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1. INTRODUCTION 
A common practical approach to missing data is 

imputation, where missing values are filled in by esti- 
mates and the resulting data are analyzed by complete- 
data methods. Imputation methods until the late 1970's 
lacked an underlying theoretical rationale. Pragmatic 
estimates of the missing values were substituted, such 
as unconditional or conditional means, and inferences 
based on the filled-in data. The overstatement of preci- 
sion that results from treating the imputed data as the 
truth was generally treated as minor and ignored. 

Rubin's multiple imputation (MI) theory (Rubin 
1977, 1987) put imputation on a firmer theoretical 
footing, and also provided simple ways of 
incorporating imputation uncertainty into the inference. 
Instead of imputing a single set of draws for the 
missing values, a set of K (say K = 5) datasets are 
created, each containing different sets of draws of the 
missing values from their predictive distribution. The 
analysis of interest is applied to each of the K datasets 
and results combined in simple ways, such as that 
discussed in the next section. 

MI theory suggests that the imputations in this 
process should be draws from the predictive distribu- 
tion of the missing values given the observed data. In 
particular, suppose we have a dataset with independent 

observations, and for observation i let y,,,~,,~ denote the 

set of missing variables and let Yob~.,J denote the set of 

observed variables. Then imputations should be draws 

from the predictive distribution of Y,,i.,,J given Yoh,.i .. 

This approach conflicts with widely-held ideas of 
imputation in some settings. We provide three 
examples with increasing generality: 
Example 1. Missing covariates in regression. 
Consider the regression of Y = X p  on X 1 , . . . , X p _  1 for 

a dataset with Y fully observed and missing values for 

the covariates X l , . . . , X p _  ~ . The imputation principle 

noted above implies that missing covariates in a case 
are imputed based on the regression of those variables 
on the observed covariates a n d  Y. However many 
analysts fill in the missing covariates by regressing on 
the observed covariates, excluding Y. The reasoning is 
that the inclusion of Y as a predictor of the missing 
values is circular, given the fact that the filled-in dataset 

is then used to regress Y on the observed and imputed 
covariates. 
Example 2. Repeated measures with missing data. 
More generally, many analysts believe imputations 
should condition only on variables that are exogenous 
in the system of equations used to model the data. 
Consider for example a repeated measures problem 
where a subject is observed at times T = 1 , . . . , t -1 ,  is 
missing at time t, and then reenters the study and is 
observed at times t + l , . . . , T .  From a causal 
perspective, one might argue that data prior to time t 
should be used to impute data at time t but not data 
after time t. However the MI principles above imply 
that observed data values at times t + 1,..., T should be 
used to help impute the values of missing values at time 
t, despite the reverse causal direction. 
Example 3. Imputations for analyses involving 
different but overlapping sets of variables. Data 
bases are generally subject to a broad range of analyses 
involving different sets of variables. Suppose that 

analysis (A) of a dataset involves a set of variables S A 

and analysis (B) involves a set of variables S 8 , and 

these two sets both include a variable X that has values 
missing. Constrast the following three analysis 
strategies: 

(1) Carry out analysis (A) based on S A and analysis 

(B) based on Se using methods that do not involve 

imputation of the missing values of X, such as maxi- 
mum likelihood applied to the set of variables involved. 
(2) Carry out analysis (A) with imputations of Xbased 

on the data available in S A , and analysis (B) with 

imputations of Xbased on data available in S B . 

(3) Carry out analyses (A) and (B) with imputations of 

Xbased on the combined information in S A and S 8 . 

Analysis (1) and (2) are common choices, but MI 
theory suggests that (3) is the best analysis, since it 
conditions on the available information about X. 

In this paper we reaffirm the rationale for imputa- 
tion that conditions on all the available data in these 
settings. However, we also show that for certain nonig- 
norable nonresponse models the imputation principle 
described above can lead to methods that do not use 
information on all the available variables. 
2. MULTIPLE IMPUTATION THEORY 
The theory of MI is model-based, and is founded on a 
simulation approximation of the Bayesian posterior 
distribution of the parameters given the observed data. 
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Specifically, let X = ( x 0 )  represent an n × p  data 

matrix, let M be an (n× p) missing-data indicator 

matrix with entriesM~ =1 if x!j is missing and 

M,.j = 0 is x 0 is observed. Let Xoh.,. be the observed 

data and X~i.,. the missing components of X. Let 

p ( X ,  M]O) be the distribution of X and M indexed by 

model parameters 0 ,  and let p(0) be a prior distribu- 

tion for 0 .  The posterior distribution for 0 given the 

observed data (Xob.,.,M) is related to the posterior 

distribution given hypothetical complete data (X, M) 
by the expression: 

p(O ] Xo~.,. , M )  = ~ p(O [ X ,  M)  p(  Xr,~. ,. [ X,,h. ,. ) dXmi.,. 

MI approximates this expression as: 
1 x 

p(elXoh.,.,M)-----~-'p(OlX(*),M) , (1) 
k=l  

where X (*) = (X,,h.,.,X~k~)) is an imputed data set with 

missing values filled in by a draw from the posterior 

predictive distribution of the missing data Xm~L,. given 

the observed data Xoh.,.. and M: 

X~*~ ~ p(  Xm~.,. ] Xoh.,., M)  , (2) 

and p(0]X (k), M)is the posterior for 0 based on the 

filled-in data set X (*) . The posterior mean and covari- 
ance matrix of 0 can be approximated similarly as: 

- 1 K 
E(O[Xo~,,. M ) = O  - - - ~ ( ) ( * )  l~(k) = E(OIX (*) M)(3) 

' K 7"il= ' ' 

(1996), Fay (1996) and Rao (1996) and the literature 
cited in those papers. 
(B) An important feature of the method is that draws of 
the missing values are imputed rather than means. 
Means would be preferable if the objective was to 
obtain the best estimates of the missing values, but 
mean imputation has drawbacks when the objective is 
to make inferences about parameters. Imputation of 
draws entails some loss of efficiency for point estima- 
tion, but this loss is considerably reduced by the 
averaging over the K multiply-imputed data sets in (3). 
The gain from imputing draws is that it yields valid 
inferences for a wide range of estimands, including 
nonlinear functions such as percentiles and variances 
(Little 1988). 
(C) The difficulty in implementing MI is in obtaining 

draws from the posterior distribution of Xm~.,. given 

Xoh.,., which often has an intractable form. Since draws 

from the posterior distribution of Xm~.,. given Xoh.,. and 

0 are often much easier, a simpler scheme is to draw 

from the posterior distribution of X~.,. given Xoh.,. and 

0 ,  where 0 is an easily computed estimate of 0 such 
as that obtained from the complete cases. This approach 
ignores uncertainty in estimating 0 ,  and is termed 
improper in Rubin (1987). It yields acceptable 
approximations when the fraction of missing data is 
modest, but leads to overstatement of precision with 
large amounts of missing data. In the latter situations 

one option is to draw 0 (*) from its asymptotic distribu- 

Var(O]Xo~.~, M) --- ~1 ,=1 Var(OIX(*)' M)+-- U- ~ _- (6")-G)(6~*)-~)T ion and then impute Xmi ,,. from its posterior distribu- 

(4) tion given Xoh.,. and 0 (k) . A better but more computa- 

These expressions form the basis for MI inference of 
the filled-in data sets. Eq. (3) indicates that the 
combined estimate of a parameter is obtained by aver- 
aging the estimates from each of the filled-in data sets. 
Eq. (4) indicates that the covariance matrix of the esti- 
mate is obtained by averaging the covariance matrix 
from the filled-in data sets and adding the sample 

covariance matrix of the estimates 0(*) from each of 
the filled-in data sets, which captures the added 
uncertainty from imputation that is missed by single- 
imputation methods; the (K + 1) /K factor is a small- 
sample correction that improves the approximation. 

The following comments on this approach are 
germane to our later discussion: 
(A) Although the above MI theory is Bayesian, simula- 
tions show that inferences based on (1)-(4) have good 
frequentist properties, at least if the model and prior are 
reasonable. For discussion of the properties of MI 
under model misspecification, see for example Rubin 

tionally-intensive approach is to cycle between draws 

X~'i),. ~ P(X,,i.,.[Xoh.,.,O ('-')) and 0 (') - p(OlXoh.,.,X~'~)~) , 
an application of the Gibbs' sampler (Tanner and Wong 
1987). 
(D) The formulation above requires specification of the 
joint distribution of X and M. Fixed covariates that are 
fully observed in the data set can be treated as fixed in 
the analysis and do not need to be modeled. In particu- 
lar in Example 1, a distribution only needs to be speci- 
fied for the joint distribution of the outcome and 
incomplete covariates conditional on the fully observed 
covariates. A more important point is that if the missing 
data are missing at random (MAR) in that the distribu- 
tion of M given X depends on the values of observed 

variables Xoh.,., then inference can be based on a model 

for X alone rather than on a model for the joint distribu- 
tion of X and M (Rubin 1976: Little and Rubin 1987). 
Specifically Eqs. (1) -- (4) can replaced by (1 I) -- (4I): 
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1 K 
P(OlX°bs) -- -K- ~-~ P(0 [ X(*)) ' k ~  (lI) 

X (k) = (Xob.,.,X~ik~), X(ik)~ -- p(Xm~sIXob.,. ) , (21) 

- -  1 x 
E(OIX°b ' ) - - -O=--~  g ( k ) K  = , 0(k)-E(0lX(k))  (3I) 

l ~var(OlX(k ) K+I( 1 ,~(~(k)_g)(~(k)_6)r ) Var(O l Xob, ) --- -~ k=, ) + ~ k . ~  

(4I) 
where the conditioning on M has been dropped. This 
approach is called inference ignoring the missing-data 
mechanism, and is attractive since in practice modeling 
the missing-data mechanism is difficult, and results are 
vulnerable to model misspecification. 
(E) Another important feature of MI is that it involves 
draws from the conditional distribution of the missing 
data given all the observed data. This feature contrasts 
with other approaches to imputation that do not 
condition on all the observed variables in the data set. 
We now examine this issue further using the examples 
of regression and longitudinal data analysis mentioned 
in the introduction. 
Example 1. Missing eovariates in regression (contd.) 
When imputing missing covariates in regression, it is 
common practice not to condition on the values of 
observed outcome variable Specifically, consider a 

linear regression of Y -  Xp on covariates X~,...,Xp_~, 

when X l , . . . , X p _  2 and Y are fully observed and Xp_~ 
is missing for some observations. MI theory dictates 

that missing values of Xp_~ should be imputed based 

on the conditional distribution of Xp_~ given 

X l , . . . ,  Xp_  2 and Y. However it is commonly 

considered circular to use Y for imputation in this 
setting, and imputation is instead based on the 

conditional distribution of Xp_~ given X~ , . . . ,Xp_  2 . I n  

particular, one strategy is to regress Xp_~ on 

X l , . . . , x p _  2 using the complete cases, and then fill in 

missing values of Xp_~ with predictions from this 

regression. Analysis of the filled-in data set yields valid 

estimates of the regression of Y o n  Xl,.. . ,Xp_2, 

provided missingness does not depend on Xp_~ or Y. 

The key to whether imputations should condition 
on Y is whether a draw or a mean is imputed. If a draw 
is imputed, as in MI, then bias results if the imputations 

do not condition on Y-- specifically, if Xp_~ is drawn 

from the conditional distribution of Xp_~ given 

XI,.. . ,Xp_ 2 then the regression coefficient of Y on 

Xp_~ computed from the filled-in data is attenuated. If 

on the other hand an estimated conditional mean is 
imputed, then bias results if imputations condition on Y. 
In fact, the E-Step of the EM algorithm for maximum 
likelihood based on a normal model with ignorable 

missing data does impute the mean of Xp_~ conditional 

o n  X l , . . . ,Xp_  2 and Y, but the algorithm incorporates a 

correction to the covariance matrix of the variables that 
adjusts for the bias (Beale and Little 1975). Imputing 

the conditional mean of Xp_ 1 given XI ,..., Xp_ 2 yields 

consistent estimates for the regression on the filled-in 
data, but the resulting estimates involve a loss of 
efficiency, and can in fact be less efficient than 
estimates based on the complete cases (Gourieroux and 
Montfort 1981, Conniffe 1983a,b, Little 1992). As 
discussed in these papers, the efficiency of the method 
can be increased by down-weighting the imputed cases, 
but obtaining optimal weights and valid standard errors 
is not straightforward, particularly for more complex 
patterns of missing data. 

To see why the circularity of the MI approach is 
not a problem, consider its most rigorous implementa- 
tion using the Gibbs' sampler. The latter appears 

circular since draws of Xmj, condition on 0 and draws 

of 0 condition on Xmj,. Nevertheless, the Gibbs' cycle 

iterates to a draw from the joint posterior of 0 and 

X,,~,, and hence yields Bayesian inferences about 0 

that have optimal large-sample properties (including 
consistency) from a frequentist perspective. MI is 
attractive since it allows for imputation uncertainty and 
is asymptotically efficient as the number K of multiple 
imputes tends to infinity. High efficiency can be 
obtained with a small value of K (say 5) if the fraction 
of incomplete values is fairly small. 
Example 2. Repeated measures with missing data 
(contd.) Consider a repeated measures problem where 
a variable X is initially observed at two times T = 1, 2. 

Under a simple causal model, interest lies in the regres- 

sion of X 2 , the value of X at time 2 on X~, the value 

of X at time 1. Suppose that X~ is fully observed but 

values of X 2 are missing for some cases not recorded 

at T = 2. If the data are MAR and parameters of the 

marginal distribution of X~ and the conditional distri- 

bution of X 2 given X~ are distinct, then it is well 

known that the cases with X 2 missing provide no 

information about the regression of X 2 on X~ and can 

be discarded. Indeed MI inference that imputes the 

missing values of X 2 is asymptotically equivalent to 

complete-case analysis as K becomes large, and there is 
no gain from including the incomplete cases in the 
analysis. 

619 



Now suppose that another wave of data is 

collected, and values of X at time 3, say X 3 , are 

recorded. Some fraction of the cases missing at time 2 

reenter the sample, and hence have values of X, and 

X 3 recorded. The question is whether data from this 

wave provide information for the regression of X 2 on 

X,; from the imputation point of view this depends on 

whether imputations of missing values of X 2 are 

allowed to condition on the values of X 3 . A perspec- 

tive that does not allow imputes to condition on 

endogenous variables would not allow imputes of X 2 

to condition on X 3 for the regression of X 2 o n  X~, 

since X 3 is not exogenous to this regression if causal- 

ity follows the direction of time. This implies that for 

the purposes of this regression imputes of X 2 should 

not condition of X 3, and data on X 3 should be 

discarded. However, intuitively the data on X 3 could 

be very useful in predicting missing values at time 2; 

indeed in the extreme case where X 2 and X s are very 

highly correlated, an imputation method that conditions 

on X~ and X 3 can essentially recover all the missing 

information for the regression for cases with X~ and 

X 3 observed and X 2 missing. 

MI recovers this information by imputing draws 

o f  X 2 from the conditional distribution given X~ and 

X 3 for cases that reenter the sample at time 3. The 

important point is that this form of MI provides valid 
inference about any parameters of the joint distribution 

of X 2 and X 3 given X~ under the assumed model, 

and hence in particular yields valid inferences for the 

parameters of the regression of X 2 on X~. The lack of 

exogeneity of X 3 does not affect the validity of MI 

inference for the parameters that are of causal interest. 
Example 3. Imputations for analyses involving 
different but overlapping sets of variables (contd.) 

MI theory leads to Strategy (3), where imputations 

are based on the combined set of variables S A and S 8 . 

The imputations are potential improved by the inclu- 
sion of a larger set of predictors, the MAR assumption 
is improved in situations where missingness depends on 
variables in both sets, and consistency of the two 
analyses is improved because the treatment of missing 
values in the same for both analyses. Compared with 
Strategy (1) where missing values are not imputed, MI 
has the useful feature that variables not in the main 
analysis model can be readily included in the imputa- 
tion model. 

3. CAVEATS TO CONDITIONING ON ALL 
O B S E R V E D  VARIABLES.  

The MI approach requires a suitable model for the 
predictive distribution of the missing data given the 
observed data. Ideally, the imputation model should not 
make strong assumptions that might conflict with the 
model for the main analysis. On the other hand the 
number of parameters in the model needs to be tailored 
to the size of the data set at hand. For example a 
standard regression model with noninformative priors is 
not appropriate w h e n  the number of conditioning 
variables for imputation exceeds the number of obser- 
vations. Informative priors, or more pragmatic 
approaches such as ridge regression or variable subset 
selection may be needed to reduce the size of the model 
in such cases. 

As noted in Section 1, when the data are not 
MAR, a model for joint distribution of X and the 
missing-data indicator matrix M is needed. Selection 
models specify this distribution as: 

f ( X ,  MIy ,V ) = f(YlY )f(MIY, v ),  (5) 
where f(Y[? ) is the model in the absence of missing 

values, f (MIY,  ql) is the model for the missing-data 

mechanism, and y and qJ are unknown parameters. In 

contrast, pattern-mixture models specify: 
f (Y ,  Ml~t,d~) = f(Y]M,~)f(MlTt) ,  (6) 

where ~ and ~t are unknown parameters and now the 

distribution of Y is conditioned on the missing-data 
pattern M(Little and Rubin 1987; Little 1993). 

Most of the literature on missing data has 
concemed selection models of the form (5), which are 
natural when interest concerns parameters ~, of the 

complete-data distribution. Important examples are 
probit (Heckman 1976; Amemiya 1984), and logit 
(Greenlees, Reece and Zieschang 1982; Diggle and 
Kenward 1994). selection models. Inferences about 
? and qt are dangerously unstable and sensitive to 

misspecification of the model for the missing-data 
mechanism (Little 1985; Little and Rubin 1987, 
Chapter 11; Glynn, Laird and Rubin 1993; Stolzenberg 
and Relies 1990). 

Pattern-mixture models seem more natural when 
missingness defines a distinct stratum of the population 
of intrinsic interest, such as individuals reporting "don't 
know" in an opinion survey. However, they can also 
provide inferences for parameters 7 of the complete- 

data distribution, by expressing the parameters of 
interest as functions of the pattern-mixture model 
parameters dp and ft.  Pattern-mixture models often 

yield inestimable parameters, but can avoid the need to 
model the form of the missing-data mechanism 
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explicitly, since the mechanism is reflected in 
restrictions on the model parameters. 

We believe that when the nonresponse mechanism 
is not MAR, in most cases imputation based on an 
ignorable model that conditions on all available data 
will tend to reduce nonresponse bias compared to alter- 
native methods, but this is not always the case. An 
ignorable model that fails to condition on all the 
observed variables may be closer to the true nonignor- 
able model than an ignorable model that conditions on 
all the observed variables, and hence yield superior 
imputations. The following example from Little (1994) 
illustrates this situation. 
Example 3. Nonignorable models for l ong i tud ina l  
data  with two t ime  points .  
Consider as in Example 2 a repeated measures problem 

where x!j is the value of a variable X for subject i 

measured at time j, j = 1 , 2 ,  and {xil } are fully 

observed but values of {xi2 } are missing for some cases 

not recorded at time 2. Let m~ = 1 if xi2 is missing, 

m~ = 0 if x~2 is present, and consider the following 

pattern-mixture model: 

(a) given m~ = r ,  xi = (xi~,x~2) r is iid bivariate normal 

with mean and covariance matrix qb (r) • {~ (r)]~(r)}  ; 

(b) m~ is marginally iid Bernoulli with pr(m~ = 1) = 7t . 

(c) p(m~ = l l X i l , X i 2 , ~  ) = g(x~ + ~x;i2 ) for arbitrary 

function g and known X. 
The distributions in (a) and (b) together contain eleven 
parameters, of which eight are estimable from the data 
and three, corresponding to the conditional distribution 

of X 2 given X~ for the incomplete cases, are not 

identified. Assumption (c) implies that 
, • 

p(X, lXz ,m= 1, qb) = p(Y, IXz ,m= o, ~) , 
, 

where X 2 = X~ + LY 2 , which yields three restrictions 

on the parameters, namely equality of the intercepts, 
slopes and residual variances of the conditional distri- 

bution of X~ given X~ + ~ X  2 for complete and incom- 

plete cases. These constraints just identify the parame- 

ters qb(r) of the model. The coefficient ~ measures the 

extent to which missingness depends on X 2 rather than 

X~. In particular if ~ = 0 then missingness depends on 

X~and is MAR, if Z = ~ then missingness depends 

entirely on X 2 , and if ~. = -1 then missingness depends 

on the difference X 2 -X~ .  We would like to be able to 

estimate ~ simultaneously with the other model 
parameters, but the data supply no information about 
(Little 1994). Hence results need to be based on an a 

priori choice of ~,, or a sensitivity analysis for a range 
of values of ~,. 

The ML estimates of the parameters of this model 
are derived in Little (1994). In particular the ML 

estimates of the mean and variance of X z and 

covariance of X~ and X 2 combined over patterns are" 

~2 = x2 +/'(~)(l]v2,., , - ~ , )  (7) 
• " t  ( Z ) ) 2  ~ = s ~  + w ~ , ,  ( ~ , ,  - s , , )  (8 )  

I"(~) (~ - s, ) (9) (~ 12 = S12 -k- O21.1 11 1 

where 

~ $ 2 2  -+- S12 b2Z,, = . (10) 
~.s12 + sll 

Here ~l,x2,s~,Szz,S~: are the sample means, 

variances and covariance of XI and X: for the 

complete cases, and (t~ and ~ is the sample mean 

and variance of X 1 over complete and incomplete 

cases. When ~ = 0, the missing data are MAR, and 
these estimates correspond to imputation of missing 

values of X: based on the regression of X: on X~ 

estimated from the complete cases. However if ~ = 

--13 (0) then substituting the ML estimate of ~ in 12.2 ' 

(10) yields b~ I = 0 ,  and (7) - (9) reduce to 

complete-case estimates. These correspond to the impu- 

tation of X: based on its marginal distribution, without 

conditioning on values of X~ for the incomplete cases. 

The implication is that if ~. = ~ is thought to be more 

plausible than X = 0, then imputations that fail to 

condition on the values of X1 are preferable to imputa- 

tions that do! This conclusion may seem to contradict 
statements in Section 2, imputations under the 

nonignorable model with ~ = ~. still condition on 

observed values of X~, but the coefficient ~.2~/,(~) is zero 

so that in effect values of X~ are ignored. 

4. CONCLUSIONS 
1. MI provides a general theoretical principle for filling 
in missing values and propagating the effects of 
imputation error on inferences. MI theory dictates that 
imputations should condition on all available informa- 
tion in a case, including variables that are not included 
in a particular analysis or that are causally endogenous 
to the missing variables. 
2. Ignorable missing data models are convenient in that 
they avoid the need to specify the missing-data mecha- 
nism, and they are good representation of reality when 
good covariates that characterize nonrespondents are 
available. 
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3. When nonignorable nonresponse mechanisms are 
thought to operate, nonignorable nonresponse models 
may play a role in the analysis, particularly as part of a 
sensitivity analysis. Particular nonignorable non- 
response models can yield imputations that correspond 
to those from ignorable models that do not condition on 
the all available data. If such nonignorable models are 
better descriptions of reality than the ignorable model, 
then failing to condition on particular covariates can be 
justified. 
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