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1. The H:ijek Estimator 
Consider a population U of N units indexed by 

i. Suppose Y~, i ~ U are values in the population of 
interest; in particular, suppose we wish to estimate 

N 

their mean Y'= N-~Y~ based on a sample s taken 
i,,1 

from the population U. Assume that the sample is 
taken according to a randomization scheme having 
inclusion probabilities zc~ = Pr(i ~ s). When the n'~ 

are proportional to a positive quantity xi available over 
U, and s has a predetermined sample size n, then 

~t =nx~//VX, where ~=  ~x~ , and the sampling 
i--1 

scheme is said to be probability proportional to size 
(pps). 

Under this scheme, a well known and popular 
estimator attributed to H~ijek (1971) is defined by 

Yn,,, ='~l/n:,___ " (1) 

He suggested this estimator in response to an 
observation by Basu (1971) on paradoxical behavior 
of the pps-unbiased Horvitz-Thompson (1952) 
estimator 

= u - '  Z . r ,  . 

Siirndal, Swenson, and Wretman (1992, p. 
182, referred to below as SSW) give several reasons 
for regarding the H~ijek as "usually the better 

estimator", namely the relative behavior of Y~ and 

Ym" when (a) the Yi are relatively homogeneous, or (b) 
sample size is not fixed, or (c) the n; s are weakly or 

negatively correlated with the Y~. The H~ijek estimator 
can be derived from the theory of optimal estimating 
equations if we regard Y as the "induced finite 
population parameter" under the superpopulation 

model Y~ ~ (#,O "2) with the Y{s independent 

(Godambe and Thompson (1986), Example 1). 
Our present purpose is to examine the H~ijek 

estimator, and the Horvitz-Thompson (H'D estimator 
as well, in the light of recent results using the "model- 
based" or prediction approach to survey sampling. In 
particular, we investigate consequences of a theorem 

connecting optimality and weighted balanced samples 
(RoyaU 1992, Theorem 2), stated below. 

2. Backgroimd: Simple Balanced Samples 
We continue to consider the problem of 

estimating the population mean Y'=N-l~iU=lYi. 

Assume that a single auxiliary x~ is associated with 
and known for each unit i in the population, and that 
Y~ and x~ are related by the polynomial model 

I 

r, =Zs g4 
j = 0  

where the errors are e i - (0 ,o  "2) and uncorrelated, 

t3j J--t are a set of unknown parameters, and 8j ~--~ 

are 0-1 variables indicating whether the jth power 
term is in the model or not. Let M(80,8 ~ ..... 8~:v) 

denote model (3) and ~'(80,~ l ..... 8j 'v)  denote the 

BLU predictor under that model, following the 
convention "in RoyaU and Herson (1973). For 
example, M(0,1: x) refers to the model 

Yi = i~xi + eix~ 2 and ~'(0,1:x) is readily shown to be 
^ , _ .  

the well known ratio estimator ~ = Ys x/xs.  
One of the principal concerns of the model- 

based opus is the question of robustness: how well 
does an estimator perform when the hypothesized 
model is inc.orrect, and what measures can be taken to 
guard against degradation of its performance (in terms, 
say, of root mean square error) under this almost 
inevitable circumstance? It is helpful to determine the 
behavior of an estimator defined in terms of one 
(usually fairly simple) modelDthe working modeIm 
and under another (usually more complicated) true 
model  Note: we will denote expectations with respect 
to a model by E u and with respect to a sampling plan 

by E,,. • 

Thus, for the ratio estimator, we ask about its 
bias under (3), i.e., under M(6o,6 ~ ..... 6~'v), and find 

that 
J [ 2"U) ] 

Eu [~'(0'l:x)-YI = x~8 ' /3J [ .~~  ) j ' ,  x- (4) 

where ~J) = ~_, x l /n  and x -U) = Zin,  x I I N . Note 

that there is no contribution from the term j=l ,  a fact 
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not surprising, since the model underlying the ratio 
estimator contains fl~. If 

~'!J)  ~"(J) 

~ = ~ ,  j = 0  ..... J u 
X s X 

then the ratio estimator 7~(0,1: x) is unbiased under the 

broad model (3). Let s(J) denote any sample 

satisfying the condition above, that is, s(J) is any 

sample for which 

X~s j) " - -X - ' ( j )  (5) 
for j = 1 ..... J.  Such samples are called balanced 
samples (of order J) (Royall and Herson 1973). We 
shall refer to them as simple or unweighted balanced 
samples, in the light of more general results to be 
discussed in the next section. The main point here is 
that by deliberately selecting one's sample to meet the 
criterion (5), one protects oneself against model 
failure, at least of a certain (perhaps not uncommon) 
form. 

Now a somewhat subtle observation is in 
order. Suppose the sampling scheme was simple 
random sampling (srs). Then both the Hfijek and 
Horvitz-Thompson estimators are the sample mean 
Y,. If the sample chosen is balanced (whether 

deliberately or through the chance result of our 
sampling scheme), then it is readily seen that the ratio 
estimator also reduces to the sample mean 1i,. 

Furthermore, under srs, samples can be seen to be 
balanced in expectation, that is 

N 
Eg(x~sJ))= n-lXlfiX/ = X-(J), (6) 

i=1 

where E~(.) refers to expectation under the random 

sampling scheme. Thus the combination of srs and the 
Hfijek/HT estimator would seem to receive added 
support from model-based theory. 

But is this the case? To judge the relative 
merits of estimators, we might ask about their 
sensitivity to imbalance. How well does their 
unbiasedness hold up, if the balance aimed at by 
randomization is not quite achieved? It is readily 
shown that the ratio estimator is less sensitive to 
deviation from balance than the Hfijek. For example, 
suppose the "true model" is M(1,1,1:v), that is a 

quadratic model with intercept. Suppose 

x~ = (1 + el)~ and ~2 ,=  (1 + e2)x -q2) , where, more often 

than not the deviations e i will be of the same sign. 

Then one readily shows that the model bias of the 

Hfijek/HT is E M ( ~  -- Y)  = fl lxel + fl 2 x-(2)e 2 and the 

bias of the ratio estimator is 

Eu(~R-Y)=-floel+fl2x-(2'(e2-el). Typically, the 

second term of the Hfijek bias will be larger in 
absolute value than the corresponding term of the 
ratio, because of likely cancellation in the latter. Also, 
where Y tends to change with x--the typical 
circumstance in which we would be tempted to use the 
ratio estimator--it will be unusual for the first term of 
the ratio-estimator-bias to be as large in absolute value 
as the first term of the Hfijek-bias. Clearly there are 
dangers in not having strict balance for either, but the 
Hfijek will usually be more sensitive to imbalance than 
the ratio estimator. Thus, if one uses the Hfijek, it is 
desirable to take a deliberately balanced sample, and 
not rely on srs. The frequently made claim that 
randomization is one's best protection against model 
failure does not seem well supported when we look at 
the matter under the lens of alternate models. 

3. Weighted Balanced Samples 
By a sampling strategy we shall mean a 

combination of choice of sample and of estimator. 
Under the model M(0,1:x), it is not the case that 

selecting a balanced sample, and using the ratio 
estimator, is the most efficient procedure. The greater 
variance of Y~ at larger x i dictates we sample units 

with larger xl more heavily than simple balance will 

allow. The question arises whether there is a 
procedure that is bias-robust and most efficient under 
the working model. 

We proceed with some degree of generality. 
Consider the general linear model with a diagonal 
covariance matrix: 

EM(Y) = X13, varM(Y) = Vcr 2 (7) 

which will be referred to as M(X:V), where 13 is 

p x l ,  X i s  N x p ,  a n d V i s  N x N .  The matrix of 

auxiliaries can be partitioned between the sample and 
t 

non-sample units as X = ( X ; , X ; ) .  The BLU 

predictor under this model is 
t ^ ~'(X:V) = N-I(I:Y, +I ,X,~)  where 1 and 1 r are 

vectors of n l's and N-n l's, and ~ = A~IX~V~IY with 

V the n x n  diagonal covariance matrix for the 

sample units, and A, = X~V~X,. Let 7g(X) denote 

the linear manifold generated by the columns of X, i.e. 
the vector space spanned by all linear combinations of 
the colunms of X. We will also need I N , an N-vector 

of l's. 
The collection of samples that satisfy 

l~,X 
l~W]~/2X, = INWV21 N (8) 
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will be denoted B(X:W)and is said to be balanced 
with respect to the weights root(W) or to be root(W) 
balanced. Here W is an N x N matrix and W is the 

n x n submatrix for the sample units. This form of 
balance turns out to be appropriate when the variance 
matrix of the model is given by V = Wcr 2 . 

When W = I, B(X: I) is the set of samples that 

are balanced on the columns of X, i.e. 
l'~Xs/n=l" uXN/N.  If the model for Y is a 

polynomial in x, as in model (3), then B(X:I) is the 

set of samples satisfying ~Jl =x--4Jl, the simple 

balance conditions introduced in section 2. Thus, 
weighted balance contains our previous notion of 
balance as a special case. 
Theorem 1 (Royall 1992). Under M(X:V) if both 

VI N and V~/21 N ~ re(X),  (9) 

then VarM[f(X:V)- Y] > 

N-Z[n-'(l'uVll21N)2- " l 1 N V I  N ] 0  "2 (10) 

The bound is achieved if and only if s ~ B(X: V), in 
N 

which case, for ~u2) N - l ~ .  l/~ - - "  V 1 , 

i=1 

Y(X: V) = N-ln-l(iN V ~t21 N)(I" V~/2Ys) 

V(u2) 
- . . -Sfi- ,  ( 1 1 )  

v i 

Note that, under the weighted balance 
condition, neither the estimator itself nor its variance 
depend explicitly on the X matrix. This has important 
implications. Suppose the columns of X are included 
in those of another matrix X*. Suppose M(X: V) is 

the working model, and M(X*:V) the true model, that 

the conditions (9) on the standard deviations and 
variances are met, and that balance holds for the wider 

model, that is, s ~ B(X*: V); then the estimator based 

on the working model M(X: V) will be BLU under 

M(X*:V). In other words, the estimator will still be 

unbiased, and nothing is lost in efficiency. 
Example 1. Suppose the working model is the 

quadratic model M(1,1,1: x 2) with variance 

proportional to x ~ . The condition V1 N and 

V q21 N ~ M(X) are met since both x and x 2 are in the 

model for EM(Y ) . The lower bound on the variance is 

Z U=lx~ ~2. (12) 

This bound is achieved in any balanced sample with 

Z!l-O = :t-O)/j~ (13) 

for j = 0, 1, and 2; the j = 1 condition is fulfilled 
automatically, and (13) at j = 0 says that the harmonic 
mean of sample x's equals their population arithmetic 
mean. Bias protection against more general 
polynomial models is obtained at no cost in efficiency 
under the working model by balancing on additional 
powers j = 3, 4 . . . . .  J. We refer to such balance as 
root(x 2) balance or just x-balance (of order J). It is 
also known in the literature as n:-balance 
(Cumberland and Royall 1981). The BLU predictor 

reduces to ~=~Zsyi / (nx i ) ,  the "mean-of-ratios 

estimator" m a result first derived by Kott (1984). It 
is also the Horvitz-Thompson estimator for a fixed 
size sampling design withn: i ,,¢ xi. Furthermore, 

under the balance condition (13) corresponding to j = 
0, the BLU predictor can also be written in the form of 

a H~ijek estimator I~ = 2--,s 
y~/x~ 

~ . Thus at balance, the 

BLU predictor under the model coincides with both 
the H~jek and Horvitz-Thompson estimators 
corresponding to pps sampling with size variable x, a 
sampling plan which gives (13) in design-expectation, 

thatis, E~(~J-0)= ~J) /~ .  However, with onlyminor 

departures from balance, the three estimators begin to 
diverge, and can behave quite differently, as we show 
by analysis in Section 4 and by a simulation study in 
Section 5. 
Example 2. Suppose the working model is the 
through-the-origin model M(0,1:x) with variance 

proportional to x, which leads to the ratio estimator. 
The condition Vq21N ~ M(X) of the Theorem is not 
met. This suggests (Royall 1992) that as an 
alternative to the ratio estimator (which is bias robust 
under unweighted balance) we take root(x) balance 
and the estimator corresponding to the minimal model 
that meets the conditions of the Theorem. 
Definition: The minimal model for given variance 

matrix V is M~o(V) = M(Xv:V), where 

(v e1 ,v1 ) 
Given a particular variance structure, this is the 

smallest model to guarantee that the conditions (9) of 
the theorem are met. 

With variance proportional to x, the minimal 

model, given by EM(Yi)=]~u~Xln+~X,, Can be 

denoted by M ~  (x) = M(xU2,x:x). The lower bound 

on the variance is 
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2,2 N 1 ( 7  2 . (14) 

This boundmwhich is readily shown to be lower than 
the variance of the ratio estimator under simple 
balancemis achieved under Mmi.(x) in any sample 

balanced in the sense that ~u2)=£/~u2). Bias 
protection against more general polynomial models is 
obtained by balancing on additional powers: 

~j-u2) = x--0)/y (u2) for j = 0,1,2 ..... J .  (15) 

As before, the estimator reduces to the Horvitz- 
Thompson estimator for pps sampling with x u2 as size 

variable, and also to the H~ijek if (15) is met, for j = 0. 
In general, consider a sampling plan having 

fixed n, pps sampling with size variable vy 2, that is, 

the inclusion probability of unit i is 
7r i = nv~/2/l~ VI/21N . (16) 

We shall also refer to this plan as pp(v 1/2) sampling. 
Then 
(1) Weighted balance is met in design-expectation, 

that is E,~(ll'~V~-V2Xs~= l~vx for any matrix 
1~¢ V~/21 N 

X of regressors (even unknown ones.). 
(2) The BLU predictor 
IT(X:V) = N-ln-~(l'u V¢21N)(I:VJ2ys) in a root(v) 

balanced sample is just the Horvitz-Thompson 

estimator ~'n-r = N-I ~sYi/n:i • The variance bound is 

the one established by Godambe and Joshi (1965, 
Theorem 6.1) for the model-based expectation of the 
design-based variance of the Horvitz-Thompson 
estimator. 
(3) Under the condition 

n _ __I i~ v VI/2 • -I/2 - N  1 N, (17) 
lsVs Is 

the BLU predictor (11) can be written as the Hfijek 

estimator Yn4 : ' ~ ~ - ' ~ i  " 

One method of selecting weighted balanced 
samples is to use the pps sampling plan above, but to 
reject any sample that is insufficiently balanced on 
particular moments. Figure 1 depicts a weighted 
balanced sample from the Hospitals population used in 
the simulation study described in section 5. The 
population was randomly ordered and systematic 
pp(x t/2) samples of size n = 30 were selected using the 
Hartley-Rao (1962) method. The sample in the figure 
is approximately balanced in the sense of (15) for j = 
0, 1, and 2. 

4. Comparison of Estimators in Unbalanced 
Samples 

For simplicity we focus on the situation in 
Example 1; the basic ideas are very general. The 
minimal model when variance is proportional to x 2 is 
M(0,1,1" x2); the corresponding BLU estimator is, for 
any sample (not just a balanced sample) 

YnLV = 

1 { Y/+ (~2) _ y y ~ ) ~  y.} 
- x-? 

The H~ijek and HT estimators under pp(x) sampling 
are given in Example I above. 

Now suppose that sampling yields the 
following "near-balance" conditions relating sample to 
population x-moments: 

~j-1) x-O) (1 
- x .  +e,), 

for j = 0,1,2 ..... J. The "errors" ej represent the 
distance thesample is from balance. Note that (in the 
present example) e I = 0. Typically the ej with j > 0 
will tend to have the same sign, and be opposite in 
sign from %. 

We consider the bias EM(~'--F" ) under a 

polynomial model of order J, for the H~ijek estimator, 
Horvitz-Thompson estimator, and minimal model 
BLU predictor. We find 

l 

BiasHaj ~ Z/3jx-(J)(ej - e0) (18) 
)=0 

J 

Biasn,r = ]~/3j~'(J) ej (19) 
j=0 

BiasBzv ~ 

j=ol~+ x(J?e+ - y(3) (~(2))2~ ~.(21e2 . (20) 

Notice that the multipliers of J~o in (18), of J~t in 

(19), and of fll and f12 in (20) are all 0. Thus, if all 
coefficients except the intercept are 0, the H~ijek can 
be expected to be least affected by being away from 
balance. This harmonizes with the first reason given 
by SSW for preferring it (see above). Where there 
exists a continuous non-constant dependency of Y on x, 
however, the HT will be less biased than the H~ijek, 
because of the likely opposition of sign of e o and ej 
with j > 0. Examination of the second expression in 
(20) suggests that in each term, both for j = 0, and j > 
2, some cancellation will take place, so that the 
minimal estimator will invariably be less biased than 
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the Horvitz-Thompson. These conjectures are borne 
out in a small simulation study, in the next section. 

5. Simulation Study 
We compared the Hfijek, Horvitz-Thompson, 

and minimal model BLU estimators in a simulation 
study using three populations. Two of the populations, 
Hospitals and Cancer, are well-known in the survey 
literature (Royall and Cumberland 1981). Scatterplots 
reveal a strong relationship between y and x in both of 
these populations. The third was generated to be 
favorable for the H~ijek estimator using a model with a 

common mean: Yi = #  +eixl with e~ ~(0,1), 

# = 200, and the x's coming from the Hospitals 

population. Two sets of 2,000 samples were selected 
from each population~one with probabilities 
proportional to x ~'z and the other with probabilities 
proportional to x. In both cases, we used n=30 and the 
random-order/systematic-sampling method studied by 
Hartley and Rao (1962). 

Table 1 shows the root mean square errors 

(rinse's) for Yna~, Ynr, and two model-based 

estimators. Each rmse is computed as 

rmse(~)=~. , s , (~ -Y)2 /N  where S=2,000 and 

is one of the estimates from sample s. For a model 
with vary(Y) ,,~ x r, the minimal model is 

Mmin (Xr/2,Xr" Xr ) with BLU predictor 

~min(Xr/2,Xr'Xr). The second model-based estimator 

was constructed by adding an intercept to the minimal 

model: ~,min(1,xr/Z,xr:xr) which is BLU under 

M(1,x r/2,xr:x r) .  When the model has 

varM(Y),,,:x r, pp(x r/2) sampling produces, in 

design-expectation, the type of weighted balance 
required for optimality in Theorem 1, as noted in 
section 3. 

As Table 1 shows, for the Hospitals and 
Cancer populations, the H~ijek and HT estimators are 
far worse than either of the model-based estimators in 

pp(x 1/2) sampling. In contrast, the H,'fjek is unbiased 

under the model used to generate the Artificial 
population and has the smallest rmse there. This 
finding verifies the analysis of the preceding section 
regarding the SSW observation that the H~ijek will 
perform well when the Y's are relatively 
homogeneous. The minimal estimator 

Ymi~ (xr#, xr'xr) has the smallest rinse in both types 

of sampling for Hospitals and Cancer but is 

Table 1. Empirical root mean square errors of four 

estimators of the population mean in 2,000 pp(x r/2) 
samples selected from three populations. 

Population ?' = 1 ?' = 2 
Hospitals 

i% 
^ 

x'l 

Cancer 
^ 

I% 
^ 

f=(x,p,x,:x,) 

Artificial 
^ 

f,.=(1,x,#,x,:x,) 

116.3 171.9 

51.0 36.9 

37.2 34.7 

39.2 40.0 

7.2 9.6 

3.7 1.7 

1.7 1.7 

1.8 1.9 

2.5 2.8 

18.5 44.6 

9.9 36.8 

2.7 3.5 

substantially worse in the Artificial population. Its 
poor showing stems from the fact that, except at 

balance, ~'mi~( xr#, xr'xr) is biased under a model 

where Y has a common mean. Note, however, that 

~.~(1,xr/2,x':x'), which adds an intercept, has 

rmse' s much nearer those of the H~ijek in the Artificial 

population, even though ~ll,~,(1,xr/2,x':xr)involves 
estimates of superfluous parameters for x r/2 and x r . 
The HT estimator does well in pp(x) samples in the 

first two populations but poorly otherwise, and, 
generally, shows itself to be a risky procedure. 

The source of the differences in the estimators 
is clarified by conditional analyses. We sorted each 

set of 2,000 samples by the sample mean ~-!r/2), which 

has design-expectation x "(r)/x -(r/2) in pp(x r/2) 
sampling. The samples were broken into 10 groups of 
200 samples each and the bias and rmse calculated in 
each group for each estimator of the mean. The bias 
and rmse were plotted against the group average of 

~-!r#) for the three populations, for both pp(x g2) 
samples and pp(x) samples, producing figures of the 

sort laid out in Royall and Cumberland (1981). 
Because of space limitations of these Proceedings, the 
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figures are not reproduced here; a fuller version of 
this paper which includes the figures, may be found on 
the Web at http://stats.bls.gov. In Hospitals and 
Cancer, the H~ijek has an egregious bias that runs from 

negative to positive over the range of Z!r/2), which 

translates to the large, unconditional rmse's in Table 
1. Only at or near weighted balance is the H~ijek 
estimator unbiased, but, as observed in section 4, 
minor departures from balance lead to major biases. 
The Horvitz-Thompson estimator also has a 
substantial, systematic bias in Hospitals for both 

methods of sampling and in Cancer for pp(x V~) 
sampling, though the bias is smaller than that of the 
H~ijek. The minimal estimator has uniformly small 

bias and rmse throughout the range of --~!m) in the 

first two populations. 
In the Artificial population, on the other hand, 

the H;ijek does well in all groups of samples as 
expected. The HT estimator is conditionally quite 
biased since it makes no allowance for an intercept. 
The minimal estimator is also conditionally biased in 
extreme samples though much less so than the 
Horvitz-Thompson. Examination of individual 

samples shows that #~n(xrl2,xr:xr) fits a 

nonsensical, inverted u-shaped curve to data that 
follow a horizontal straight-line model, and, thus, is a 
poor choice. Addition of an intercept term in 

~,nun (1, X #2,x r'xr) largely eliminates this problem. 

(The curves for ~ll.~an(1,xr/2,xr:xr) are not shown in 

Figure 4 to simplify the plots.) It is well to keep in 
mind, however, that all of these estimators are the 
same at strict balance on the appropriate moments. 

6. Conclusions 
The H~ijek estimator (and to a lesser extent, the 

Horvitz-Thompson estimator) which corresponds to a 
given sampling plan has been shown analytically and 
empirically to be bias sensitive to deviations of the 
sample selected from weighted balance, even though 
the sampling plan achieves weighted balance in 
expectation. The notable exception is when the 
variable of interest is unrelated to the auxiliary 
variable. 

It is preferable to use the corresponding 
minimal estimator. Restricting the sample to be in the 
class of weighted balanced samples is best. In 
unbalanced samples, the BLU estimator corresponding 
to the minimal model augmented by an intercept can 
be efficient both for Y variables related to the auxiliary 
m~d for Y's having a common mean. 
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