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Abstract: Efron's bootstrap, Rubin's Bayesian 
bootstrap, the finite population bootstrap of Gross, 
and the finite population Bayesian bootstrap of Lo 
are described. The finite population Bayesian boot- 
strap is generalized to account for sampling with 
unequal probabilities. The connection between the 
Bayesian versions of the bootstrap and multiple im- 
putation is discussed. 

1. Introduct ion 

Multiple imputation is a method for handling 
missing data designed to capture the extra uncer- 
tainty due to the missing data elements. One of the 
main practical messages about multiple-imputation 
procedures is (Rubin, 1987, p. 126): 

Draw imputations following the Bayesian 
paradigm as repetitions from a Bayesian 
posterior distribution of the missing values 
under the chosen models for nonresponse 
and data, or an approximation to this pos- 
terior distribution that incorporates appro- 
priate between-imputation variability. 

The drawing of sample elements (not necessarily im- 
putations) from a Bayesian posterior distribution is 
exactly what the Bayesian bootstrap (Rubin, 1981) 
accomplishes. Like the "regular" bootstrap of Efron 
(1979, 1982), the Bayesian bootstrap is relatively 
simple yet the bootstrap sampling is computation- 
ally intensive. 

This paper explores the Bayesian and other 
forms of the bootstrap with multiple imputation in 
mind. Much of the discussion will also be perti- 
nent to those who are interested in the bootstrap 
for other purposes such as estimating the sampling 
variance. Our ultimate aim is to develop a form 
of the Bayesian bootstrap that is appropriate for 
unequal probability sample designs in finite popu- 
lations. This paper contains the initial results of 
this investigation. 

For book-length treatments of the bootstrap 
and related methods, we recommend Efron and Tib- 
shirani (1993) and Shao and Tu (1995). Chapter 6 
of the latter reference is on applications to sample 
surveys. 

The organization of this paper is as follows: 
This introduction is Section 1. We discuss the origi- 
nal form of the bootstrap in Section 2. In Section 3 
the simplest version of the Bayesian bootstrap is in- 
troduced. Section 4 introduces the bootstrap for fi- 
nite populations (both Bayesian and non-Bayesian). 
Section 5 treats the Bayesian bootstrap for unequal 
probability sample designs. Section 6 relates the 
Bayesian versions of the bootstrap to multiple im- 
putation. Concluding remarks are provided in Sec- 
tion 7. 

2. Efron's Boots trap  

Let us begin by considering a simple random 
sample with replacement of sample size n. Let 
x = (Xl, X2, . . .  , xn) be the observed values. 
The most standard form of the bootstrap, due to 
Efron (1979), involves selecting bootstrap samples 
x* -- (x~, x~, . . . ,  x~) by randomly sampling 
n times with replacement from the original sample 
x l, x2, . . .  , xn. The idea is to select a large num- 
ber B of these bootstrap samples x .1, x 'Z , . . .  , x *B. 
If/~(x) is an estimate based on the original sample 
x, then 0(x *b) is the corresponding estimate based 
on the b th bootstrap sample. The estimate ~)(x) 
could be, for instance, the mean or the median. By 
studying how the/~(x .1), 0(x '2) , . . .  , 0(x *B) are dis- 
tributed, we learn about the distribution of 0(x). 
In particular, Efron (1982, p. 28) suggests that the 
standard error of 0(x) be estimated by 

1 

B -  1 - 
b=l 

*" - where  0 (x) ~bB 1 
The early justification for the bootstrap was 

based on heuristic reasoning. Work by B ickel and 
Freedman (1981), Singh (1981), and others, though, 
demonstrates that the bootstrap has remarkable 
large sample (asymptotic) properties. Confidence 
intervals may be constructed based on the bootstrap 
that outperform those based on the normal approx- 
imation. 

3. The Bayesian Boots trap  

Rubin (1981) introduced a variation on the 
bootstrap with a Bayesian justification. Like 
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Efron's, this Bayesian bootstrap was first developed 
for simple random sampling with replacement (with 
sample size n). Each Bayesian boots t rap  sample 
x *b is selected by a two-step procedure, as follows 
(adapted from Rubin, 1987, p. 124)" 

Step 1. Draw n uniform random numbers between 
0 and 1, and let their ordered values be 
a l, a2, . . .  , an; also let a0 - - 0  and a n -  1. 

Step 2. Draw each of the n values in X *b = 

(x{ b, x~ b, . . . ,  x~ b) by drawing from 
Xl, x2, . . . ,  xn with probabilities ( a l -  
a0), (a2 - al) ,  . . . ,  (1 - an - l ) ;  tha t  is, in- 
dependently n times, draw a uniform number 
u, and select xi if a~_ 1 < u < ai. 

Although a bit more involved than the Efron boot- 
strap, this procedure is easily computerized. 

To demonstra te  the Bayesian nature  of the pro- 
cedure, we suppose that  the data  vector x can as- 
sume at most K distinct values. This restriction 
can be eliminated by nonparametr ic  Bayesian argu- 
ments, but  given tha t  K can be arbitrarily large, we 
see no need to do so here. Let d = ( d l ,  d 2 ,  . . .  , dK) 
be the vector of these distinct values. Define the vec- 
tor of probabilities )~ = (A1, ~2, .-.  , AK) by 

Pr (x~- -dk l  A ) - A k ,  E A k - - l "  

T h e  x l ,  x 2 ,  . . .  , x n given X are assumed to be in- 
dependent and identically distributed. Rubin (1981) 
showed tha t  the Bayesian boots t rap  procedure is 
equivalent to assuming tha t  the prior distribution 
of X is the (improper) distribution 

K 

P r ( A ) -  H )k;1 if E 
k- -1  

,kk -- 1 and 0 otherwise. 

The posterior distribution of A, tha t  is, the condi- 
tional distribution of A given the data  x, is described 
by 

K 
n ~ - I  

Pr(~lx)  ~ H / ~ k  
k--1  

where the nk are the number of x~, i = 
1, 2, . . .  , n, equal to dk; ~ n k  -- n; and ~ A k  -- 1. 
This posterior distribution can be recognized as a 
( / ( -  1)-dimensional Dirichlet distribution. 

Lo (1987) showed that  the Bayesian boots t rap 
has the same desirable large sample properties as 
Efron's bootstrap.  

4. Finite Population Bootstraps 
The first finite population boots t rap (FP B) was 

suggested by Gross (1980). To describe it, let y -  
(Yl, Y2, . . .  , Yn) be a sample from a finite popula- 
tion (]I1, Y2, . . . ,  YN), n < N -  1. The sample is 
assumed to be a simple random sample, either with 
or without  replacement. We have switched from us- 
ing x to y to describe the sample in accord with 
survey sampling notat ional  conventions. The key to 
the Gross FPB method is to first create an FP B pop- 
ulation of size N from which the FPB samples are 
drawn. We shall discuss here only the simple case 
where the populat ion size is an integer multiple of 
the sample size; tha t  is, N - kn for some integer 
k. In this case, the FPB population is created by 
replicating the sample (Yl, Y2, . . . ,  Yn) k times. 
Each FPB sample is produced by simple random 
sampling without  replacement from the FPB pop- 
ulation to obtain y* - (y~, y~, . . . ,  Yn). There has 
been much recent research on extending the FPB to 
more complex sample designs. Consult Chapter  6 of 
Shao and Tu (1995) for further information. 

The corresponding finite population Bayesian 
boots t rap  (FPBB) was developed by Lo (1988). It is 
based on a form of sampling tha t  is a generalization 
of something called a "P61ya urn scheme." Consider 
an urn containing a finite number of balls. Select a 
ball from the urn at random; it is then replaced and 
another ball just  like it is added to the urn. Continue 
this process until a fixed number, say m, of balls 
have been selected. Such a sample is called a P61ya 
sample of size m. An urn containing zl, z2, . . .  , zn 
will be denoted by urn{z1, z2, . . . ,  z~}. 

Each replication of the FPBB is formed as fol- 
lows (adapted from Lo, 1988, p. 1686)" 

Step 1. Draw a P61ya sample of size N -  n, de- 
noted by yt ,  y~, . . . ,  Y~v-n, from the 

urn{Y1, Y2, . - - ,  Yn}. 

Step 2. Form the FPBB population 

Yx, Y2, . . . ,  Yn, Y~, Y~, . . . ,  Y~v-n. 

Unlike other methods studied thus far, Lo's FPBB in 
effect resamples the population outside of the sam- 
ple, rather  than  resampling the sample itself. 

5. Unequal Probability Bayesian 
Bootstrap 

In survey sampling, it is commonly the case tha t  
units are selected with unequal probabilities. Let 7r~ 
denote the probability tha t  unit i is selected into 
the sample and set w~ - 1/lr~. Then w~ is called the 
weight of unit i and can be thought of as the number 
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of units in the populat ion tha t  unit i represents. The 
procedure below is proposed to extend Lo's FPBB 
to this unequal probability of selection situation. 

Step 1. Draw a sample of size N -  n, denoted by 
Y~, Y~, • • • , Y~v-n, as follows: 
Determine y~ by drawing from Yl, Y2, . . .  , Y~ 
in such a way tha t  Yi is selected with probability 

w~ - 1 + t~,k_ 1 .N__~_ 

where t~¢,k_l = number of boots t rap selections 
o fyCamongy~ ,  Y~, --- , Yk-* 1. S e t t ~ ¢ , 0 - 0 a n d  
note tha t  ~-~.¢n=1 g¢,k-1 - k -  1. 

Step 2. Form the FPBB population 

Yl, Y2, . . . ,  Y~, Y~, Y , . . . ,  YN-n" 

The properties of this procedure are under in- 
vestigation. Use will be made of the ideas of Lo 
(1988, 1993a, 19935) and Walker and Muliere (forth- 
coming). 

6. Multiple Imputation 

Let us now discuss multiple imputat ion and how 
it is related to the Bayesian forms of the bootstrap.  
In doing so, we need to transform our notation some- 
what. The goal of imputat ion is to produce, to the 
extent possible, a complete sample by producing im- 
puted values for the cases tha t  did not respond (or, 
for some other reason, the data  are missing). The 
goal of multiple imputat ion is to do this in a way 
that  does not cause the error to be underestimated. 
Lo's FPBB is described in terms of boots t rapping to 
the entire population, but for the application to im- 
putat ion the "population" we want to boots t rap  to 
is just the complete sample. The "sample" is the set 
of respondents; let's say there are r of them. There 
are m = n -  r cases for which data  are missing 
corresponding to the N -  n cases outside the sam- 
ple in Lo's FPBB. This situation can be represented 
schematically, where the notat ion on the left is tha t  
used in Lo's FPBB and tha t  on the right is used in 
the application to imputation: 

N ~ n 

N - n  ~ m - n - r .  

We shall t reat  r and m as fixed. 
One source of randomness in a boots t rap  sam- 

ple comes from being sampled and responding or not 
responding (viewed here as a single process). Let Ij  
denote an indicator variable tha t  is 1 if unit j was 

sampled and responded and is 0 otherwise. We as- 
sume tha t  the probability of not responding is the 
same for all cases in the sample (in reality, this con- 
dition could at most be expected to hold within an 
imputat ion cell). Let :Z" denote the vector of Ij val- 
ues, j = 1 , . . .  ,n. 

Another source of randomness comes from the 
boots t rap process itself. Let 6b--:/:/: {y;b_ yj} be 
the number of times the response of respondent j is 
used in boots t rap replicate b (including the one t ime 
it is used to represent itself). Let c *b denote the vec- 
tor of c] b values, j -- 1 , . . .  , n. The randomness in a 
boots t rap replicate sample can now be represented 
by the two vectors ~ and c *b. The vector c* will 
denote the particular c *b vector used for the actual 
imputations. 

Using the properties of conditional expectation 
and variance, we can represent the variance of an 
estimator 0 - 0(:Z', c*) by 

var/} (Z, c ' )  

= var:z E,  [O(I, c*)]:Z'] + F~ var,  [ 0 (~ , c ' ) , ~ ]  . 

The first te rm in this decomposition is essentially a 
sampling variance term, whereas the second term 
is essentially an imputat ion variance term. But 

F 

10(:Z', c*)I:T I in the second term can be esti- var.  
L . t  

mated by 

B 2 

b = l  

1 B ,b) ,  
where 0(Lr, .) -- ~ E 0(:Z', c so this estimates 

b=l  
[ _] 

Fa:var. /0(:T,c*)l:Z-I unbiasedly as well. 

On the other hand, E,  /0 ( I ,  c * ) l l  I in the first 
L . . $  

term can be estimated by ~)(:Z',.). If 0 is linear, 

E ,  [0(:T,c*)IZ ] reduces to 0 ( I ,  5) where though, 

= E,  (c*]:T). By Taylor series arguments,  0 ( I ,  ~) 
should also work as an approximation for nonlinear 
but sufficiently "smooth" ~) . Whichever estimator 
is used, one has to estimate its sampling variance by 
one of the usual techniques to get an estimate of 

By combining the various pieces, one can now esti- 
mate var 0(:Z', c*). 

The idea of decomposing the variance into two 
terms and using multiple imputat ions to estimate 
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the "imputation" term originated with Rubin (see 
Rubin, 1987). The variance decomposition given 
here is different in that the first term treats the sam- 
ple size as r rather than n. 

0 Concluding Remarks 

The Bayesian bootstrap provides a simple 
mechanism for sampling from a posterior distrib- 
ution. In cases studied thus far, it has the same 
desirable large sample properties as the "regular" 
bootstrap and is not difficult to computerize. Par- 
ticularly with multiple imputation in mind, the chal- 
lenge is to develop the Bayesian bootstrap for the 
kinds of complex sample designs that arise in prac- 
tice and especially for unequal probability sampling. 
Multiple "hot-deck" imputations can then be drawn 
by Bayesian bootstrap selections of respondents. 

In this paper we have very briefly summarized 
some of the different versions of the bootstrap with 
initial results on developing a Bayesian bootstrap 
for unequal probability sample designs for applica- 
tion to multiple imputation. A substantial amount 
of work remains before this idea is fully developed. 

Acknowledgment :  The author thanks Lynn Kuo 
of the University of Connecticut for helpful com- 
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