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Abstract 
In two-stage sampling, the sample numbers of primary 

and secondary sampling units are often chosen to minimize 
cost and variance. This problem can be referred to as optimal 
clustering, as the relative first and second stage sample sizes 
control the degree of geographical clustering, for area-based 
surveys. In this article, I discuss the existing theory for 
optimal clustering of area-based surveys and its application to 
a recent Redesign of the Australian Monthly Labour Force 
Survey. Telephone interviewing was recently introduced to 
the survey, resulting in a smaller and less clustered optimal 
design than for face to face interviewing. 

1. Introduction 
This paper discusses the allocation of sampling resources 

to two stages of an area-based sample. Typically, the first 
stage will be a sample of some regions or areas (primary 
sampling units or PSUs), while the second stage will be a 
sample of persons or dwellings within these areas. The 
following notation will be used to describe the problem: 

m = number of first stage or PSUs in the sample; 
q = number of second stage or final units selected 

in each PSU (sometimes referred to as the 
optimal cluster size); 

n = mq = total number of final units in sample. 

It will be assunaed that PSUs are selected by stratified 
probability proportional to size or stratified random sampling. 
In principle, the parameter m could be chosen separately for 
each stratum in a stratified design, while the parameter q 
could be chosen separately for each stratum or even for each 
PSU. 

There is some literature on the optimal choice of q and m 
to reduce both cost and variance. Models can be formulated 
for the total cost and the variance of one or more variables, in 
terms of q and m. The parameters q and m can then be 
chosen to minimize cost for one or more variance constraints; 
the variance can also be minimized for fixed cost. Section 2 
summarizes the existing literature which includes: several 
forms of cost and variance models and the resulting q and m; 
the estimation of optimal cluster size from a pilot sample; 
optimal clustering for multiple variance constraints; and 
calculating different optimal cluster sizes for different area 
types. 

In Section 3, the application of this theory to the 
Australian Monthly Labour Force Survey (MLFS) is 
described. This survey has previously been conducted by 
personal interviewing (PI), but telephone interviewing (TI) 
has recently been introduced. It was found that the optimal 
TI design was much less clustered than the optimal PI design, 
containing 9.2% fewer dwellings and 44% more PSUs than 

the optimal design under personal interviewing. The optimal 
clustering for the MLFS was complicated by a constraint of 
proportional sampling within state, and the need for adequate 
state as well as national precision. The calculation of the cost 
and variance models is also discussed. 

2. Methods for Setting a Single Cluster Size 
Hansen, Hurwitz and Madow (1953) (chap.9) contains a 

discussion of optimal clustering for quite general cost models. 
The following variance model was assunaed: 

O) V =Vl  +V2m -l +V3m-lq  -1 ; 

while two possible cost models were discussed for two stage 
designs: 

(2) C = C1 f m  +Cem+C3mq ;and 

C = C1 ~-m + Cem+ C3mq + C4mfff  

where C = total cost, V = variance of the estimator of interest, 
and C i and V i are parameters estimated in some way. There 
was no algebraic solution for the values of q and m 
minimizing cost for fixed variance, however algorithms were 
provided. A cost model for three stage designs, was also 
given; this was a generalization of the second cost formula 
above. 

Cochran(1977) (chap.10) and Snedecor and Cochran 
(1980) (chap.21) used the variance model (1), but a simpler 
cost model: 

(3) C r o C I  + C2m+ C3mq 

Typically, C l would represent setup costs including 
interviewer overheads; C 2 would represent travel between 
PSUs; and C 3 would represent travel within PSUs and 
interviewing time. For this formulation of the cost and 
variance models, the values of m and q which minimize the 
cost C for fixed variance V=K are: 
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(4) 
! ! _! ! 

2 2 mopt = ( K - V 1 ) - I ( v 2  +V~V~C2 C3) 
_i i ! _! 

2 2 2 
qopt -- V22V3 C2 C3 

1 I I _! 
nopt = (K-Vl)-I (V~ g~ C~ C3 2 +V3). 

In fact, Cochran(1977) noted that q=q~ also minimizes: 
the product of cost and variance with no constraint; and 
variance for fixed cost. Clearly different values for m and n 
than those given in (4) would be optimal for these problems. 

It is notable that in formula (4), q~ depends on the ratios 
v3 and c2 vS ~33 ' not on any other cost or variance parameters, so 

that estimating these ratios accurately should be the main aim 
of cost and variance modelling. Equivalently, it is the 

v2 which is of interest from the intra-PSU correlation p = v2+v3 

variance model. 
Brooks(1955) discussed the estimation from a pilot 

sample of the optimal cluster size q~ as given by (4). Cost 
and variance models (1) and (3) were assunaed, with 
C~=VI=0. It was further assumed that the cost model was 
exact, however V 2 and V 3 would be estimated from a pilot 
sample. It was noted that (4) would normally give a 
non-integer value for q~. This could be achieved by 
assigning the mmcation and ceiling of q~ to appropriate 
proportions of PSUs, however this would be inconvenient in 
practice and provide negligible gains. Instead, a rounding 
procedure was suggested, where an integer value cht is 
chosen to satisfy: 

qint(qint- 1) <_ q2pt <__ qint(qint + 1). 

To assist with designing a pilot test to calculate the 
optimal cluster size, Brooks examined different sizes of pilot 
test (first and second stage) and different values of V2/V 3 , 
based on a two-level normal model. The pilot designs 
providing given levels of precision for qn were tabulated. 

Waters and Chester (1987) discussed the minimization 
of cost subject to variance constraints for several variables. 
This problem can be written as: 

(5) minimize C = C 1 + C2m + C 3 mq , with respect to 
m,q; 

subject to V (s) : V~ s) + v~S)m -1 + v~S)m -1 q-1 < K(S) for 

s=l, ..., S; 
where V (s) are the variances to be constrained at values 
K (s', s=l,...,S; and V(1 s', V~ s), V~ s) are variance model 
parameters for s= 1,..., S. 

Waters and Chester noted that there is no algebraic solution 
to this problem. They stated that a common approach to the 
problem is to examine the S univariate optima, which 
minimize C subject to a single variance equality constraint. If 
some of these univariate optima also satisfy the other variance 

inequalities, then the cheapest such solution is the solution to 
the general problem. If none of the univariate optima satisfy 

this criteria, then the authors suggest checking the s(s-1) 2 
bivariate solutions, which minimize cost subject to two 
variance equality constraints. The cheapest such feasible 
solution is also the solution to the general problem. Waters 
and Chester suggest plotting lines of fixed variance on a 
two-way plot ofm vs q. This graph is useful to suggest which 
of the s(s-1) solutions is likely to be optimal, and also to 

highlight the most influential variance constraints. I discuss 
in Section 4 one alternative to this approach for the two 
variable case. 

Deville(1993) provided several optimal clustering 
methods for more complex two-stage sample designs. He 
discussed the case of an unequal probability first stage sample 
with a simple random second stage sample, with a single 
constraint on the variance of a Horvitz-Thompson estimator. 
A sample-dependent cost model was formulated, and its 
design-expectation was derived. A super-population model 
was formulated, and the variance derived with respect both to 
the randomization and super-population measures. This 
resulted in a more tractable variance expression than the usual 
design-based variance. 

Deville allowed the cluster size c k to be different for all 
PSUs, unlike previous optimal clustering literature. 
However, it was found that all cluster sizes were equal at the 
optimum, and given by the standard formula (4) except where 
the optimal cluster size exceeds the population size within 
some PSUs, which would be rare in practice. 

Deville also considered other situations, such as stratified 
second stage samples, and where auxiliary variables are 
available to assist both design and estimation. These 
situations are not discussed here, as this paper is focused on 
area-based sample design. The auxiliary information 
required by Deville's other methods would rarely be available 
for area-based sample design, although the methods would 
clearly be applicable in many cases, including the Census 
quality control study discussed by Deville. 

3 Methods for Setting a Cluster Size for Several 
Area Types 

This Section discusses optimal clustering methods where 
different cluster sizes can be chosen for each area type. It is 
assumed that the aim is to mininuz" e total cost subject to a 
single overall variance constraint. Hansen, Hurwitz and 
Madow (1953) (vol.2) provide a method for this situation. It 
is assumed that cost and variance models have already been 
estimated for each area type, and are of the form: 

A 
(6) C =  ~] (Cli  +C2imi +C3imiqi) 

i=l 

(7) V =  2 Vli+V2imi -l+V3imi -lq~-l 
i=l 
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where: C~ , C2i , C3i , Vii , V2i , V3i are parameters for 
area type i, i= 1, ..., A; 
m~ = number of sample PSUs in area type i, i= 1, ...,A; 
qi = cluster size in area type i, i= 1,..., A; 
n y  ~ qi - number of final units in sample in area type i, 
i=l,  ..., A. 

The optimization problem can be written as: 
(8) minimize C with respect to m~, qi (i=l, ..., A) 

subject to V = K, for q i, mi ~ R 

where K is a given constraint on the variance; 
C and V are defined as in (6) and (7). 

The solution to (8) is given by Hansen, Hurwitz and Madow 
(1953) (vol.2) is: 

_! ! ! _! 

(9) qi(opt) = V2i 2 2 2 2 V3iC2iC3i 
( A ) - I t  ~ 1 1 ~ , 1)  , , i i ; - l -2 

= V2iC2i mi(opt) K -  ~ Vlj V2jC2j + VjjC~j 
j=l =l j=l 

( A ) - l l ~  1 ' ~1 ' 1)  l ! i i A - ; i -i 
hi(opt) = K -  Z VIj V2jC2j + V~jCjj V3iC3i 

j=! =1 j 

As would be expected, (9) is equivalent to the single area 
type result (4), if A=I. Even for A ,  1, qi(~t) in (9) is 
equivalent to result (4), however the rn~op, ) and r~{opt) are 
different to result (4). Result (9) can be considered to be an 
allocation method taking into account cost, variance and the 
use of optimal cluster sizes. This method would not generally 
provide equally precise estimators for different area types, 
rather resources would be assigned optimally to area types to 
meet overall objectives. A common consequence would be 
higher relative variances for rural estimates than urban 
estimates. If some or all area type variances were of 
individual interest, then this could expressed as multiple 
variance constraints, discussed in Section 4. 

In practice, both ~ and c h must be positive integers. The 
distinction between real and integer optima is unimportant for 

which would generally be large, however c h is a much 
smaller value. It is suggested that an integer solution be 
obtained by evaluating the cost function at the 2 A neighboring 
integer solutions (that is ceilings and truncations of the A real 
optimal o~). Each {~} should also be recalculated at each of 
these 2 A possible solutions. It is simple to show that the 
optimal m~ for fixed q~ is given by: 

A 
.I( v2i+v3iqTl ) j~l ~]iC2j+C3Jqj)(V2j+V3Jq;1) 

(10) mi--- 1 ~ ; i  K'-J =~l V lj 

(Proof available from author on request.) 

This method would provide the exact integer optimum if 
the constrained optimization problem was everywhere 
convex in {n~, o,: i=l,...,A}. The problem is not necessarily 
convex everywhere but is convex at the optimum, so that the 
proposed method could be expected to equal to or be very 
close to the correct integer optimum. 

In some situations, the sample sizes for each area type 
are constrained up to a single factor, that is: 

00 n i = ~n0i for some ~ ~ R, 

where n~ are fixed in advance. For example, the MLFS 
sample design included this constraint, as discussed in 
Section 5.4. 

The solution to problem (8) with additional constraint 
(11) is given by: 

(c  / lc3n° 
(12) qi(opt) = V:~ino ~ / j__~l V3jnoj 1 

i=l i~l noi(V2iqi(opt) + V3i) 

with the m~ and n~ determined by: 
ni = ~n0i 
mi = niqi . 

(Proof available from author on request.) 

4. Multivariate Optimal Clustering 
In practice, there are usually several estimators whose 

variance is of interest. The general form of the multivariate 
optimization problem for multiple area types is: 

03) minimaz" e C with respect to ~ , c L (i=l,...,A) for 
qi, mi ~ R  

subject to V (s) _< K (s) for r = 1,...,S. 

where: 

V(~):  Z (v~Si)+ v~Si)m7 l +  v~Si)m71 qT ' ) ;  
i=l 

V ~S) are the variances to be constrained at values K ~'~, s= 1,...,S; 

v( S) xz(s) v(s) 
l i , - 2 i , - 3 i  are variance model parameters, for i=l, ..., 

A; s= 1, ..., S. 

The solution to this problem is discussed in Waters and 
Chester (1987), for a single area type. A similar method 
could be adopted here, however their approach requires 
accurate specification of variance constraints, otherwise some 
constraints may be highly influential. A simpler solution 
which would cover many practical situations is to optimize 
based on a linear combination of the variances, with the linear 
coefficients set by the user. For example, the coefficients 
could be chosen by trying several possible values and 
perusing the resulting solutions. This was the approach taken 
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for the MLFS design. There is some discussion in 
Kish(1988) of these two approaches to multiple objective 
sample design. 

The optimization problem can then be expressed as: 

(14) minimize C with respect to n~,  q (i=l,...,A) for 
qi, mi ~ R 

S 
subject to 2; w(s)v (s/_<K 

s=l  

-, / where: V (s~ = V((i ~ + v2i m i + v 3i mi q71 " 
i=l  

K is a constraint, possibly based on historical variances; 
s 

{w (s~ : s=l,...,S } are set by the user such that E w (sl = 1, to 
S=l 

reflect the priority on each of the S variances. 

This problem can be expressed in the same form as the 
univariate problems in Section 2, so the solutions are identical 
except that, in (9), 

Vii, V~ and V3~ 
are replaced by 

s x,,(s) v(s) and E V (s~ 
- -  l i , - - 2 i  3i 

s=l  s=l  s=l  

respectively, for i=l,...,A. 

5. Application to MLFS 

5.1 Introduction 
The MLFS is a monthly survey of about 30 000 

dwellings, collecting information on labour force 
participation and related information. Two key estimates are 
the total number of employed persons and the total number of 
unemployed persons in Australia. The first stage is a 
probability proportional to size sample of primary sampling 
units (PSUs). The PSUs, usually referred to as collectors 
districts, contain about 300 dwellings on average and are a 
by-product of the five-yearly Census of Population and 
Housing. The second stage of sampling consists of a sample 
of dwellings from within each selected PSU. The cluster size 
refers to the number of dwellings to be selected from each 
selected PSU. 

This is a slight simplification of the sample design, as 
there is in reality a third stage of sampling. PSUs are divided 
into blocks, and the final sample of dwellings is a systematic 
sample from a randomly selected block in each selected PSU. 
However, a two-stage design of dwellings within PSUs is 
considered to be an adequate approximation for the purpose 
of calculating optimal cluster sizes. 

The MLFS sample is redesigned every five years and the 
work reported in this paper was part of the 1996 Redesign. A 
major feature of this Redesign was the introduction of 
telephone interviewing. Up to August 1996, the MLFS was 
enumerated by personal interviewing (PI) only. From August 
1996 onwards, "warm telephone interviewing" (TI) was 
introduced, where new respondents were personally 

interviewed while the great majority of continuing 
respondents were interviewed by telephone. The 
introduction of computer assisted personal interviewing 
(CAPI) was also evaluated in 1996 but was not adopted. 
However, both CAPI and TI were used in some of the 
operational tests on which the cost models were based, so that 
the cost models incorporate some CAPI costs which were not 
relevant to the survey as adopted. 

In the 1996 and past MLFS Redesigns, optimal 
clustering has been applied to multiple area types. There 
were 6 main area types, including rural and 5 types of urban 
a r e a s .  

5.2 Variance Modelling 
Variance models were calculated by generating all 

possible samples based on Census data for various cluster 
sizes and sample sizes. True variances could then be 
calculated, under the assumption that the Census data and 
simulated design were appropriate. This was numerically 
t~asible as CDs and clusters within CDs are selected 
systematically for the MLFS. Some approximations were 
made to the sample design in this process, however these are 
not discussed in this paper, which focuses on the optimal 
clustering method. In addition, variance models were based 
on the Horvitz-Thompson estimator, whereas a post-stratified 
estimator by age, sex and a geographic variable is used in 
reality. The impact of this approximation has not been 
measured, however it is expected to have relatively little 
impact on the ratio of the first and second stage variance 
parameters, implying little impact on optimal clustering. 

A model of the form (7) in Section 3 was then fitted to 
the variances obtained from Census resampling, for several 
variables including employed persons and unemployed 
persons. The final variance model did not greatly change 
between the 1991 and 1996 MLFS Redesigns. 

5.3 Cost Modelling 
Cost models were based on a large dataset of workload 

costs for personal interviewing, and a dataset containing 
telephone interviewing costs for a subset of 80 of these 
workloads. These workload costs were from a six month trial 
of TI and CAPI, so that the TI costs also include costs 
associated with CAPI, even though CAPI was not adopted 
for the MLFS. 

The cost of enumerating each workload was subdivided 
by the type of interviewer activity. Interviewer activities were 
assigned to either the C~i, C~ or C~ parameters, for example 
travel between CDs was judged to depend on the number of 
CDs and hence assigned to the C a parameters. Cost models 
were fitted separately for each of these three components, and 
then combined into two models of the form (6) in Section 3: a 
TI cost model and a PI cost model. The reason for this 
approach was that a fitting a single regression model of the 
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form (6) was not possible, due to collinearity between the 
number of CDs and number of households. 

C2i Table 4: Comparison of ~3~ in Two Cost Models 

Area Type 1996 Personal 1996 Telephone 
Interviewing Interviewing 

1 2.69 1.04 

2 2.88 1.11 

3 2.95 1.13 
,, 

4 2.80 1.08 

5 5.44 1.78 

6 4.84 1.78 

Table 4 contains a comparison of two cost models: the 
1996 model for telephone interviewing; and the 1996 model 
for personal interviewing. From the last two columns of 
Table 4, it can be seen that telephone interviewing 
significantly reduced the relative contribution of CD-level 
costs, which would result in a less clustered optimal design. 

5.4 Optimal Clustering Calculations 
Variances for both employed persons and unemployed 

persons were explicitly included in the optimal clustering 
calculations. To include both variances, the method specified 
in (14) in Section 4 was used. To apply this method, we 
needed to choose a single weight parameter (denoted w~),  
to reflect the relative priorities of the two estimators. The 

quantity to be constrained would then be: 
WempVar(employed persons) + 
(1-Wemp) vat(unemployed persons) 

One possible approach for choosing w ~  is to plot the 
solutions for different values of w ~  on a graph of employed 
persons variance against unemployed persons variance. 
However, for problem (8) the achieved cost is also different 
for different values of w ~ ,  so that it is difficult to weigh the 
different options. In order to remove the issue of cost, the 
converse problem was solved and plotted; that is the linear 
combination of variances was minimtz" ed for fixed cost. A 
small number of possible values of We~ were chosen based 
on the plot, and the survey manager was provided with 
options based on these values. 

Two values for w~, were chosen based on Plot 1, which 
plots the employed and unemployed persons variances 
against Were p, for a fixed cost constraint. Both variances have 
been scaled by dividing by the lowest possible variance for 
each variable, that is the variance obtained by setting w~0 to 
0 for unemployed persons and setting w ~  to 1 for employed 
persons. 

It can be seen from Plot 1 that setting w~p=0.9 implies 
roughly equal priority on employed persons and unemployed 
persons, in the sense that both variances are above their 
minimum values by a factor of about 1.01. Unemployed 
persons has been given higher priority than employed persons 
in past redesigns. This could be reflected by setting w~=0.7, 
to retain some priority for employed persons, but to reduce 
the unemployed persons variance to close to its minimum 
possible value. Optimal clustering was calculated for both of 
these options, to evaluate which option better reflected 
current priorities. 

Plot I" Variance Tradeoff for Employment and 
Unemployment 
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There was an additional constraint on the design, which 
needed to be incorporated into optimal clustering 
calculations. Historically, MLFS sampling has been equal 
probability sampling (EPS) within each state. In addition, 
state sample sizes were initially set based on the priorities of 
state and national estimates; this was done prior to optimal 
clustering considerations. While the optimal clustering 
project could result in a change to overall sample size, this 
had to be done by increasing each state's sample size by a 
constant factor, to preserve the initial state sample relativities. 

Clearly this places a constraint on the area type sample 
sizes. Let n~ (i=1, ..., A) be the initial area type sample sizes, 
as implied by the initial state sample sizes and EPS within 
state. Let ~ be the factor to be applied to the initial state 
sample sizes. Then the final area type sample sizes must 
satisfy: 

1~ = ~nn . 
The optimal clustering problem was thus defined by (8) 

with constraint (11), as described in Section 3. Expression 
(12) from Section 3 gave a real-valued solution. The integer 
optimal cluster sizes were calculated by evaluating the cost 
function for fixed variance for all of the vectors of integers 
neighboring the real-valued optimal cluster sizes, as discussed 
in Section 3. 

Table 5 summarizes two options for optimal clustering, 
for w=p=0.7 and w~=0.9 respectively. The table gives the 
variances and the costs based on the TI cost model. 

Option 2 was adopted, reflecting a small change in user 
priorities towards employment statistics. 
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Table 5: Two Optimal Clustering Options 

Change in Cost 

Change in Sample 
Size 

Change to Number of 
CDs 

Standard Errors 
Unemployed Persons 
Employed Persons 

Optimal Cluster Sizes 

1 Met Inner City 

2 Met Inner Settled 

3 Met Settled 

4 Met Outer Growth 

5 Ex-Met Urban 

6 Ex-Met Rural 

Option 1" 
Wemp=0.7 
-0.52% 

+0.15% 

-3.25% 

10 793 
24652 

7 6 

8 7 

6 ~5 

9 

10 

Option 2: 
Wemp=0.9 
-0.69% 

-2.0% 

+8.04% 

10 849 
24 499 

8 

10 

5.5 Gain from Splitting Cost and Variance Models 
by Area Type 

The MLFS sample design is made more complex by 
allowing separate cost and variance models and cluster sizes 
in different area types. To measure whether this additional 
complexity gives sufficient efficiency gains, optimal 
clustering was calculated based on a single pooled cost and 
variance model. The cost of this design was then compared 
to the cost of a design based on models split by area type. 
Both the pooled and area type models were based on 1996 
variance and TI cost models, and the cost of each was 
estimated using the 1996 TI cost model split by area type. 

To sin~lif~ comparison, the state sample fraction 
constraint was not imposed, and non-integer cluster sizes 
were allowed, for both the pooled and optimal designs. The 
same variance constraint using w~=0.9 was imposed on 
both models. It was found that the cost for the optimal design 
split by area type was about 2.5% lower than the single area 
type design. 

5.6 Effect of Telephone Interviewing on Optimal 
Clustering 

Introducing telephone interviewing should result in 
greatly reduced travel costs, with relatively little impact on 
interview costs. As a result, the optimal TI design was 
expected to be less clustered than the optimal personal 
interviewing design. To explore this issue, optimal TI and PI 
designs were compared. Both optimal designs were based on 
the variance model with w~=0.9, and cost models calculated 

from current data for TI and PI. Mode of collection was 
assumed not to significantly affect variances. 

The optimal PI design was much more clustered, with 
cluster sizes ranging from 6 to 22, compared to the optimal 
TI cluster sizes ranging from 4 to 10. Overall, the optimal TI 
design had 44% more PSUs and 9.2% lower sample size than 
the optimal PI design. 

6 Summary 
The existing literature includes methods for minimizing 

cost subject to one or more variance constraints. Most of the 
cost models assumed are linear, of the form (3) in Section 2, 
although some extensions to nonlinear models are given in 
Hansen, Hurwitz and Madow (1953). Section 3 summarized 
methods available for splitting models by area type, but still 
with overall cost and variance objectives. This results in the 
same optimal cluster size formula as in the existing literature, 
but a different allocation of sample to area types which takes 
account of optimal clustering and cost and variance. Optimal 
cluster sizes were derived for an additional constraint, where 
area type sample sizes are fixed up to a single factor. Section 
4 briefly discussed some methods for dealing with multiple 
variance constraints. 

Section 5 summarized the application of this theory to a 
Redesign of the Australian Monthly Labour Force Survey 
(MLFS), which has just introduced partial telephone 
interviewing (TI). For this survey, splitting cost and variance 
models by area type resulted in about 2.5% cost saving. It 
was found that the optimal TI sample was much less clustered 
than an optimal sample for personal interviewing, with about 
10% less dwellings and 44% more PSUs. From this case, it 
can be concluded that splitting models by area type for 
optimal clustering is a valuable sample design tool, and that 
optimal clustering changes significantly if the mode of 
collection is changed. 
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