EXAMINING THE RELIABILITY OF SELF-REPORTED LOCATION INFORMATION IN RDD TELEPHONE SURVEYS

Douglas Willson, Greg Mahnke, Julie Bouffard, and Geoff Halsted
Macro International Inc.
Douglas Willson, Macro International Inc., 126 College Street, Burlington, VT 05401

Key Words: RDD Surveys; Geographic Eligibility; Bias; Undercoverage.

1. Introduction

Sampling frames for RDD telephone surveys that target households within relatively small geographic areas such as towns or counties are typically constructed using the exchanges that serve households within these areas. Unfortunately, telephone exchange boundaries rarely coincide exactly with the physical geographic boundaries of interest for these surveys. In these instances, sampling frames with high or complete coverage of the households in the target area will include households who reside outside the area. In order to prevent geographically ineligible respondents from biasing survey estimates, respondents are asked to report on their eligibility for the survey during the interview, and only eligible households are included in the final data set. This paper examines the reliability of this type of self-reported location information using data from a large-scale telephone survey.

For small geographic areas, the proportion of geographically ineligible telephone households included in an RDD sampling frame can be substantial, and the overall cost of the survey can be significantly increased because of the costs of screening ineligibles. Even in situations where the proportion of ineligibles is relatively small, responses to location questions must be complete and accurate to prevent the introduction of coverage biases. Some authors have suggested the use of dual frame survey designs to reduce costs and coverage biases for surveys of small geographic areas (Schejbal and Lavrakas, 1994). Research investigating the quality of self-reported location information is essential for evaluating the choices between different sampling frames, survey designs, and questionnaires.

This paper compares self-reported location information from RDD survey respondents who reside in directory listed households, with geocoded location information for the same households from a national telephone directory. We investigate a variety of general hypotheses concerning how individuals reference and interviewers record location information, and how this information relates to sampling frame characteristics, questionnaire design, and the characteristics of the physical geography of interest. We consider survey responses from the FY97 Area-Specific Section 8 Fair Market Rent (FMR) Surveys conducted for the Department of Housing and Urban Development by Macro International during the first four months of 1997. The geographic areas of interest in these surveys are FMR areas which are defined (except in New England) by a county or collection of counties; in New England, FMR areas are defined by collections of towns or cities and the appropriate boundaries are township boundaries. Survey information is collected from 1 and 2-bedroom renters in each area that is surveyed.

More specifically, we investigate the potential for bias in survey estimates resulting from measurement errors in self-reported location information. Errors in location information can be introduced from a variety of different sources. Interviewers may record the information incorrectly, through keystroke errors or through misinterpretation of responses. Respondents also refer to their place of residence in many different ways. For example, some individuals identify their town of residence with the name of their local post office, yet ZIP code boundaries do not necessarily correspond with official town boundaries. Nonresponse is another problem. Respondents in urban areas are much less likely to know their county of residence than respondents in rural areas, and are also much more likely to refuse to answer questions about the location of their residence.

We would like to thank Alan Fox for providing helpful comments on an earlier draft, and Amy Starer from Genesys Sampling Systems and Sally Ann Ciarlo from Donnelley Marketing for providing the census tract geocoding used in this study. The views expressed in this paper are those of the authors and not necessarily those of the Department of Housing and Urban Development, Genesys Sampling Systems, or Donnelley Marketing.
We consider two types of measurement error models for categorical data that differ according to whether or not the matching procedure for geocoding is assumed to be error-free. Record-check studies often assume that measurement errors are confined to the survey measurements, yet it is doubtful that telephone directory listings are error-free, or that geocoding is an error-free process. As a result, it is important to allow for the possibility that the geocoded records are measured with error as well.

We also investigate whether the geographic complexity of the target area, as proxied by the number of towns or counties in the FMR area being surveyed, adversely influences the degree of recorded ineligibility. For the FMR surveys, the location question included a disk-based look-up within the CATI program to reduce open-ended responses and interviewer recording error. For each FMR area, a list was displayed containing the counties (or towns) that comprised the FMR area, as well as contiguous counties (or towns) that were outside the area. Interviewers were required to select a name from the hard coded list, or to record an open-ended response for other self-reported county (or town) names that were not on the list. As the number of counties or towns displayed on the interviewing screen increases, it may be the case that the difficulty of the interviewer's location coding task increases, possibly affecting recorded location information.

It is important to realize that there are a variety of difficulties in generalizing the results in this paper to household surveys or surveys of other target populations. Perhaps most important, the FMR survey targets rental households, and the analysis presented below only focuses on reported location information for listed rental households. Listed rental households may differ substantially from unlisted rental households, as well as listed and unlisted households with other dwelling types. Telephone listings for rental households may also be much less complete than for other households, either because directory updates occur at fixed intervals and renters move more frequently relative to the population in general, or simply because renters are less likely to list their telephone number. We present evidence to support both of these hypotheses below. One additional difficulty is that the results presented here apply to FMR areas, not specifically to towns, counties, or zip-codes. Although respondents report on their town or county of residence, self-reported and geocoded locations are recoded as in or outside the FMR area of interest, because this is the most important classification for the survey in question.

The paper will proceed as follows: Section 2 provides a brief description of the data sources employed in the paper. Section 3 presents the empirical results. Section 4 concludes and suggests avenues for future research.

2. Data Sources

The research presented in this paper is based on two data sources: 1) The FY97 Section 8 Area-Specific Fair Market Rent Telephone Surveys; and 2) The DQI2 Consumer File from Donnelley Marketing Inc. This section of the paper describes each one of these sources.

2.1 FY97 Area-Specific FMR Surveys

Section 8 Fair Market Rents (FMRs) form the basis for housing subsidy payment levels under the Certificate and Voucher programs operated by the Department of Housing and Urban Development (HUD). HUD establishes FMRs by geographic area; in general, they are intended to represent the market cost of privately-owned, decent, safe, and sanitary rental housing. In order to ensure that FMRs accurately reflect rental costs in different housing markets, HUD conducts Area-Specific Surveys to produce a point estimate of the 40th percentile rent level in relatively small geographic areas such as towns, counties or collections of counties. These estimates are used to re-benchmark the FMR for a single FMR area. HUD also conducts regional surveys which are designed to produce estimates of annual changes in gross rents, called annual adjustment factors (AAF), in broad geographic areas defined by the metropolitan and non-metropolitan portions of each of the ten HUD regions. These estimates are used to re-benchmark FMRs in areas that are not already covered by annual Consumer Price Index surveys or a current Area-Specific Survey. This paper examines survey responses from 52 Area-Specific surveys conducted in 1997.

The sample for these surveys was drawn from the list-assisted sampling frame developed by Genesys Sampling Systems. Hundred banks with at least two listed residential households were included in the frames. For each survey, the census tracts comprising the geographic area were selected, an exchange report documenting coverage and noncoverage for each exchange serving these tracts was generated, and the exchanges predominantly serving the area were selected for the frame. In general, excluding eligible households (undercoverage) was viewed as a much more serious problem than including ineligible households; including ineligibles increases the
cost of the survey but does not bias survey results, if
the location screening questions obtain reliable loca-
tion information. As a result, some exchanges that
were primarily outside the area of interest were also
included in area frames in some instances, to en-
sure sufficient coverage. For the FY97 Area-Specific
Survey areas, coverage for listed households aver-
gaged over 99 percent, and noncoverage ranged from
slightly above zero to a maximum of 22.6 percent,
with an average noncoverage across areas of 3.6 per-
cent.

At the end of the interview, FY97 FMR Area-
Specific Survey respondents outside of New England
were asked the following location question:

In what county is your housing unit located?

For FMR areas within New England, a similar ques-
tion was asked regarding town or city of residence,
and eligible and contiguous but ineligible town or
city names were included in the displayed list. For
respondents outside New England that did not know
their county name, a town name question was asked.
All respondents were also asked to report their ZIP
code.

2.2 The DQI² Consumer File

The DQI² Consumer File from First Data Info-
Source/Donnelley Marketing was the source for the
gecoded location information that is used in the
analysis below. Telephone directories are one of
nine primary data sources in the DQI² file. Tele-
phone information is captured from over 4,500 tele-
phone directories annually, using both scanning and
direct data entry technologies. After the telephone
directory information is captured, the records are
matched against InfoSource/Donnelley’s Geographic
Base File (GBF). The GBF is compiled from USPS
products which list streets, corresponding block
ranges, and ZIP codes. The GBF is used to ap-
pend Census state, county, tract and block group
codes. Records that do not match the GBF on a
street level are assigned a pseudo Census geocode,
and an extra attempt to match these records using
monthly postal database updates is performed.

Genesys Sampling Systems performed the actual
gecoding for this study. All telephone numbers as-
sociated with completed interviews from the FY97
Area Specific FMR surveys were passed against the
DQI² Consumer File. Each record that matched
(based on the 10-digit phone number) was coded
with the DQI² geocodes for FIPS state/county,
Census tract, ZIP code, and OSLO indicator. The
OSLO indicator noted records that were pseudo
gecodes without a complete address. For the ana-
lysis presented in this paper, OSLO records were not
included.

3. Empirical Results

3.1 FY97 Area-Specific Survey Results

Table 1 presents unweighted cell counts and fre-
quencies that describe the relationship between self-
reported location information and geocoded loca-
tion information for the listed households from the
FY97 Area-Specific surveys. Location information
is coded as “Eligible” or “Ineligible”, depending on
whether or not the respondent was in the FMR area
of interest, although the actual survey question re-
ferred to county or town of residence. Of the 27,331
individuals who responded to the surveys, 11,046
(40 percent) were listed households with a valid
gecoded census tract. This number is much lower
than listed rates for households in general, because
renters move more frequently and published direc-
tory listings will not include individuals who have
recently moved into an area. (The corresponding
rate for zip code matches is higher (45 percent), illus-
trating the additional degree of difficulty associated
with geocoding to the tract level. However, this rate
is still dwarfed by the national listed rate of approxi-
ately 65 percent.) Also, renters are less likely to list
their telephone number, relative to other households.
While individuals who have moved within the last 15
months represented approximately 42 percent of the
respondents, valid geocoded census tracts were ob-
tained for only 26 percent of these households. Of
the remaining 58 percent who had resided in their
current unit for more than 15 months, 51 percent
had valid geocoded census tracts.

Diagonal elements in Table 1 represent situations
where the self-report and geocode agree, i.e. individ-
uals who say they live outside the target area are
gecoded as outside, and vice versa. Approximately
98.9 percent of the self-reported location responses
match the geocoded responses. For the remaining
123 cases (1.1 percent), 63 self-report as ineligible
and are geocoded as eligible, while 60 report that
they are eligible while they are geocoded as ineligible.
Tables 2 and 3 present similar results for recent
movers and stayers respectively. In general, these ta-
bles indicate that the pattern of errors is not affected
by whether the respondent has recently moved, al-
though the effectiveness of geocoding is substantially
diminished for the recent mover population.
3.2 Modeling Measurement Error

Under the assumption that the geocoding process is error-free, several statistics can be used to quantify the magnitude and the variability of the measurement errors. Traditionally, researchers consider bias, the error that would be constant over conceptual repetitions of the survey, and simple response variance, the variability in survey estimates over conceptual repetitions of the survey, as important quantities to measure. For the analysis presented below, we have weighted the data to account for differential sampling rates across FMR areas.

Define the true proportion of eligible renters with listed telephone numbers that reside in the FMR area is \(p \). If we define \(\theta \) as the proportion of individuals who are actually eligible but who will self-report as ineligible, and define \(\phi \) as the proportion of individuals who are ineligible but who will self-report as eligible, sample proportions from weighted versions of Tables 1-3 can be used to estimate the probabilities and associated parameters in the classification matrix given in Table 4.

If \(p_1 \) is the sample proportion of individuals who self-report as eligible, the bias \(B \) can be written as (Biemer and Forsman, p. 917):

\[
E(p_1) = p + B
\]

where

\[
B = -p\theta + (1 - p)\phi
\]

B can obviously estimated using the difference between the off-diagonal sample proportions in the contingency table. For the weighted versions of Tables 1-3, the estimated values for \(B \) (0.12, 0.03, 0.27) are all less than one percent, and the null hypothesis that the bias is zero cannot be rejected (at the one percent level) in all cases.

A second quantity that is often analyzed in this literature is the simple response variance (SRV), which captures the variability in survey estimates over conceptual repetitions of the survey. An estimate of the SRV can be calculated as (Bureau of the Census (1985)):

\[
\text{SRV} = \frac{1}{n} \left(\frac{n_{11} n_{21}}{n_1} + \frac{n_{12} n_{22}}{n_2} \right)
\]

The estimated values of SRV for the weighted versions of Tables 1-3 are also quite small (0.005, 0.003, 0.004), and are a direct reflection of small estimated probabilities of misclassification. Biemer and Forsman (1992) point out that this estimate of SRV is biased, but the bias is small relative to the magnitude of SRV.

3.3 Investigating the Causes of Misclassification

In order to investigate the possible causes of misclassification, we estimated a binary logit model for the geocode/self-report cell probabilities, where we define the dependent variable as 0 for records that are similarly classified, and 1 for records that are misclassified. For explanatory variables, we considered three dummy variables and an intercept to capture the effects of MSA/Non-MSA classification and whether or not the area was based on county or township geographies. We also included a variable to represent the number of place names displayed on the CATI screen for each area (NPLACE). (We would like to include a variable for shortest distance to the area boundary in future research, in order to capture the possibility that respondents near the boundary may have a higher probability of being geocoded improperly.)

Table 5 presents the parameter estimates for this equation. The likelihood ratio test for the joint significance of the covariates has a value of 85.185 (\(p < 0.0001 \)). In terms of individual parameter estimates, it is clear that the odds of misclassification...
are highest for nonmetropolitan FMR areas with township boundaries, and for areas with township boundaries in general. The only variable that is not statistically significant (at the 5 percent level) is NPLACE, which represents the number of place names on the CATI screen for each area. This may suggest that the number of place names on the CATI screen does not significantly affect interviewer coding behavior; alternatively, the effects of this variable may already be captured by the dummy variables representing FMR areas with township boundaries.

3.4 Some Sources of Geocoding Errors

To obtain some descriptive information on possible sources of measurement error for these surveys, we plotted exact geocoded locations for individuals with discrepancies between self-reported and geocoded location information, for one of the FY97 survey areas. The selected survey area contained four separate non-metropolitan counties in Minnesota. Geocoded households were matched against a CD-ROM white pages directory called SelectPhone from Pro-CD. This database is not as up-to-date as the Donnelley file maintained by Genesys, but contains a latitude and longitude measurement for each listed household. In this area, 230 of 231 previously geocoded listed households were matched, including all 7 discrepancies. These geocoded locations are plotted in Figure 1.

In this survey area, it is clear that the majority of discrepancies are located near the boundaries of the survey area. We conjecture that discrepancies in the center of the FMR areas probably represent interviewer coding or respondent errors, while discrepancies on or near the boundaries probably represent geocoding errors.

4. Conclusions

This paper has examined the differences between self-reported and geocoded location information for a large scale RDD survey of renters. We find that the proportion of listed households where the self-reported location information and the geocoded information disagree is quite small. Once it is recognized that the geocoding process is not 100 percent error free, it appears that the measurement error in location information in these surveys is not a significant source of bias for survey estimates. It is important to remember that these results are not necessarily generalizable to surveys of other populations, or with other geographies. In future research we hope to examine other surveys with different target populations, physical geographies, and questionnaire structures.

5. References

Table 1: Location Information, All Cases

<table>
<thead>
<tr>
<th></th>
<th>Geocode Ineligible</th>
<th>Geocode Eligible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Rpt Ineligible</td>
<td>219 (1.98)</td>
<td>63 (0.57)</td>
<td>282 (2.55)</td>
</tr>
<tr>
<td>Self Rpt Eligible</td>
<td>60 (0.54)</td>
<td>10,704 (96.90)</td>
<td>10,764 (97.45)</td>
</tr>
<tr>
<td>Total</td>
<td>279 (2.53)</td>
<td>10,767 (97.47)</td>
<td>11,046 (100.00)</td>
</tr>
</tbody>
</table>
Table 2: Location Information, Recent Movers

<table>
<thead>
<tr>
<th></th>
<th>Geocode Ineligible</th>
<th>Geocode Eligible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Rpt Ineligible</td>
<td>51 (1.71)</td>
<td>28 (0.94)</td>
<td>79 (2.66)</td>
</tr>
<tr>
<td>Self Rpt Eligible</td>
<td>20 (0.67)</td>
<td>2,875 (96.67)</td>
<td>2,895 (97.34)</td>
</tr>
<tr>
<td>Total</td>
<td>71 (2.39)</td>
<td>2,903 (97.61)</td>
<td>2,974 (100.00)</td>
</tr>
</tbody>
</table>

Table 4: Classification Matrix

<table>
<thead>
<tr>
<th></th>
<th>Geocode Ineligible</th>
<th>Geocode Eligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Rpt Ineligible</td>
<td>(1-p)(1-¢)</td>
<td>p¢</td>
</tr>
<tr>
<td>Self Rpt Eligible</td>
<td>(1-p)¢</td>
<td>p(1-¢)</td>
</tr>
</tbody>
</table>

Table 3: Location Information, Stayers

<table>
<thead>
<tr>
<th></th>
<th>Geocode Ineligible</th>
<th>Geocode Eligible</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Rpt Ineligible</td>
<td>168 (2.08)</td>
<td>35 (0.43)</td>
<td>203 (2.51)</td>
</tr>
<tr>
<td>Self Rpt Eligible</td>
<td>40 (0.50)</td>
<td>7,829 (96.99)</td>
<td>7,869 (97.49)</td>
</tr>
<tr>
<td>Total</td>
<td>208 (2.58)</td>
<td>7,864 (97.42)</td>
<td>8,072 (100.00)</td>
</tr>
</tbody>
</table>

Table 5: Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-4.525</td>
<td>0.2197</td>
</tr>
<tr>
<td>Metro/County</td>
<td>-0.546</td>
<td>0.2412</td>
</tr>
<tr>
<td>Metro/Town</td>
<td>1.293</td>
<td>0.3245</td>
</tr>
<tr>
<td>Non-Metro/Town</td>
<td>1.891</td>
<td>0.3857</td>
</tr>
<tr>
<td>NPLACE</td>
<td>-0.006</td>
<td>0.0163</td>
</tr>
</tbody>
</table>

Figure 1: Blue Earth, Steele, Rice, and Waseca Counties, MN Pooled FMR Area
FY97 Area Specific FMR Survey
Discrepancies Between Self-Reported and Geocoded Location