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Stratification is one of the most widely 
used techniques in finite population sampling. 
Strata are disjoint subdivisions of a population, 
the union of which exhaust the universe, each of 
which contains a portion of the sample. Two of 
its essential statistical purposes are to: 

(1) allow for efficient estimation, especially in 
the case of stratification by size, and 
(2) deal statistically with subpopulations or 
domains by controlling their sample 
allocations. 

Stratification by size is typically considered as 
serving purpose (1) by creating strata in an 
efficient way and optimally allocating the sample 
to the strata. Using model-based analysis, we 
show that, in the situation where stratification by 
size is generally used, optimal allocation of a 
weighted balanced sample achieves exactly the 
same variance as unstratified, best linear unbiased 
(BLU) prediction coupled with weighted balanced 
sampling. In other words, stratification by size 
has no advantage over the optimal, unstratified 
procedure. This and other theoretical findings are 
illustrated with simulations using real 
populations. 

1. A Stratified Linear Model and Weighted 
Balanced Samples 

Let h denote a stratum and i a unit within 
the stratum. The target variable for unit hi is Yhi- 

The population contains H strata with the number 
of units in each stratum being N h ( h = l  ..... H)  

and the population size being N = ~-~h~l Nh" A 

sample of n, h units is selected from stratum h with 

the total sample size being n = ~_~hnh. Denote 

the set of sample units in stratum h as s h and the 
set of nonsample units as r h . Assume that a 

separate linear regression model holds within 
each stratum: 

EM(Y,,) : X,,~,,, varM(Y,,) = V,,cri~ (1) 

where Yh is N h × 1, X h is Nh × ph, 

V h:diag(vhi )  is U h x u  h, and 13,, is a Ph ×1 
parameter vector. The model in stratum h is 

denoted by m(xh:Vh) and the BLU predictor is 

then the sum of the BLU predictors in each 
stratum: 

H 

v,,) 
h=l 

In stratum h define a root(v)-balanced sample to 
be one that satisfies 

1 1' V -  1/2"~)( "-- luhXh (2) 
?lit sis - -  sh ~" sh 1N ~]" hl121 Nil 

where 1, h is a vector of n h l 's ,  1Nh is a vector of 

N h l 's,  V, h is the n h x n  h diagonal covariance 

matrix for the sample units, and X,. h is the 

n h x Ph matrix of auxiliaries for the sample units. 

Any sample satisfying (2) will be denoted by 

B(Xh:Vh), and, when ( 2 ) i s  satisfied in each 

stratum, the entire sample is a stratified weighted 
balanced sample. 

If the model has a certain structure given 
in Theorem 1 below, then a weighted balanced 
sample is the best that can be selected in the sense 
of making the error variance of the BLU predictor 

small. Let M(Xh) be the vector space generated 

by the columns of X h . A straightforward 

application of Theorem 2 in Royall (1992) yields 
the following stratified result. 

Theorem 1. Suppose that model (1) holds in 
stratum h for h = l  ..... H .  If both Vhluh and 

vJZlNh ~ M(X h) then the BLU predictor l 

achieves its minimum variance when each 

is B(Xh'Vh). In that case, the stratum sample 

BLU predictor reduces to 
H 

7~ Z N F ( , / 2 )  1 Yhi = ,, ,, - - ~  , ,~,  ( 3 )  
h=l l~h i~'t Vhi 

and the error variance is 

par M ( T -  T)= Z , ,  --~h ' "'" ! -- N'vh (4) 

--(1/2) E N '  1/2 / ~, 
where v,, = ---i='l Vhi /iV,, and v h = 

~--'i~; Phi / Nh " 
In a stratified weighted balanced sample, 

the optimal estimator, thus, reduces to a sum of 
mean-of-ratios estimators, which, for later 

reference, we will write as TMRS (I)1/2) " 
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2. Optimal Allocation for Stratified Balanced 
Sampling 

The optimum allocation to the strata of a 
weighted balanced sample can be easily 
calculated. Assume that the cost of sampling is 

C - "  C 0 dr Z h  Chn h where C O is a fixed cost and 

c h is the cost per unit sampled in stratum h. 

Theorem 2. Assume that model (1) holds, that 

VhlNh and vi/21- ,, ='Nh e M(X h), and that a weighted 

B(Xh'Vh) is selected in each balanced sample 

stratum. The allocation of the sample to the strata 
that minimizes the error variance of the B L U  
predictor, subject to the cost constraint 

C = C o + ~-~h Chnh' is 

M ~-(1/2)_ / :'-- 
nh "" h'h Uh/~lCh for h = 1 ..... H. 

- y__,,,. - - ( " % / .  c/27.. n l~h'l)h" h ' [ '~ 'h"  

When optimal allocation is used and all 
costs are equal, the B L U  predictor (3) becomes 

7~ l ( Z h "  v<ll2'rr ) Z h Z , ,  Vh i Oh = -  sv,, h "-h ,12_ ( 5 )  #i 
and its error variance (4) can be rewritten as 

VarM(T-- T) = 

SV h Vh vh - ~ h  NhVhtrh (6) 

3. The Case of a Single Model for the 
Population 

An important special case is having a 
single model that fits the whole population. 
Assume the model in each stratum is 

EM(Yh)= Xhl], VarM(Yh)=Vh(7 2 , (7) 

with X h and V h defined as in (1). Expression (7) 

is just another way of writing the unstratified 
model M(X:V). Thus, strata can be ignored in 

calculating the B L U  predictor and its error 

variance. If V1 N and v1/E1N E Tg(X), then, by 

Theorem 1 with H=I, a weighted balanced 
sample s eB(X:V) is optimal for the BLU 

predictor. In that case, the B L U  reduces to 

t = 1 N v  (,/2) ~_,,. Y~ / v]/2 (8) 
n 

with error variance 

varM (7 ~ -  T)= crE[n-l(NF('/z)) 2 - Ng  I . 

On the other hand, suppose we select a 
stratified weighted balanced sample and use the 
optimal allocation given in Theorem 2 above for 
the equal cost case. Using (5) with o" h = er, the 

B L U  predictor with the optimal allocation is 

~, 1 [~, N V 0/2) / ,  1/2 
yl~L-ah h h  ) Z h Z v h Y h i  . ~  ~ . I V h i  

which is exactly equal to (8). In other words, 
stratification with optimal allocation of a 
stratified weighted balanced sample gains nothing 
at all compared to the strategy of selecting an 
unstratified sample with overall weighted balance. 

A situation where a common model may 
hold for the whole population is one where a 
single auxiliary variable x is available. The 
auxiliary can be used for stratification by size as 
well as for estimation. Strata are formed by 
ordering the units from low to high based on x so 
that the first stratum contains the N~ units with 
the smallest x values, the second stratum contains 
the next N2 smallest units, and so on. Take the 
special case of model (7) given by 

EM(Yh) Xh ~ varM(Yhi ) 2 r "- , = a Xhi (9) 

where, in many populations, 0 < 7' < 2. When 

(9) is true, we can use the idea of the minimal  
model  introduced by Dorfman and Valliant 
(1997). The minimal model is the one with least 

variables satisfying V1 N and VV21N ~ M ( X ) .  

When varM (Yhi) 2 r -- (~ Xhi , this is 

EM(Yhi)= R ~.r12 k,,7,/2.~hi "t" ~),XhYi . We denote this model 

by M ( x  r /2,xr:x  r ) .  With the variance 

specification in (9), the optimum allocation in 
Theorem 2 becomes 

~r v( r /2 ) /  
n h " " h ' a ' h  1 " ~ 1  ""  h 

n - ~--~h' ~r v(r/:) / ~ (1 O) 
" * h"~h" / ~  '~'h" 

When the optimal allocation (10) is used and 
costs are all equal, the error variance (4) of the 
BLU predictor in a stratified weighted balanced 
sample reduces to the variance for an unstratified, 
weighted balanced sample: 

varM(T-T)=tr/II(Ny(r/2')2-Nff(r']. (11) 

4. Comparisons with Other Strategies 
In this section we denote the polynomial 

model having EM(Y/)=~ 0+f~xi+--.+6,x / and 

varM(Y~)=o'Zv i by M(6 0 ..... 6i"v). 
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When strata are formed on the basis of a 
size measure x, an oft-studied procedure is the 
separate ratio estimator, defined as 

H 

7~Rs = Z Nh~,. _ Xh 
h=l Xhs 

where Xh = EiN~xhi/Uh ' Yh.,'-- = Ei~Sh Yhi /nh , and 

x~,.,. = ~--'i~.,h xhi/nh" Under the working model 

M(0,1:x), 7~Rs is unbiased with variance equal to 

varM(TRs-T)=(r2~NiZz(1-fh) xhrxh 
n h Xhs 

where f,  = n h/N h and x~, r = ~it.,.,, Xhi/(Nh -- nh)" 

If one is completely confident that M(0,1:x) is 

correct, then the optimal sample for 7~Rs would be 
to pick the n h units with the largest x's in each 

stratum. Even more extreme is the globally 
optimal strategy of the simple ratio estimator and 
the n largest units in the population. 

Confidence in any single model is seldom 
this high and having protection against model 
failure is usually prudent. If the true model is 

M(5 0 ..... 51"x ) , then the estimator has a bias: 

[~(J) ~'/)1 j =0 Xhs Xh 

where y}//= Ziu__,.l x~ i/N,, and x,,.,.-(i/= ~-~i~.,.,. x~i/n,,. 

If a stratified (unweighted) balanced sample, i.e. 
=(J) = Y~/) one that is balanced in each stratum (%.,. 

for j = 1 ..... J), is selected, then 7~Rs reduces to 

the stratified expansion estimator 
H 

Tos =ENh~. ,  , . 
h=l 

Denote a stratified (unweighted) balanced sample 
by s*(J) and a simple (unstratified) balanced 

sample of order J by s(J). When the working 

model M(0,1:x) holds, the optimal allocation of 

the sample to strata for 7~Rs is n h ~: N h ~ h "  

Protection against bias under the 
polynomial model M(6 0 ..... 6.I:x ) is afforded 

either by simple balanced sampling with the ratio 
estimator or stratified balanced sampling with the 
separate ratio estimator. Royall and Herson 
(1973) showed that if n h o~ Nh~-h, then under 

M(5 0 ..... 5 , ' x )  the strategy [s*(J),TRs ] is more 

efficient than r _ _  _ 7,(0,1: x)] in the sense that 

x)-  >_ 

But, because the separate ratio estimator 
does not flow from a model satisfying the 

conditions of Theorem 1, the strategy [s*(J), 7~Rs] 

is not the best that we can do. When 

varu(Yi)=cr2xi, as in M(0,1:x), the minimal 

model is M(xl/Z,x:x). Now, suppose that the 

correct model contains some higher order 
polynomial terms. Specifically, let 

M(~o,~l/Z ..... ~.," x) denote the model with 

E M (Yi) -- (~0 + (-~l/2X~/2 -'1- ~lXi 4-. ""+'~.IX7 a n d  

var M (Y/)= 0 "2x i . If the sample has weighted 

balance--equation (2) aboveuso that 

1 x/ ~(J) 
__ ~ x]/2 - y(,/2) for j = 0,~2,1 ..... J ,  (12) 

then the BLU predictor T(xVZ,x:x) under 

M(xVZ,x:x) is protected against bias if the 

model is really M(5 o, 51, 2 ..... g.," x). By Theorem 

1, when (12)is satisfied, T(x~/Z,x:x) reduces to 

the mean-of-ratios estimator 7"MR(Xl/2)= 

Nx(l/Z)n-1 ~_,,. Yi/xY 2 and has error variance 

varM[T~(x'/Z)-T]=az[l(N~('/2)) 2 - N ~  1. (13) 

By Theorem 1, this error variance will be less 
than or equal to any that can be achieved under 

M (50,51/2 ..... 51"1) using 7~,s . 

5. Formation of Strata 
A question traditionally posed when 

stratifying by size is how to form the strata. 
When a common model holds for the entire 
population as in section 2 and V1N, 

vl/Zlu e M(X),  we know that the BLU predictor 

with a weighted balanced sample is the best 
strategy. That is, stratification in this common 
circumstance is unnecessary. However, various 
methods of strata formation are used in practice, 
and it is interesting to investigate their properties. 

One set of methods are known as equal 
aggregate size rules. Units are sorted from low to 
high based on x. Strata are then formed in such a 

768 



way that each contains about the same total of the 
size variable or a monotone transformation of it. 

Equalizing As v(r/2) leads to several stratification 
• • h ' ~ h  

rules. When 7 = 0 ,  equal values of ,,-(r/2) 1 V It Xh 

correspond to equal numbers of units N h in each 

stratum. When y = 1, we have equal aggregate 

square root of size, and 7 '=2  gives equal 

aggregate x. 
The equal aggregate size rules can be 

derived using only model-based arguments. Due 
to limited space, we will only summarize the 

result. When the model is E M(Yh)=Xh~ , 

var M (Yhi) = 0"2 Xh ir with V 1 N, V 1/21 u ~ M(X) , the 

sample is s h E~ B(X,," V h), and an equal number of 

units is allocated to each stratum, then the error 
variance of the BLU predictor is minimized if 

strata are constructed to have equal iv v(r/2) in 
• ,  h . , ~ h  

each. Moreover, if strata are constructed in this 
manner, an equal allocation is the optimal 
allocation in the equal cost case. However, an 
optimally allocated stratified, weighted balanced 
sample yields exactly the same variance as an 
unstratified sample with weighted balance. 

Another method of stratification is known 

as the cum .q~ rule due to Dalenius and Hedges 

(1959) that we will include in the simulation 
reported in section 6 but will not describe in 
detail here. 

6. Some Empirical Results on Strata 
Formation 

In this section we will illustrate the 
different methods of strata formation and their 
effects on estimation in a simulation study. The 
three populations used are known in the literature 
as Hospitals, Cancer (Royall and Cumberland 
1981), and Beef (Chambers and Dunstan 1986). 
Figure 1 shows scatterplots of the three. Four 
methods of stratification were used with H=5: 
(1) equal numbers of units N j, in each stratum, 

(2) equal cum ~f-  in each stratum. 

(3) equal aggregate total of ~ x  in each stratum 
(the cum ~ x  rule), 

(4) equal aggregate total of x in each stratum (the 
cum x rule). 

We used the four methods of stratification listed 
above and also did unstratified sampling. Five 

Figure  1. Sca t te rp lo ts  of th ree  popu la t i ons .  
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combinations of estimators and sample selection 
methods were used: 

(a) T(xr/2 ,xr 'xr) ,  which is minimal when 

var M(Y/)= aZxr i , and pp(x r/z) sampling 

with y = l ,  2, 

(b) 7"MRS(XrP), the stratified mean-of-ratios 

estimator and pp(x r/z) sampling with 

? ' = 1 , 2 ,  

(c) ~s ,  the stratified expansion estimator, and 

stratified simple random sampling (stsrs) 
without replacement, 

(d) 7~Rs, the separate ratio estimator, and stsrs 
without replacement, and 

(e) 7~/_s, the separate regression estimator, defined 

below, and stsrs without replacement. 
The separate regression estimator is defined as 

?'ts = 7"os + Z, ,  Nhbh,. (x,, - x~,.,. ) with b,,., = 

~,;, (xhi - X--h.,. )Yhi /~-<,;, (Xhi - Xhs )2 " Note that 

TMm(x r/z) is the Horvitz-Thompson estimator in 

pp(x rp) sampling and that ~s is both the 

Horvitz-Thompson and the H~jek estimator in 
stsrs. 

For each method of stratification a sample 
of n=30 was divided equally among the five strata 
giving n h = 6  in each stratum. As noted in 
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section 5, when strata are formed to equalize 

N-(r/z)  costs are all equal, and h Xh 

varM (yhi) 2 r = a  Xhi, then an equal allocation is 

optimal. In addition, equal allocation is one 

method traditionally used with the cum 

method. 
Both unrestricted and restricted sampling 

techniques were used in the simulation. 

Unrestricted pp(x r/2) was implemented using the 

random order, systematic method described by 

Hartley and Rao (1962). Restricted pp(x r/z) 
sampling was done by selecting a sample with the 
random-order method and then checking its 
closeness to weighted balance on four moments 
within each stratum. The balance measures 

r - : - ( j - ~ / ~ )  _ v(J)/v(~/~) )1 ej(s,,]=, , ~ln~x"h "h /"h j = 0, 1/2, 1, 2 
S jxh 

were calculated in each stratum where 

SJ xh --" i=l If'hi "xhi - - ~ ,  / x  h and 

= , : , / 2 / [  ~ ,  ;(r/2)  Jr~,~ ~,~ /~, ,  h~h ). For the pairs 

( j = Z , y = l )  and ( j = l , y = 2 ) ,  ej(Sh)=O, and 

balance on those moments is trivially satisfied. 

if ej (s h) < 0.1256613 For the non-trivial cases, 

for all measures in every stratum, then the sample 
was retained; otherwise, it was discarded and 
another drawn. This technique retains only about 
10% of the best-balanced samples. 

Balancing on the other moments above, in 
addition to j = y ,  protects the minimal estimator 

against different polynomial terms not in a 
minimal working model without losing any 
precision under the working model. With the 
weighted balance conditions above, the mean-of- 

ratios estimator 7~s (x Y/2) is equal to the 

minimal estimator T(x r/z ,x r" x r ) , but in 

unbalanced samples there may be important 
differences----a point that the simulation results 
will illustrate. 

Unrestricted and restricted stsrs samples 
were used for estimators (c)-(e) above. In the 
unrestricted samples, a simple random sample 
was selected without replacement in each stratum 
and retained regardless of its configuration. For 
restricted samples, a without-replacement srs was 

selected in each stratum and checked for simple 

balance on the moments v(J) ~.,h, j = 0 , ~ , l ,  2. As 

above, only about 10% of the best-balanced 
samples were retained. 

For each combination of stratification, 
sampling method, and estimator, 1,000 samples 
were selected. For restricted samples this means 
that samples were selected until 1,000 were 
retained. The root mean square errors for each 

estimator were computed as rmse(T) = 

[~F_~IT(T-T)211000] '/2 . Figure 2 presents 

results, using a rowplot of the type devised by 
Carr (1994). In each column, the ratio of each 
rmse to the minimum rmse among the estimators 
for the population is plotted. Black dots represent 
restricted samples while open circles are for 
unrestricted samples. The narrow triangles are 
cases where the ratio was truncated at 2 to avoid 
scaling problems. Some observations are: 
• In Hospitals and Cancer, the minimal 

estimator with unstratified, restricted pp(x 1/2) 
sampling has the smallest rmse or very near 
it. In Beef the stratified, minimal estimator 

with pp(x ~/2) sampling is best. 

• Unrestricted sampling is generally inferior to 
restricted, balanced sampling. 

• The minimal and mean-of-ratios estimators 
have about the same rmse's in weighted 
balanced samples as expected. In contrast, 

7"MRs(X r/2) can have much higher rmse's than 

7"(x r/2, x r" x r) in unrestricted pp(x r/2 ) 

sampling. 
• The estimators used when sampling is 

stsrs---expansion, ratio, and regressiolv--are 
improved by balanced sampling, but are 
generally inferior to the minimal estimator 
with weighted balance as anticipated in 
section 4. 

• For a given selection method (pp(x  1/2) or 

pp(x) ), stratification with weighted balance 

within strata yields rmse's very near those of 
unstratified sampling and weighted balance 
for the minimal or mean-of-ratios estimator in 
Hospitals and Cancer. This is expected since 
the minimal and mean-of-ratios estimators are 
equal in weighted balanced samples, and an 
optimally allocated, stratified, weighted 
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balance sample also has overall balance. Beef  
is the exception because restricted, stratified 
sampling achieved better overall, weighted 
balance than unstratified sampling. 
In contrast, stratification with balanced 
sampling can substantially improve the 
expansion, ratio, and regression estimators. 

7. D i s c u s s i o n  
Rules for stratification by size have been 

in the literature for many years, e.g., Mahalanobis 
(1952). More recently (Wright 1983) the method 
has been justified as a means of approximating 
the opt imum selection probabilities derived by 
Godambe and Joshi (1965). Thus, there has been 
some recognition that stratification by size may 
entail a loss of efficiency, but the method remains 
a common tool of practitioners. Exact model- 
based optimality can be obtained through 
stratified, weighted balanced sampling and 
opt imum allocation, but the stratification by size 
is superfluous, unless the strata are needed for 
other reasons, such as estimating domain 
characteristics or controlling for differential costs. 
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