define pairwise probability for 

the members in a same cluster as 

p(Yhij=Yh, i,j,=l)=Shh, if i=i' j~j' h;h', 

p(yhij=Yh.i,j.=l)=Shh if i=i' j;j' h=h', 

where ~hh' is the probability that one 

member of pair falls in the cell h 

while the other in the cell h'. 6hh is 

the probability that both members 

fall into the same cell h. 

Note that the sum over all 

cells, 7hh. 6hh. = i. If both members 

of pair fall in the same cell or they 

are completely dependent, the off- 

diagonal elements are zero and the 

sum of the diagonal elements is one. 

For categorical variables, we 

may define the intra-level and inter- 

level correlation by 

Phh / -- 

2 
5 h h  - n h 

n h (l-n h) 

~hh / -- IIhIIh ! 

n h(l-n h) n h,(l - n h,) 

and the overall correlation by 

p 

Zh:l,~ (6hh - nh 2) 

~h:l, ~ nh ( 1 -n h) 

These two definitions involve 

only the parameters, nh'S, 6hh, and 

6hh, while the definitions of 

continuous variables involve Ochh 2 and 
2 

(]ehh ° 

3. SAMPLE 

We now assume that a probability 

sample S is taken from the population 

U described above. The estimations 

are to be made on the basis of a 

sample S={ (i, j ) : i e S*; j e Si}, where 

S* is a sample of "a" clusters out of 

A clusters, and Si is a sample of bi 

units from the B i units in the ith 

cluster. 

We also assume that the sample 

fractions are ignorable under the 

model we use. In fact the sampling 

design is not important under the 

model assumption. We do not specify 

the sampling design in both stages 

except that it is a probability 

measure on the set of all possible 

samples. 

The sample clusters are indexed 

by i ; S* = ( S 1 , . • . , S i , ° ° • , S a ) , and the 

final sample units in the i-th 

cluster are indexed by j; Si = (u ii 

,..., uij,..., Uibi)- Note that the 

indexes i and j for the population 

unit Uij are not the same as those 

used for the sample unit uij. The 

cluster sizes are assumed known, but 

of different size, and the total 

number of sample units is n -~ b . 
1 1 

The lower case Yhij is the realization 

of observation on the sample unit uij. 

3.1. ESTIMATION 

There are three types of 

correlations to estimate. The first 

case Phh arises when any two members 

in a same cluster fall in the same 

category h. The second case Phh' 

arises when one member falls into one 

cell h while remaining member into a 

different cell h'. The third case p 

is the correlation for intra-cluster 

or overall levels. 

Landis and Koch (1977) obtained 

the estimator of p in terms of ANOVA 

mean squares. We express the 

correlation Q in terms of 

m 

dhij = (Yhij -- Yh ) 

for the level h to simplify the 

notation. 

There would be four combinations 
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of dhi j for units and cells as (h=h' 

and j=j'), (h=h' and j#j'), (h#h' 

and j=j'), and (h#h'and j # j') for 

each cluster. These four situations 

are described below and involved in 

the variance estimation shown in 

Section 3.3. 

Since the clusters are 

independent, we find the variance and 

covariance of each cluster and sum 

them all for total. 

(I) The variance of Yhij for h=h' 

and j=j' in cluster i is estimated as 

Shh i = 

divided by "a". The variance of the 

covariace of Shh, i'S is estimated by 

Var ( Shh,i ) - 
7, i ( S h h  ' i  - mShh ') 2 

a-i 

(4) The covariance of Yhij and 

Yh'ij' or cross product of dhij and dh,ij, 
for j # j' and h#h' is 

d 2 thh/i = 
Z9 hij b i (bi-l ) 

b 0 

1 

The mean mshh of Shhi is the sum of all The mean mthh, of thh, i is the sum of 

Shhi'S divided by "a", and the variance all thh,i'S divided by "a". The 

of the variance Shhi is estimated by variance of the covariance is 

^ 

Var ( Sh# i ) - 

estimated by 

1 
~, ( - mshh ) (a-l) i Shhi ^ 7, ( 'i 

Var ( thh/i ) - i thh 

(2) Similarly the covariance 

between Yhij and Yhij' for h = h' and 
j # j' is estimated by 

_ mthh,) 2 

a-i 

The covariance between Shh i and 
thhi is estimated by 

thh i = 

zj j,d ;j d ;j, 
bi(bi-l) 

( Sh~ i thhi) = 
7, i ( Shhi -mShn ) ( thhi -m thh) 

a-i 

The mean mthh of thhi is the sum of all 

thhi'S divided by "a". The variance of 

the covariances of thhi'S is estimated 

by 

^ 

Vat ( thh i ) - 
7 i ( thhi - m t~h) 2 

a-i 

(3) The covariance of Yhij and 

Yh, ij for h~ h' and j =j' is estimated 
as 

Other covariances can be obtained 

similarly. 

Define design constants for the 

i-th first stage unit to be 

gi = (n- l)/[(a- l)bi], 

ci = [gi bi - d]/bi and 

d - (n2-7. b 2) / (n(a-l)) 
i=l,a i 

d is the average number of second 

stage units within each first stage 

unit and n= Z b. l=l,a 1 

Express an estimator of 

correlation of Phh' by 

Shh /i : 

zjd, j 
b , 

1 

^ 

Phh I = 
Uhh / 

The mean mshh, is the sum of all Shh,i'S 
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Uhh'=(I/a) 7/=1, a [ (gi --l)shh.i + gi thh'i], 

Dhh=(i/a) Zi:I, a [ (ci+d--l)Shhi +Ci thhi], 

Dh.h.=(i/a) 7' i [ (ci+d--l)Sh.h.i +Ci th.h.i]- 

It is easy to see that E(Uhh) =O 2 and 
chh 

E(Dhh) = ((Y2 + 02 ) for h = h' 
chh ehh 

For the balanced data of 

bi = b, above constants are reduced 

to d = b, n = ab, gi = (n-l)/(n-b), 

and ci = (b-l)/(n-b). 

However, the estimator Ohh is 

biased due to the dependency of 

numerator and denominator. But the 

bias is in the order of a -I/2 because 

the bias is less than or equal to 

CV(D~h)xSE(~hh), the coefficient of 

variation of Dhh is bounded and the 

standard error of ~hh is in the order 
of a -I/2 . 

It is not difficult to show 

directly the bias is in the order 

l/a, so the bias becomes small for a 

large "a". 

The estimator of overall 

correlation coefficient O is given 

by 

^ p = ~'h=l, rUhh 
~'h:l, rDhh 

The bias of overall correlation also 

becomes small for a large "a". 

3 • 2 CATEGORI CAL VARIABLE 

It can be shown that sample 

estimator of Phh for h = h' for the 

categorical variables is 

^ 

(fib- 8hh) 
^ " , 2  + 

8 h h  - n h 
r l  

Phh --  ^ 

H (nh-  8hh) 
nh ( l - f i b )  - 

r l  2 

We can similarly estimate the 

inter-class estimator for h # h' for 

categorical variables. The overall 

correlation is estimated by 

p - 

~'~ ($~h - nh 2) + 

^ 

( 1 - Z h 8hh) 

2)_ 
(l-Zh flh 

^ 

H ( 1-E h 8hh) 

2 
n 

The second terms in the numerator and 

denominator becomes small for a large 

"n". Although the numerator and 

denominator are unbiased, the 

correlation is biased estimator due 

to the correlation between the 

numerator and denominator, but the 

bias is in the order of l/n, and 

becomes small for large n. 

The asymptotic variance of the 

correlations for categorical 

variables are shown in another study 

(Choi, 1987). 

These correlation estimators are 

consistent since the estimates of a 

parameter function is consistent as 

the same function of consistent 
The correlation of categorical estimators of the parameters as seen 

varables, defined in Section 2.2, can in maximum likelihood estimation. 
be estimated as following. 

The two parameters nh and 6hh are 

unbiasedly estimated by 

fl h = 
Ei=1,~ Eg:I,b~ Yigh 

^ ~'i:i, a 

8hh- 
2 _ 2 

( Yi.h 7'j=l,bi Yijh ) 
H 

Although two sets of formulas 

are developed for different 

variables, one for continuous and 

another for categorical variables, 

both give almost same results when 

applied to categorical variables, as 

seen from the previous study 

(Choi,1987). The first set may be 

used when total sum of squares is 

available, while the second set is 

easier to use when we have 

information on nh and 6hh. 

where H = ~i--1,a bi(bi-l) • 
3.3. VARIANCE ESTIMATION 

we attempt to find the variances 
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of these correlations by Delta 

method. The variance of ~)hh" 

and ~ is presented below: 

^ 
Phhl 

Variance of Qhh 
Denote the partial derivatives 

of ~)hh with respect to (sn~i, tnni) , 

evaluated at (Shhi,th~i) =(S~±, Thni) by 

dshhi = ( 1/Dnh 2 ) [ ( gi-- 1 ) Dhh-- ( Ci+ d- 1 ) Uhn ] and 
dthhi -- (I/Dhh e) [ gi D~n - Ci Unn] . 

iE [(d ~- Var( ) Var ([9~) : -~ ~ ~i s~i 

Var ( ) + dthhi thhi 

+2 ds~ dthhi COV( Shh i th~ ~ ) ] 

Variance of Qhh' 

~)hh' involves six variables: 

(i) thhi, (2) th'h'i, (3) thh'i, (4) Shhi, 
(5) Sh'h'i, and (6) Shh'i- Let the 
variance of these six variables 

expressed by Vlli, V22i, V33i, V44i, V55i, 
and V~i, where the subscripted number 
corresponds to the variable numbers 
(i) to (6), and the covariances 

between these six variables by Vi2i, 

Ul3i, ql4i, Ul5i, ql6i, V23i, V24i, V25i, V26i, 
V3~i, V~i, V~i, V~±, V~i, and V~i 

Also denote the partial 

derivative of Phh / with respect to 

each of these six variables by dli, 

dRi, d~i, d~±, d~i, and d~± for 
0~,h/0t~i =- ci Uhh,/[2 (D~,h,) I/2 (D~i) 3/2] 

~,~/0t~,h,~ =- ci U~,/[2 (Dhh)~/2(Dh,h,i) ~/2 ] 
0~,h/0t~,~i = gi /(D~ D~,~,)~/2 

OPh,h/OShh i =--( C i +d-l)U~,/[2Dhhi 3/2 (D~,~,) I/~] 
0p~,~/0sh,~, i=- ( ci+d-i ) U~,/[ 2 ( D~,~,i ) B/2D~/~ ] 
0P~,~/0S~,~i =(gi-l)/(D~ Dh,~,)~/2 

1~ [E~: i - -- d 2 V Var ( ~)hh ') A i ki kki 

÷ E G 

The Var(~h,) reduces to Var(~hh) 
when we replace the estimates with 

subscripts hh' and h'h' by those of 
hh. 

Variance of 

For Var(Q), we need the partial 

derivatives of overall correlation 

with respect to Shhi and thhi, evalusted 
at (Shhi, thhi) = (Shhi, Thhi) • Denote them 

by drshhi, and drthh i for 
~/0Shhi=(i/D2 )[ (gi -l)m-U(ci+d - i) ], 
~/0Thhi =(I/D 2) [gi D - U Ci]- 

Var ({)) - -~ i rshhi Var ( Shh i ) 

+d 2 Vat( ) rthhi thhi 

+ 2 drshh i drthh i CoY( Shh i tm~ i ) ] 

+~h~h / [ drshhi drsh 'h q COy( Shh i S h ,h 'i ) 

+ drsh~i drth 'h li Co V ( Shh i t h/h/i ) 

+ dr~h'h 'i drthhi Co V ( S h Jh li thhi ) 

+ drthhidrthlhq COY( thh i thjhq) ]} 

The estimator of above variances 
also can be obtained by replacing 
each component with its respective 
sample estimate based on the "a" 
sample clusters. 

Unless we need a closed form of 

variance to investigate which parts 

do major roles in variance, we may 
use a resampling method. If randomly 

executed, resampling methods produce 
similar results as current method 
does. 

We assumed that partial 
derivatives were possible and that 
non-linear terms could be negligible 
for delta method used in this 
section. 

4. ASYMPTOTIC DISTRIBUTION 
The asymptotic test Zhh shown 

below is based mainly on the three 

components: E(Phh ) = Qhh + 0 (a-l) , p 
variance, and null hypothesis 
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~)hh = ~) Ohh : 

[D h h  [D O h h 
Zhh = -- N(O, I) 

Cvar(~h/i 

for a large "a". Note that 

~(Phh- Phh ) -N(0, D TVD) as a ~ 

where V is Var(~hh), and D is 

the deritive matrix of Ohh with 

respect to ~hh, evaluated at 

l~Thh = ( Shh' Thh) • This is the 

significant at (% = 0.05 under the 

null hypothesis of no correlations. 

The over-all correlations, 0.223 

and 0.109, are useful to estimate the 

design effect for correlated members 

in cluster. For example, the design 

effect for the treatment group is 

[I + 0.223(12-1)] = 3.453, 

and that of placebo group is 

[I + 0.109(11.3-1)] = 2.123. 

The number 12 and 11.3 are the 

average number of cluster members for 

treatment and placebo groups, 

respectively. 

Although above individual 

correlations, 0.223 and 0.109, are 

not significant, the design effects, 

direct result of the linear expansion 3.453 and 2.123, arising from the 

a Phh 
of Phh - Phh + (~-~) + o(a i) . aw 

Similarly, the test statistic 

for Ho: Q = Qo is 

~9 - po 
z- - N(O, i) 

~Var ( ~ ) 

where Var(Q) is shown previously. 

The asymptotic test statistics 

for catagorical variables can be 

similarly formulated as those of 

above. 

5. DRUG TEST 

Miller and Landis (1991) studied 

a clinical data to see if individual 

is improved by treatment. 107 persons 

are treated by drug, and 102 by 

placebo, and classified them as (i) 

worse or no change, (2) slight 

improvement, or (3) more improvement 

or cured. Nine investigators examined 

the patients, considered as nine 

clusters. Patients treated by an 

investor are considered as the units 
in cluster. 

The Intra-cluster Correlation of 

Treatment group is 0.223 with 

standard deviation of 0.178 and z 

=1.253, while that of Placebo Group 

is 0.109 with standard deviation of 

0.130.and z = 0.838. 

Individual correlations are not 

correlation are quite big, and should 

not be ignored. 

If normal test or t-test 

statistic were calculated as if data 

were based on a simple random sample, 

it should be adjusted by dividing it 

with the square root of design 

effect. 

For example, the difference 

between two proportions for two 

levels, level 1 and level 3, in the 

treatment group is 44/107 (=24/107 - 

68/107). Normal test score is 

z = 0.0624 under the simple random 

sample assumption. Being adjusted by 

the design effect for intra-cluster 

correlation, corrected score is 

z' = 0.0336 = z/(3.453)I/2 under the 

null hypothesis of equal proportion. 
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