
GENERALIZED VARIANCE FUNCTIONS FOR THE 1994 NATIONAL EMPLOYER 
HEALTH INSURANCE SURVEY 

Christopher L. Moriarity, Sarah W. Gousen, David W. Chapman 
Christopher L. Moriarity, National Center for Health Statistics, 

6525 Belcrest Road, Room 915, Hyattsville, MD 20782 

KEY WORDS: Variance estimation 

1. Introduction 

The National Employer Health Insurance Survey 
(NEHIS) was conducted in 1994 by Westat, Inc., under 
contract to the National Center for Health Statistics 
(NCHS). The purpose of the NEHIS was to collect 
information on the health care insurance that U.S. 
businesses and governments provide for their 
employees. The survey collected information from 
employers on the names and types of health insurance 
plans (if any) offered to their employees, enrollments in 
these plans, the characteristics of the plans, the money 
paid for claims in the preceding plan year, and other 
related data. 

The target sample size for the 1994 NEHIS was about 
37,000 interviews for private establishments (i.e., 
specific business locations) and about 3,000 interviews 
for government agencies, for a total of about 40,000 
interviews. The sample design was a stratified random 
sample of establishments. Strata were defined by state 
and size class in terms of the number of employees in 
the establishment. In the private sector, the number of 
employees in the "firm" containing the establishment 
also was used as a stratifier. For the public sector, type 
of government was included in the stratification 
process. In general, establishments in larger size 
classes were sampled at higher rates. An overview of 
the sample design is provided by Marker, et al. (1994). 
Additional details of the sample design, including the 
sources of the sampling frames, are provided by Westat 
(1994, 1996). An overview of the weighting and 
estimation procedures is given in Wallace, et al. (1995). 

NCHS is preparing publications from the NEHIS data. 
The NEHIS publications will not include standard errors 
for most of the estimates given. Instead, the NEHIS 
publications will include generalized variance functions 
(GVFs). These functions allow users to compute 
approximate variances for estimates. 

This paper summarizes our research on various 
alternatives for providing GVFs for the first NEHIS 
publication. We describe the regression models chosen 
and the criteria used in the selection process. We 
compare our methodology with procedures used to 

produce GVFs for other surveys at NCHS, such as the 
National Health Interview Survey. 

2. GVFs for NEHIS totals and percents 

Our general approach for finding GVFs for the first 
NEHIS publication was similar to the procedure 
outlined in Wolter (1985, p. 205). First, we obtained 
direct estimates of sampling errors, then we did some 
data analysis and formed subgroups. Next, we used the 
direct estimates of sampling errors as the dependent 
variable in models, where we fit a different model for 
each subgroup. We used SUDAAN (Shah, et al., 
1996) to obtain design-based direct estimates of 
sampling errors, and we used SAS procedures and SAS 
data step programming to do modelling. Most of our 
modelling used ordinary least squares, although we also 
examined the result of fitting some models using 
weighted least squares or iteratively reweighted least 
squares. The ordinary least squares modelling was an 
iterative process, with up to six iterations. 
Observations with a studentized residual greater in 
absolute value than 3.5 were discarded as "outliers", 
and the model fitting was repeated in the next iteratien. 

The NEHIS publication does not contain the number of 
sample cases that contributed to a given estimate. For 
this reason, we did not use the sample size as a 
regressor for GVF models. 

The NEHIS publication has tables containing estimates 
of percents and totals, along with a few estimates of 
means and a few "standardized" estimates. We decided 
to limit our model fitting to percents and totals, using 
models for percents that differed from those used for 
totals. 

In addition, NEHIS estimates can be classified into two 
b r o a d  g r o u p s :  " e m p l o y e e - r e l a t e d "  and 
"establishment-related". An example of an 
employee-related estimate is the percentage of 
employees who obtain health insurance through their 
employer. An example of an establishment-related 
estimate is the percentage of business establishments 
that offer health insurance to their employees. 
Although we used the same general model equation for 
all totals, we fit separate model parameters for 
employee-related estimates versus establishment-related 
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estimates. We followed a similar strategy for 
employee-related percents versus establishment-related 
percents. We decided to group estimates by 
employee-related versus establishment-related after 
doing data analyses such as scatterplots, and fitting 
overall models versus fitting separate models by 
employee-related estimates versus establishment-related 
estimates. 

We also did some exploratory work where we gave 
consideration to other groupings of estimates in addition 
to employee-related versus establishment-related. 

Historically, GVFs have been fit using a limited number 
of direct estimates of sampling error. We decided to 
exploit the rapid advances in computing power that have 
occurred in recent years by computing a complete set of 
direct estimates of sampling error for all estimates of 
percents and totals that are included in the NEHIS 
publication. Hence, the GVFs we created do not 
contain error that is due to subsampling of direct 
estimates of sampling error for developing the GVFs. 

As indicated in the introduction, the sampling units in 
the 1994 NEHIS were business establishments in the 
private sector, and governments in the public sector. 
The distribution of employment in the businesses and 
governments is strongly skewed to the right; that is, 
most businesses and governments have a small number 
of employees, while a relatively small proportion of 
businesses and governments have large numbers of 
employees. Hence, the distribution of the number of 
employees in businesses and governments is quite 
different from the distribution of persons in households. 
Therefore, it would not be surprising to find that a 
generalized variance function model that performs well 
for population surveys might not perform too well for 
an establishment survey. 

2.1 GVFs for totals 

The Current Population Survey, and NCHS surveys 
such as the National Health Interview Survey, employ 
the GVF model 

relvar(x) = a + b/x (1) 

to model the relative variance (i.e., the variance divided 
by the square of the estimate) of a total "x" as a linear 
function of 1/x. This model has some theoretical 
justification; see Wolter (1985, pp. 203-204). Valliant 
(1987) also provides some theoretical justification for 
this model. 

Our starting point for modeling GVFs for totals was 
Equation (1). However, the scatterplot of relvar(x) 
versus 1/x did not show a linear pattern. We were not 
satisfied with the performance of Equation (1), as 
measured by the R e value and a scatterplot of predicted 
standard errors versus direct estimates, so we tried 
other models. The models we tried included other 
models given in Wolter (1985, p. 203, Equations 
5 .2 .2 -  5.2.5), a few others of similar form, and a 
model mentioned in Kalton (1977, p. 506). None of 
the models gave what we considered to be a satisfactory 
fit to the data. A serious problem with one of the 
models (Wolter, 1985, Equation 5.2.4) is that it gave 
negative estimates for some relative variances for 
observed values of x. We decided to reject any model 
that displayed this behavior. 

We also tried a loglinear model that does not appear in 
Wolter (1985): 

ln{var(x)} = a + b In(x), (2) 

where "In" denotes the natural logarithm. For both 
employee-related and establishment-related totals, the 
scatterplot of ln{var(x)} versus In(x) showed a pattern 
that indicated a linear model would be a reasonable fit. 
For both groups of totals, the scatterplot of predicted 
standard errors versus direct estimates generally 
followed the y = x line, although there was a "hook" 
in the scatterplot where the largest values of the 
predicted standard error corresponded to decreasing 
values for the direct estimate. The "hook" was quite 
obvious for establishment-related totals. Although we 
believed Equation (2) gave a better fit to the data than 
the models we had tried previously, using the R 2 
criterion, we continued to search for other models that 
might provide additional improvement. 

We tried a variation of Equation (1), viz., we multiplied 
both sides by x 2 to obtain 

var(x) = ax 2 + bx (3) 

We decided to work with this model after examining a 
scatterplot of var(x) versus x for establishment-related 
totals (Diagram 1), which suggested that a quadratic 
model might be useful. We fit this model both with 
and without an intercept term. The model with an 
intercept term turned out to be unacceptable because it 
gave some negative predicted variances for observed 
values of x. The model without the intercept term 
performed well in some ways, eliminating the "hook" 
in the scatterplot of predicted standard errors versus 
direct estimates that we had seen when using Equation 
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(2) as our model. However, there was a tendency for 
the model to predict considerably larger variances than 
the direct estimates at the "low end" of the direct 
estimates. 

Although the models given by Equations (2) and (3) 
appeared to provide improved performance over 
Equation (1), our research continued in the hope of 
finding a parsimonious model that provided a good fit 
to the observed data over the entire data range. We 
gave consideration to a model that is a generalization of 
Equation (3): 

{var(x)} r =  ax z + bx (4) 

We became interested in this model after we examined 
the results of using the values r = 1 (i.e., Equation 
(3)), and r = .5 (i.e., se(x) = ax z + bx). As indicated 
above, the model with r = 1 had a tendency to 
overestimate variances at the "low end". We found that 
the model with r = .5 did not have a tendency to 
overestimate variances at the "low end", but there was 
a tendency to underestimate variances in the "middle". 
We experimented with using a range of r values 
between .5 and 1; the best results occurred near 
r = .75, so we decided to use r = .75. This was the 
model that we used to fit GVFs for totals. 

The results, for establishment-related totals, of fitting 
the model we chose are summarized in Diagrams 2 and 
3. Diagram 2 shows the residual plot for the final 
iteration in the model-fitting process, and Diagram 3 
shows the scatterplot of predicted standard errors versus 
direct estimates from SUDAAN. Diagram 3 includes 
"outliers" rejected during the iterative model-fitting 
process. 

We made one modification to the GVF model that we 
fit for establishment-related totals using Equation (4) 
with r = .75. We noted that the predicted value for 
{var(x)} r for the U.S. total number of establishments 
became negative after several iterations of the 
model-fitting process. We considered several 
alternatives, including fewer or no iterations. We also 
considered forcing the U.S. total to remain in the 
model-fitting process, even though the variance estimate 
for the U.S. total typically was rejected as an "outlier" 
in many of the equations we explored for fitting GVFs 
for totals. We decided that a better overall fit to the 
data was achieved with the iterative process we were 
using, and we found that forced inclusion of the U.S. 
total throughout the iterative process did not prevent the 
predicted value from becoming negative after several 
iterations. To remedy the situation, we defined the 

predicted standard error to be 20,000 for all 
establishment-related estimates greater than 4.7 million. 
(Note that the U.S. total estimate from NEHIS of 
business establishments is approximately 6.3 million, 
and the direct estimate of the standard error is 
approximately 8,000.) 

2.2 GVFs for percents 

NCHS surveys such as the National Health Interview 
Survey employ the GVF model 

var(p) = bp(lO0 - p)/y (5) 

to model the variance of a estimated percent "p". This 
model is generated from an application of the model 
given by Equation (1) for modeling the variance of an 
estimated total. This model is discussed in Wolter 
(1985, p. 204). This model assumes that the 
denominator "y" of the percent "p" is available, or can 
be derived, for data users to compute GVFs. 

Since we are not using models based on Equation (1) to 
model totals, we decided to use a slightly different GVF 
model for percents: 

ln{se(p)/sqrt(p(100- p))} = a + b In (y), (6) 

where "sqrt" denotes the square root. Note that this 
model, like Equation (5), assumes that the denominator 
of the percent p is available, or can be derived, for data 
users to compute GVFs. The NEHIS publication does 
contain this information. 

We were satisfied with the performance of this model, 
as measured by the R z value and a scatterplot of 
predicted standard errors versus direct estimates. 
D i a g r a m  4 s h o w s  the  s c a t t e r p l o t  for  
establishment-related percents, including "outliers" 
rejected during the iterative model-fitting process. 

By taking exponentials of both sides of Equation (6), 
followed by some algebra, Equation (6) can be written 
a s  

var(p) = e za * p(100 - p)/y-Zb, (7) 

which shows the similarity to Equation (5). "b" in 
Equation 5 is positive, as is e 2" in Equation (7). 
Typical fitted values for the exponent of y, "-2b", in 
Equation 7 were in the 0.6 to 0.7 range, which 
compares to an exponent of 1 for y in Equation 5. An 
additional similarity between Equations (5) and (7) that 
is intuitively appealing is that both are symmetric in p 
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and (100 - p), implying that var(p) = var(100 - p). 

Prior to focussing on Equation (6), we did some 
exploratory model-fitting using models that were similar 
to Equation (6), but more complicated. These models 
were of the form 

ln{se(p)} = a + b In(y) + c In(p) + d ln(100 - p) (8) 

As expected, a better fit is obtained using Equation (8) 
than Equation (6). However, the improvement in fit 
was not dramatic, as the estimates of c and d typically 
were close to .5 (which is equivalent to Equation (6)). 
Hence, we decided that the slight improvement in fit 
that we gained was not worth the additional complexity 
associated with the model in Equation (8). Also, since 
c was not required to be equal to d during model 
fitting, the intuitive appeal of symmetry in p and 
(100 - p) was lost. 

Note that the Employee Benefits Survey, a survey 
conducted by the Bureau of Labor Statistics, uses 
models similar to Equation (8) to model GVFs for 
percents. Several recent Employee Benefits Survey 
publications are included in the References section; 
these publications contain an appendix that describes the 
methodology used to produce GVFs for percents. 

3. Comparison of models 

A variety of dependent variables appeared in the GVF 
models we explored for totals; e.g., the relative 
variance, the reciprocal of the relative variance, the 
variance, and the natural logarithm of the variance. For 
this reason, use of R 2 could be misleading, as different 
choices for the dependent variable can lead to different 
denominators for R 2. For example, it can be shown 
that the ordinary least squares estimates for Equation 
(2) and Equation 5.2.5 in Wolter (1985, page 203), 
which is 

ln{relvar(x)} = a -  b ln(x) (9) 

have a definite relationship: the intercepts ("a" values) 
are equal, and "b" in Equation (2) is equal to "-b+2" 
in Equation (9), resulting in the same predicted values 
for var(x). However, the R e values need not be equal. 
For example, for establishment totals, Equation (2) 
gives an R 2 of approximately 0.8, while Equation (9) 
gives an R 2 of approximately 0.55. Hence, as indicated 
in Section 2.1, we thought at one time that we had 
made progress using Equation (2), when in fact this was 
not true; we had already obtained the same result using 
Equation (9). 

We decided to employ measures that would allow us to 
compare models, even if the dependent variable was 
different. Both measures we used involved taking the 
difference between each direct standard error estimate 
and the predicted standard error from the model. One 
measure ("m~") was the average of the squared 
differences, and the other measure ("me") was the 
average of the absolute values of the differences. 

Mathematically speaking, m~ and me are "equivalent 
metrics"; i.e., ml = 0 if and only if me = 0. 
However, it need not be true that if m~ is less for one 
model than the other, it follows that m2 is less for that 
model as well. 

Using these measures, Equations (2) and (9) give the 
same results, as they should. Also note that these 
measures allow us to assess whether there were larger 
differences, on average, between direct estimates and 
predicted values for models that use different 
transformations of the original dataset. That is, we 
wanted to be alerted to a situation where a model would 
fit the transformed data well, but large differences 
between the (untransformed) predicted values and direct 
estimates occurred. 

Measures other than m~ and m2 merit consideration for 
comparing models; in particular, relative measures 
(e.g., the average of the relative squared differences). 
We gave consideration to relative measures akin to m~ 
and m e , but decided that they gave too much influence 
to the "low end". 

One relative measure that we considered briefly, but did 
not have the resources to investigate, was the average 
of the absolute values of the difference between each 
direct standard error estimate and the predicted standard 
error, divided by the estimate (rather than by the 
standard error estimate). Such a measure would show 
the change in the estimated coefficient of variation, an 
often-used indicator of the reliability of an estimate. 
We think this measure deserves additional study. 

4. Discussion of Methodologies for Fitting GVF Models 

As indicated in Section 2, we chose to use ordinary 
least squares regression for our GVF modelling. 
Wolter (1985, p. 297) discusses why weighted least 
squares regression and iteratively reweighted least 
squares regression might be considered to be preferable 
strategies. The argument rests on the reasonable 
assumption that the precision of direct estimates of 
relative variance gets better as the total "x" increases. 
Note that NCHS surveys such as the National Health 
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Interview Survey use iteratively reweighted least 
squares regression for GVF modelling. 

We gave due consideration to using weighted regression 
strategies. We believe that a weighted regression 
strategy is the preferred method if GVFs are being fit 
using a limited set of direct estimates. However, we 
were working with a complete set of direct estimates of 
sampling error for all estimates that are included in the 
NEHIS publication, and we noticed that we had a larger 
proportion of direct estimates at the "low end". Hence, 
the use of ordinary least squares seemed appropriate. 

5. Summary 

For developing GVFs for NEHIS totals, we found 
Chapter 5 of Wolter to be a helpful guide. An 
additional useful reference for practitioners is Johnson 
and King (1987). However, the applied literature in 
this area appears to be sparse. A search of references 
found using the Current Index to Statistics did not 
identify potential GVF models beyond those that appear 
in Wolter (1985). We did find one additional model in 
Kalton (1977), as mentioned in Section 2.1. 

The first model we investigated for totals was the 
"standard" GVF model, given in Equation (1). We 
found that it did not give satisfactory results in terms of 
providing estimates of variances for 1994 NEHIS totals. 
Therefore, we investigated the application of several 
models, including those given in Equations (2), (3), and 
(4). We ultimately chose to use Equation (4) with 
r = .75. Our selection criteria included scatterplots 
and use of measures that allowed the dependent variable 
to vary from model to model. Use of R z for model 
comparison can be misleading if the dependent variable 
varies from model to model. 

For estimating percents, we found a model that provides 
satisfactory variance predictions, given in Equation (6). 
This model is a special case of a more general model 
that we investigated, given in Equation (8). The more 
general model is similar to models used for developing 
GVFs for percents for the Bureau of Labor Statistics' 
Employee Benefits Survey. 

The model we chose for GVFs for percents (Equation 
(6)) has a form similar to the model used for the NHIS 
(Equation (5)). We illustrated the similarity by deriving 
Equation (7). Both the NHIS model and the model we 
have chosen for GVFs for percents have the desirable 
property of symmetry in p and (100 - p). 
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