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1. Introduction 
It is frequently of interest to estimate the average 
response associated with different treatments (or risk 
factors) controlling for various covariate imbalances. 
Consider the simplest analysis of covariance setting 
where y¢ = al+[Sx¢+e 0, i=1 .... ,R, jffil .... ,n t and with 
x¢ being the covariate for the j th individual in the i th 
treatment group. The adjusted treatment mean for 
group r is defined as ~r-O(~r-x-) = &,+ ~ ,  where the 
hats represent least-squares estimators, ~, and ~', are 
means of the y and x observations in the r th group, 
and ~" is the meam of all the x observations (Neter, 
Wassernmn and Kutner, 1990, pp 888-890). One can 
interpret the adjusted treatment mean as the expected 
response for an individual in treatment group r with 
covariate value X=£, or as the average predicted 
response if everyone in the sample had been in 
treatment group r .  

For more complicated models, there are 
various ways to generalize the notion of a covariate- 
adjusted outcome. In particular, one can use a 
conditional or marginal approach, which disagree in 
nonlinear models. For example, for a simple linear 
l o g i s t i c  r e g r e s s i o n  m o d e l ,  
loge(y¢=l)/[l-P~o.=l)]=~i+[3xo., the conditional 
approach uses exp(&, + ~ x-)/{ 1 + exp(&• + ~ x-) } as an 
estimator of the expected response for an individual 
conditional on his belonging to group r and having 
covariate value X=£'. Alternatively, one could use 

1 R ni 
n ~  ~ exp(/t, + ~x¢)/{1 +exp(a, + ~x#)}, n = ~  n,, 

- j r1  ~-t 

which is an estimator of the predicted response i f  all the 
observations had been treated with treatment r (Lee, 
1981; Lane and Nelder, 1982; Chang, Gelman and 
Pagano, 1982; Makuch, 1982). Lane and Nelder 
(1982) refer to such quantities as a "predictive margin'; 
Chang et al. (1982) describe why this marginal 
approach may be preferable to the conditional approach. 

In this paper, we consider predictive margins 
estimated from complex survey data. Covariate 
adjustments to different possible sets of x 's  are 
considered in section 2: to the values in the population 

or a subpopulation from which the data were sampled, 
to the values of a different population than the one from 
which the data were sampled, to the sampled values, 
and to a set of arbitrary values. Standard errors for the 
predictive margin are discussed in section 3. An 
important distinction in these derivations is whether thex 
distribution is considered fixed or random; we consider 
both cases. To our knowledge, the only standard error 
formulas for predictive margins that have been available 
in the literature are in the non-survey setting with the x 
distribution considered fixed (e.g., Neter et al., 1990, 
pp 888-890; Gall and Byar, 1986; Flanders and 
Rhodes, 1987). 

We give two applications in section 4: one 
using data from the first National Health and Nutrition 
Examination Survey (NHANES I) concerning blood 
pressure and the place of residence (urban, rural, etc.), 
and a second using data from the 1992 National Health 
Interview Survey (NHIS) as to whether the probability 
of having a digital rectal exam varies according to the 
type of health insurance a person has. 

2. Estimation 
We assume that there is a statistical model for the 
distribution of the response (y) as a function of the risk 
factor or treatment group (re{ 1,...,R}), a vector of 
covariates (x), and a vector of unknown parameters 
(0). We denote the quantity for which we wish to 
predict the margin by g(r,x,O). For example, for 
predicting E(y) in an analysis of covariance we have 
g(r,x,O) = 0t, + 13x, and for predicting P(y=l) in a 
l o g i s t i c  r e g r e s s i o n  w e  h a v e  
g(r,x,O)fexp(a,+~x)/[1 +expOz,+i3x)]; in both cases 
0=(a 1 ..... ot z, 13) are the regression coefficients. In the 
non-survey setting with grouped data {(xq, y¢)}, the 
predictive margin for category r is defined by 

R lit 

PM(r) - _1 ~ ~ g(r,x¢,6), (1) 
n i l l  jffi l 

where n is the total sample size, and 0 is an estimator 
of the parameter vector, e.g., least-squares estimators 
in the analysis of covariance. 

There are various generalizations of (1) that 
are useful in different applications involving survey 
data. As a general expression for the predictive 
margin, consider 

k k 

PM(r) = ~_, pig(r,z~, ~) where ~ P i = l  (~ 
tffil t=l 
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and t~ is an estimator of 0. The formula (1) is a 
special ease of (2) with kfn ,  p~z1/n, and the covariates 
(zp...,zt)f(xn,xl2,...,xl~t, x2p.. . ,x~). The population 
quantity we wish to estimate, which we shall call the 
population predictive margin, is 

g 

PPM(r) = ~_, P,g(r.Z v O) 
t f f i l  

where (ZI,...,Z x) may or may not be the same as the 
(zv...,zt), and the Pi are determined by the specific 
application. We now consider some special cases. 

Case 1" Suppose we desire to estimate the predictive 
margin for the population from which the sample was 
taken. The population predictive margin is given by 

1 s 
PPM(r) = -N ~. g(r,Z v O) (3) 

where N is the population size and (Zv...,Z N) are the 
population values of the covariate. With sample survey 
data {(zi, y~,ifl,...,n}, each sampled individual has a 
sample weight (w~) which effectively represents the 
number of people in the population that he represents. 
The predictive margin is given by 

J g 

, e u ( r )  - ,,,, e(r,z,, O) I , , , , .  
/=1 t=1 

where 0 is a s~aple-weighted estimator of O. For the 
analysis of covariance, PM(r) = ~, + ~" where 
(~1 , . . . ,~  ~) are sample-weighted least-squares 
estimators and z" is the sample-weighted mean of the 

Case 2: Suppose we desire the predictive margin for a 
~ i f i c  subpopulation of the sampled population. If we 
let 8 i equal 1 if the i th  observation is in the 
subpopulation, and 0 otherwise, then we have 

N /V 

PPM(r) = ~ b ,g(r, Zp O) / ~ b t and 
/ffil 1=1 

m J 

PM(r) = ~, ~ tw~ g(r, zp O) / ~ 8 tw t , 
tffil / -1  

where 0 is the sample-weighted estimator using the full 
sample. 

Case 3: Suppose we desire to estimate the predictive 
margin for an external population for which we know 
the distribution of the covariates, which takes on 5 
distinct values, Zv...,Z s. Letting ni equal the 
probability that Z=Z t in the external population, we 
have 

$ $ 

PPM(r) = ~_, ~tg(r.ZpO) and PM(r) = ~, x,g(r.Z~O) 
/=1 tffil 

where ~ is the sample-weighted estimator of 0 using 
the sampled data. 

Case 4: Suppose a simple random sample of 
observations is collected and we desire to estimate the 
predictive margin for the sample distribution of the z 's, 
rather than the sampled population as in Case 1. Then 

PPM(r) = 1~ g(r, zp O) and PM(r) = 1 g(r, zp ~) 
?l 1=1 lq /=1 

Although the predictive margin is the same as in case 
2 (Wl-1), the population predictive margin is different. 
This has implications for the estimation of the standard 
errors of the predictive margin as will be explained in 
section 3. 

Case 5: Suppose the data are acquired in an experiment 
in which the values of the covariates (z 's)  are fixed by 
the experimenter. One could adjust to the observed 
distribution of the z ' s  as in Case 4, or possibly to some 
other meaningful distribution. For a linear model with 
only categorical covariates, the "population marginal 
mean" and "estimated marginal mean" of ~ l e ,  Speed 
and Milliken (1980) are given by 

1 t i t 
PPM(r) -- ~ ~ g(r, zp O) and PM(r) --- ~ ~ g(r,z o ~) 

I-I lffil 

where k is the number of combinations of levels of the 
covariates and 0 is the least-squares estimator of 0. 

3. Standard error estimation 
In the non-survey setting with the analysis of 

covariance, y#fa~÷[Sxo+e#, the variance of the 
predictive margin, which equals the adjusted treatment 
mean in this setting, is well-known and given in 
textbooks (Neter, et al., 1990, pp 888-890): 

1 ('~,,-x-') 2 + IL I I x u l )  = o.2 - -  + (4) 

liar t=1 

where 0, 2 is the variance of the co. This variance is 
actually a conditional variance, conditional on the set of 
observed {x#}, a fact that is usually not explicitly 
stated. In this section, we compare the conditional 
variance (4) with the unconditional variance in this 
simple analysis of covariance setting. 

Consider a simple random sample of 
observations in the analysis of covariance setting. The 
conditional variance is given by (4), the unconditional 
variance by 

Var(a = E[ {x#)) ] 
÷ 
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- E[ Var(a,+O~l {x¢}) ] + I;* Var(~) 
where the second equality follows sinceE(a,l{x¢})=o~ , 
and E(O l{x¢})=13. The difference in the unconditional 
and conditional variance estimators is approximately 
[12Var(~), which is not of small order compared to 
Var(&,+l~Zl{x's}). However, 

E[Var(a'+OZl{x°})] ( R~ I-' 
> l + e ,  (5) 

va , ( a  + 1 -R * ) 

whero R 2 is the (population) multiple correlation 
coefficient and P, is the proportion of the population in 
group r .  The inequality in (5) is an approximate 
equality if the population mean of the X's in group r 
is equal to the overall population mean. The ratio of 
the variances will tend to be close to one unless R 2 is 
high. 

The textbook formula for the variance of an 
adjusted treatment mean is (4) with the least-squares 
estimate of o~ substituted for o~. As just described, 
even with a simple random sample, this formula is only 
valid when the inference is conditional on the sampled 
x0's (ease 4 of section 2), and not when the inference 
is for the population from which the sample was taken 
(case 1). In some applications, adjusted treatment 
means are used as a convenient display of group 
differences, with the choice of standardizing population 
not being important. In this situation, one could argue 
that the variability of the x0's need not be considered 
when estimating standard errors of adjusted treatment 
means (or a predictive margin). However, it should be 
noted that standard errors for adjusted treatment means 
are not needed for, nor should they be used for, testing 
group differences. These differences should be tested 
using the model parameters. In other applications, 
when an inference for adjusted treatment mean for a 
particular population is desired, the unconditional 
variance will be appropriate, implying that the textbook 
variance formula should not be used. 

The difference between variance estimators for 
the adjusted treatment mean that are, and are not, 
conditional on the sampled x¢'s is surprising because it 
not seen for some other common regression parameters. 
For example, in a simple linear regression, 
yo=a + [Jx¢ +cO, the unconditional variance of the slope 
and intercept can be expressed as 
Var(O) = E[ Var(O ] {X's}) ] and 
Var(&) = E[ Var(a l lx's}) ] 
showing that the unconditional variance estimators 
(e.g., an estimator of Var(O)) would be expected to be 
close to the conditional variance estimators (e.g., an 
estimator of Var(~ [{x's})). 

To estimate the variance of PM(r) for general g(-) 
and complex sampling designs, one can use a Taylor 

series approximation around O 0 = limO. or a jackknife 
proceAure; details available from the authors. 

4. Examples 
In this section we present examples of using 

predictive margins involving linear and logistic 
regressions using data from NHANES I and the 1992 
NHIS. 

Example 4.1: Systolic blood pressure and size of place 
of residence 

Table 1 presents a linear regression analysis of 
systolic blood pressure on size of place of residence 
(urban area with population one million or more, urban 
area with population under one million, rural area), 
age, body-mass-index, and sex. The data used for this 
analysis are from individuals 25 years or older sampled 
in NHANES I, which was a survey of the civilian 
noninstitutionalized population of the United States 
conducted in 1971-75 (Miller, 1973; Engel et al., 
1978). The regression coefficients and their standard 
errors presented in Table 1 were computed taking into 
account the sample weights and clustering of NHANES 
I, the design can be approximated by the sampling of 
three PSU's from each of 35 strata (Ingrain and Makuc, 
1994). Table 2 displays the observed means and 
predictive margin for place of residence. Notice that 
bew~use this is a linear regression, the differences 
between the predictive marginal values in Table 2 are 
equal to the corresponding regression coefficients in 
Table 1, e.g., 132.10-130.72 = 1.38. The predictive 
margin for the three place-of-residence groups is less 
spread out than the observed means, but the differences 
between the observed means and predictive margin are 
small. 

The standard errors in Table 2 were computed 
as described in section 3 (case 1), and account for the 
sampling variability of the independent variables. (The 
relatively low standard error for the category "urban 
with > million" is at first glance surprising given the 
relatively low sample size for this group, but is because 
the sampling design sampled many large urban areas 
with certainty.) One could argue for this example that 
the population values of the independent variables are 
not of great importance, implying that their sampling 
variability should not be taken into account. To see the 
effect of this sampling variability on the variability of 
the predictive margin, Table 3 computes the predictive 
margin pretending the sample was a simple random 
sample. The standard errors in this table are calculated 
three ways: allowing for the randomness of the x ' s  
(case 1 previously discussed), assuming the x ' s  are 
fixed and allowing for heteroscedastic error variances 
in the linear regression (case 4), and assuming the x ' s  
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are fixed and assuming homoscedastie error variances 
in the linear regression. The decreases in the standard 
errors when assuming the x 's  are fixed are small, but 
consistent with (5) since R 2 is .32 for this linear 
regression. If one included diastolic blood pressure as 
an additional independent variable, then R 2 =.60 and 
the difference in standard errors would be larger, e.g., 
.29 and .24 for "urban > million" for the random and 
fixed x ' s  standard errors, respectively. 

Example 4.2: Digital rectal exams and type of health 
insurance coverage 

The American Cancer Society recommends 
annual digital rectal exams for individuals aged 40 or 
over for cancer screening (American Cancer Society, 
1993). Of interest is the association of the probability 
an individual has had an annual digital rectal exam with 
his type of health insurance; a full analysis including 
other types of cancer screening is given elsewhere 
(Potosky et al., in press). Table 4 presents two logistic 
regression analyses of this probability on the type of 
health insurance, age, family income, sex, race, 
education, and self-reported health status. Model 1 
contains only the main effects, while model 2 
additionally contains the health insurance by income 
interaction. The data used for the analyses are from the 
Cancer Control Supplement to the 1992 National Health 
Interview Survey, a survey of the civilian 
noninstitutionalizeA population of the United States 
(Benson and Marano, 1994). 

Based on model 1 in Table 4, one can see that 
the probability of having a digital rectal exam is lowest 
for those with no health insurance (since the base group 
is no health insurance), and highest for the HMO/PPO 
insurance group. We find that these differences are 
much easier to interpret by displaying the predictive 
margin (Table 5). With the interaction (model 2), we 
f'md the improvement in interpretability offered by the 
predictive margin even larger. Additionally, as a 
statistical model builder, one might be interested in the 
effect of the inclusion of the interaction on the primary 
question. This is difficult to see from Table 4, but 
comparison of the predictive margins in Table 5 for the 
models shows that the major effect was to increase the 
predicted probability of the exams if everyone was 
using public insurance. 

The third predictive margin displayed in Table 
5 addresses the question of predicted probability of 
digital rectal exams if the individuals with no insurance 
had instead one of the other types of insurance. This 
predictive margin was calculated by using as the 
population for the adjustment only those individuals 
with no insurance (case 2 previously discussed). The 
interesting relative differences in the predictive margins 

for groups (e.g., the HMO/PPO and Public groups) are 
due to the fact that individuals with no insurance tend 
to have lower income than the population as a whole, 
and that there is an income-by-group interaction 
included in the model 2. 

Since in this example we are interested in 
inferences for the population, the standard errors for the 
predictive margins in Table 5 account appropriately for 
the variability of the independent variables (eases 1 and 
2 of section 2). 
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Table 1" Linear regression of systolic blood pressure on age, body-mass-index (kglm2), sex, and place of residence 
using data from NHANES I (sample size= 14333, estimated population size= 104.7 million) 

Variable 

Intercept 

A~e 

Body-mass-index 

Sex (Men vs Women) 

Place of residence 

Urban( < 10 6) vs Urban(_> 10 6) 

Rural vs Urban (_>10 e) 

Beta 

68.50 

0.68 

1.24 

1.93 

1.38 

1.40 

Standard Error 

1.32 

0.02 

0.05 

0.46 

0.69 

0.67 

P-value 

< .001 

< .001 

< .001 

.064 

Table 2: Observed sample-weighted mean and predictive margin for systolic blood pressure as a function of place 
of residence; predictive margin controls for age, body-mass-index and sex (see Table 1) 

Place of residence 

Urban (_>..106) 

Urban ( < 105 

Rural 

Sample 
size 

3907 

5291 

5135 

Observed mean + 
SE 

130.17 + 0.44 

132.11 + 0.72 
. . . - - .  

Predictive margin 
+ SE 

130.72 + 0.38 

132.10 + 0.63 

132.61 + 0.70 132.11 + 0.64 
. . , - - .  

. .  

Table 3: Predictive margin for systolic blood pressure as a function of place of residence, controlling for age, body- 
mass-index and sex, treating the sample as a simple random sample ..... 

Place of residence 

Urbant210 ~ ) 

Urban(< 105 

Rural 

Predictive margin 

133.22 

134.63 

134.39 

Standard errors calculated with: 

x 's  random 

0.35 

0.30 

0.30 

x 's  fixed 

0.32 

0.28 

0.28 

x 's  fixed, 
2 

Ot cons tant  

0.32 

0.28 

0.28 
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Table 4: Logistic regression of probability of digital rectal exam on age, family income, sex, race, education, 
marital status, self-reported health status, and type of health insurance using data from individuals between 40 and 
64 years of age sampled in the 1992 NHIS (sample size=3657, estimated population size=57.0 million); only 
coefficients for Family income, Health Insurance, and Health Insurance X Income are displayed in this table.. 

Variable 

.Family income ( < 2 0 K  vs >.__20K) 

Health Insurance" 

FFS(lar~e) vs None 

FFS(other) vs None 

HMO/PPO vs None 

Public vs None 

Health Insurance X Income b 
, ,  

,, FFS(larl~e) & < 20K 

FFS(other) & < 20K 

HMO/PPO & < 20K 

Public & < 20K 

Model 1 (without interaction) Model 2 (with interaction) 

Beta 

-.24 

.98 

.80 

1.15 

1.11 

Standard 
Error 

.12 

.18 

.20 

.18 

.23 

P-value 

.048 

< .001 

Beta 

.35 

1.33 

1.18 

1.44 

1.95 

-.73 

-.99 

-.23 

-1.19 

Standard 
Error 

.30 

.27 

.27 

.27 

.47 

.35 

.37 

.41 

.51 

P-value 

N.A. 

N.A. 

.016 

(a) Abbreviations for types of health msurance are: None = no private or public health care coverage reported; FFS 
(large) = one of the 50 largest fee-for-service plan held privately or through employer; FFS (other) = fee-for- 
service plan held privately or through employer, but not one of the 50 largest; HMO/PPO = enrolled in a Health 
Maintenance Organization or Preferred Provider Organization; and Public = Medicaid or other public assistance 
program, but not a HMO/PPO 
(b) Reference category is Health Insurance = "None" and Income = ">.._20K" 

Table 5- Observed sample-weighted proportion and predictive margins for the probability of digital rectal 
examination as a function of type of health insurance plan; predictive margins control for age, family income, sex, 
.race, education, marital status, and self-reported health status 

Health 
Insurance 

None 

FFS (larse) 

FFS (other) 

HMO/PPO 

Public 

Sample 
size 

532 

1153 

867 

813 

292 

Observed 
prop. + SE 

• 13 + .O2 

.34 + .02 

.30 + .02 

.37 + .02 

.30 + .03 

Predict. 
Margin + SE 
0Vlodel 1) 

.16 + .02 

.33 + .O2 

.29 + .02 

.37 + .02 

.36 + .04 

Predict. 
Margin + SE 
(Model 2) 

.14 + .02 

.33 + .02 

.29 + .02 

.37 + .02 

.45 + .07 

Predict. Margin + 
SE 
(Model 2, 
pop. =None b) 

• 13 + .02 

.27 + .02 

.22 + .02 
i 

.35 + .03 

.35 + .05 

(a) Standardizing population is subpopulation of individuals who belong to the health insurance= "None" group. 
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