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1. Introduction 
In economic surveys and censuses, it is common that 

when data for particular items do not "balance"--i.e., they 
fail to satisfy one or more additivity conditions--that these 
data are considered to be unusable. This paper discusses 
algorithms for adjusting such unusable data so that they are 
usable. The algorithms we describe can be used in data 
editing and imputation. We consider the following types of 
additivity conditions: 
Simple-one dimensional (l d) balancing: 

y = X l + X g + . . .  +X n, 
Nested-one dimensional (ld) balancing: 

y~ = X~l + x~2 + ... + Xl,o) 
Y~ = x21 + x22 + ... + X2n(~) 

Ym = Xm~ + Xm2 + ... + Xmn(m) 
Z = y~ + Y2 + "'" + Ym 

V. WO dimensional (2d) balancing: 

Xll X12 ... Xln r l 

X21 X22 "'" X2n r2 

. . . . . . . . . . . . . . .  

Xml Xm2 ... Xmn rm 

where r i = sum of row i, cj = sum of column j, and 
z = N r i = N cj is fixed. 

What motivated us to look at balancing algorithms was 
the Census Bureau's development of an editing-and- 
imputation subsystem, called Plain Vanilla (PV), for 
processing its economic censuses. PV is so named because 
it provides basic editing and imputation capabilities that one 
can augment with survey-specific computer code (i.e. 
toppings) to suit ones particular tastes. Sigman (1997) and 
internal memoranda (available from the authors) describe 
PV in more detail. 

This paper describes the PV balancing module. Section 
2 describes simple-ld balancing in general. Section 3 
describes one particular algorithm--the trim and adjust 
algorithm--for adjusting data that fail simple-1 d balancing. 
Sections 4 and 5 discuss nested-ld balancing and 2d 
balancing, respectively 
2. Algorithms for simple-ld balancing 

A simple- 1 d balancing complex is one in which two or 
more details (denoted x~) add to a single total (denoted y). 
We assumey~0 and x~0, with y=0 or x~=0 indicating either 
a valid zero or an item nonresponse. The following are 

examples of simple-ld balancing complexes: 
Example 1. 100 = PRCNT 1 + PRCNT2 + PRCNT3 
Example 2. CM = CP + CR + CF + EE + CW. 

In the first example the total is fixed at 100, whereas, in the 
second example the total is not fixed but is provided by the 
respondent. 

The PV development team identified several situations 
in which a simple-1 d balancing condition can fail to be 
satisfied. Table 1 lists these situations and briefly describes 
the associated adjustment procedures developed by the PV 
development team. These are explained in more detail in 
Table 2 and below, using the following notation: 

y - unadjusted total, 
xj = ith unadjusted detail, 
R = residual of unadjusted data = y-~_xj 
R' = residual of adjusted data = y '  -~x /  
y '  adjusted total, 
x / =  ith adjusted detail, 
<NSK> = not-specified-by-kind variable 
y00 = historic value for total, 
x~ °~) = historic value for ith detail, and 
~/f2)~ = category average for ratio of fleldf~ to f2. 

When two or more adjustment methods can be used in a 
particular balancing situation, the user specifies which 
one(s) are to used (and in what order) by preparing (prior 
to data processing) a specification file, called the PV script 
file. 
2.1. One-dimensional raking of details to a total 

One-dimensional-raked details are given by 
x/=(y/~,x~)x~.. When the unadjusted details are integers, 
adjusted details that are also integers and add to the total 
can be obtained by the following integer-rounding 
algorithm: 

Step 1. Calculate all the x;' to one decimal place. 
Step 2. For i=l, round x / u p  or down to x / '  depending 

on whether x /  is 20.5 or <0.5. 
Step 3. For i> 1, round 

i-1 

x/+E txj-xj'l 
j=l 

up or down to x~" depending on u; 20.5 or <0.5. 
If IRI/y is small, say less than 0.05, it is the general 

practice of subject-matter experts to rake details to a total. 
This practice has a sound statistical basis in situations in 
which the error in reporting a detail, x~, occurs at random 
and the variance of the random error in reporting x;, 
denoted var(x), is proportional to x~. Then, using the 

1 This paper reports the general results of research undertaken by Census Bureau staff. The views expressed 
are attributable to the authors and do not necessarily reflect those of the Census Bureau. 
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method of Lagrange multipliers, it can be shown that the 
raked details, x~ ', minimize the chi-square "statistic" 

• var(x i) 

subject to the constraint y=~x~ .(See Deming, 1943, 
Chapter 5.) 
2.2. Detection of rounding errors 

In economic surveys, respondents are sometimes asked 
to round certain items to the nearest thousand. If a total is 
rounded but the details are not, or vice versa, then the total 
will not equal the sum of the details. This type of rounding 
error can be detected and corrected using the following 
algorithm, which determines if rounding the total or the 
details can reduce the residual to less than ky. (A small 
value of k is usually used, say k=0.05.). 

• If y is not fixed and 
(yll OOO)-(kEx~ )<_ Ex~ <_ (yll OOO)+(k~,xi ), 

set y '  = y / 1000, and rake the x~ to y'  ; 
• Else if (,Y,x~/1000)-ky _< y _< (~xi/1000)+ky, then set 

x / =  xi /1000 and rake the x/ to  y. 
3. Trim-and-adjust algorithm 

If details do not add to a total, the trim-and-adjust 
algorithm changes the total and/or one or more details to 
obtain additivity. The algorithm consists of two major 
activities: trimming controlled by intervals, followed by 
data adjustments controlled by weights. The "trim" part of 
the algorithm examines the value of each item to determine 
if it falls outside the item's adjustment interval. Values 
outside the adjustment interval are made equal to the value 
of the closest interval endpoint. The "adjust" part of the 
algorithm has the following properties: 

P 1. Values are adjusted so that y=]~x~. 
P2. If an item's value is adjusted, the adjusted value does 

not fall outside the item's adjustment interval. 
P3. Items with large weights are adjusted before items 

with small weights. 
P4. Iftwo items have the same weight, the item with the 

larger data value is adjusted before the item with 
smaller data value. 

P5. The number of items adjusted in a balance complex 
is minimized subject to the constraints that 
properties P 1 through P4 are satisfied. 

Section 3.1 below defines the algorithm's inputs and 
outputs. Section 3.2 describes the algorithm's calculations 
and Section 3.3 applies the algorithm to an example. 
Section 3.4 discusses sources and roles of the controlling 
parameters (intervals and weights) and proposes some areas 
for further research and enhancement. 
3.1. Inputs and Outputs 

The following are the inputs to the algorithm: 
y = unadjusted total, N = number of details, 
[Lo U0] = adjustment interval for total, 
x - [x~,x~ ..... xu] = vector of unadjusted detail values, 

L = [L1,L e, . . . ,L w] = vector of lower bounds for details, 
U= [UI, U2 ..... U ~  = vector of upper bounds for details, and 
W0, W = weights, for y and x, respectively, where items 
with large weights are adjusted before items with small 
weights. For example, for the balancing complex y = q : q ~  
with a;_< qi_< bi, the inputs are x=[q~,-q2], L = [ a : b j ,  and 
U=[bl,-ad. 

The following are the outputs from the algorithm: 
y '= adjusted total, fo = adjustment flag for y (1 =yes, 0=no), 
x' = [ x / : 2 ' , . . . , x N ' ]  = vector of adjusted detail values, 
f = ~  .... f ~  = vector of adjustment flags for details, and 
err = error indicator (err=O for no error). 
3.2. Calculations 

Define Xo = y and let i=0,1 ,...,N index both the inputted 
weights W,W~ ..... WN and the data x ,  xl ..... XN. Sort the 
(weight, data) pairs in descending order, with the weight as 
the primary key and the data as the secondary key. Let 
j= 1,2,...,N+l index the sorted (weight,data) pairs, denoted 
(Wj*,xj*). Then there exists an index function i(1) that 
satisfies 

Wj *= Win) j=l ,2  .... N+I, 
X j ~  .. , = xm) j=1,2, .N+I 

and if Wj*=Wj+~ * then xj*~xj+~*. The purpose of this 
sorting operation is to prioritize the data for the data 
adjustments following interval-based trimming--i.e., data at 
the beginning of the sorted list are adjusted before data at 
the end of the sorted list. 

The algorithm obtains adjusted values by completing the 
spreadsheet shown in Figure 1. The inputs define the zj 
column, and the z /and f *  columns produce the outputs-- 
i.e., adjusted values and flags. The following are the 
definition of the columns, moving from left to right across 
the spreadsheet" 

y i(/)=O N.l 

z. = -xio) i(/)~ 1 residl = j=l ~ z. 

If residl=O, then return with y'=y, fo=O, x '=x , f=[O,  0 .... O] 
and err=O. Otherwise, proceed with the algorithm. 

L i(1") =0 f÷l 
L * = E L  f 

Ls" = -Uio) i(1")~ 1 2"1 

u o iq)=o N+~ 
• u"  = E u ;  

Uj = -Lio) i(])~ 1 j--1 

The algorithm will be able to successfully adjust the 
data only if U'~0~L*. If this condition is not satisfied, 
return with err = 1. Otherwise, trim the data as follows: 

zj Ls*<_zj<_ Uj* 

- z ? % "  

L: z:L: 
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and calculate the trimmed residual, 
N+I 

resid 2 = ~ zj* . 
j=l 

If reside=O, then return with 

/ 1 x / ~ x  i 

0 x i/:x~ 

y'=-Xo', f=fo and err=O. Otherwise, proceed to adjust the 
data so that the trimmed residual is made to vanish: 

1 resid2>O es÷ : max(Us"-zJ*'O) 
I : ej- : rrfin(Lj*-zj*,O) 

0 resid2<O . 
ej* : I ej- + (1-I )  es 

t ~,  , j : 0  : j : l  

~s-' + eJ t j~2  

(NOTE: Co is used only to define el.) 

, [resid21 -cj_, 
e .  : e s le,'l 

0 

[ resid~, l >cj or 

[residzl :c>c._~ 

cj>l resid2 l ~ cj_ 1 

cj_l>lresid2] or 

Iresid21 =c.:c._~ 

/ * t 1 zilc:zi 

zj : zj* + ej ~ : tO zi/:zi 

Retum with x~o. )' = -z/  , f,0) = fJ*, y'=-Xo', and err=O. 
3.3. Example 

The entries in the spreadsheet in Figure 1 are the 
calculation results for the following inputs: y = 10, 
[Lo U0]=[8,11], x=[4,3,7], L=[4,0,1], U=[4,5,5], 
W0 = 1.3, W=[ 1.2, 1.4, 1.1 ]. The outputs are y'  = 10, f0=0, 
x'=[4,1,5], f=[0,1,1 ], err=O. 
3.4 Discussion 

The weights (W o, W 1 ..... WN), the lower bounds (L 0, L1, 
.... LN), and the upper bounds (U0, Uz ..... UN) control the 
trim-and-adjust algorithm. Items with high weights are 
adjusted before items with low weights. If two items have 
the same weight, the item with the larger value is changed 
before the item with the lower value. We considered using 
raking when items have equal weights but decided against 
this because changing the larger value results in a smaller 

average of the relative absolute change (when averaging 
over equally weighted items) compared to using raking. 

It is useful to make the weights depend on editing 
actions that occur prior to calling the trim-and-adjust 
algorithm. For example, in P V if an item is fixed or if the 
user "goldplates" it--that is, specifies that the item cannot be 
changed--its weight is set to 0.0, whereas if an item contains 
an imputed value (produced by other P V editing actions) 
100.00 is added to the user-supplied weight. In PV, it is not 
necessary, however, for the user to supply weights. If the 
user does not specify a weight for an item, its initial value is 
1.0. 

It is also useful to have the upper and lower adjustment 
bounds depend on editing actions that occur prior to calling 
the trim-and-adjust algorithm. In P V, we set an item's 
upper and lower bounds equal to the value of the item, if the 
item is fixed or goldplated. If a user of PV does not supply 
a lower bound, the default is 0.0, and if an upper bound is 
not supplied, the default is max~,~x i). The adjustment 
bounds for an item can also depend on the values of other 
items and/or on parameters determined from historical data. 
For example, in PV the following methods are available for 
defining the upper and lower adjustment bounds for itemf~: 

Method(l): bound=constant, 
Method (2): bound = (constant)f2, 
Method (3): bound = (constant) ~/f2)ff f2, and 

Method (4): bound = (constant) ~h)/f2~h))f 2 , 
where item f2 is either fixed or is not involved in the 
balancing complex. Method (2) can be used to ensure that 
the value outputted by the trim-and-adjust algorithm forf~ 
satisfies the ratio edit LI2 <f~/f2 < U~2. 

The following are two areas for further research and 
enhancement of the trim-and-adjust algorithm: 
• Developing a capability for "learning" the appropriate 

weights and adjustment bounds from results of analyst 
review of the algorithms outputs, and 

• For simultaneously satisfying ratio and balance edits, 
compare Method (2) with the approach proposed by 
Draper and Winkler (1997). 

4. Algorithm for nested-ld balancing 
We will say that a set of data items constitutes a nested- 

I d balancing complex if in order for it to be balanced it 
must satisfy all of the following equations: 

mi m 
' E '  ' E '  Y i  = x i j ,  i :1 ..... m z = y i  

j=1 i.,I 
t t t 

where x o, j=l,2 ..... m;, y ~, and z are the values after- 

editing of the values xo., j= 1,2,...,m;, y~, and z, respectively. 

We will refer to the x# as sub-details, to the Yi as details, 
and to z as the grand total. If the equation for y,.' is 
satisfied for i=i*, we will say that the sub-details for detail 
i* are balanced, and if equation for z' is satisfied we will 
say that the details are balanced. 

We define the following residuals: 
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R~ ('0= Y i - ~  x0 = residual for sub-details of detail i 
J 

R (D)= z-~3,,. -- residual for the sum of the details 
i 

R ~)= z - ~  x/j = grand residual 
g 

If all of the defined residuals are zero, the complex does 
not require editing because all the details and sub-details 
are in balance. Different balancing situations result from 
various combinations of non-zero residuals. Representing 
a nested-1 d balancing complex as a two-colored network-- 
see Figure 2, in which "solid" and "dashed" are the two 
colors--indicates the combinations of possible non-zero 
residuals. The network's nodes correspond to additivity 
conditions. Flows along the solid-line arcs correspond to 
the values of details, sub-details, and the grand total; and 
flows along the dotted-line arcs correspond to the values of 
the residuals. (See Cox, 1995, for additional details on 
using networks to represent additivity relationships.) 
Whether or not z, the grand total, is a fixed value (e.g., 
100%) determines additional balancing situations. 

Table 3 lists the nested-1 d balancing situations. In the 
longer version of this paper, we include figures representing 
five subsets of these situations in which we have eliminated 
selected zero-value residuals from the networks. Since 
balancing corresponds to forcing flows in dotted-line arcs 
to zero, these network representations suggest items that 
should be changed and others that should remain unchanged 
when performing balancing. 

The last column of Table 3 indicates the items to be 
changed in each balancing situation, using the following 
procedures: 
4.1. Adjusting only xu. 

For each i such that Yi ~ ~ x O. , fix y~ and use 
simple-1 d balancing algorithms t~adjust the x 0. 
4.2. Adjusting~.gnlyQ 

For Yi * 2_, x O calculate yi '=  ~ x 0 
4.3. Adjustin{~ only z J 

Set z = ~ y ~  

4.4. Adjusting x u and y~., when all R~ ca) = O. 
The following are available options: 

• If lR a~) I/z is small, use common-factor raking: 
y, '= [3 y, and xu' = [3 x~j , where [3 = z / ~ xij . 

• Set complex unusable. J 
• Set detail-level NSK to R (~) 
• Use historical data to impute all details and sub-details-- 

first impute details (followed by raking), then impute 
sub-details (followed by raking). 

4.5. Adjusting x,j and y:., when some R~. ca) ~ O. 
The following are available options: 

• If ]RW)q/z is small and IR w)] < ]R(~], rake the y~ to z .  
Then use the simple-ld balancing with y~ fixed to 
balance details that are not the sum of their sub-details. 

• If IR(g)l]/z is small and if IR(g>l < IRC~) l, then rake the xij to 

z, and set y'i equal to the sum of the associated raked xo 
• Set complex unusable. 
• Execute the one-dimensional trim-and-adjust algorithm 

m*+l times, where rn* is the number of details with out- 
of-balance sub-details. The input data for one of the 
trim-and-adjust operations are z and the y~. The data for 
the other m * trim-and-adjust operations are the y; and 
x u values associated with the m * details that have out-of- 
balance sub-details. Perform the m*+l  trim-and-adjust 
operations in the order of increasing absolute value of 
the associated residuals. After each trim-and-adjust 
operation is performed, recalculate all the remaining 
order-determining residuals. Set weights to zero for 
items associated with completed trim-and-adjust 
operations. 

5. Algorithm for 2d balancing 
We will say that a set of data items constitutes a 2d 

balancing complex if in order for it be balanced it must 
satisfy all of the following equations: 

~ ,  ~ ,  m 

r'i--j., x i~ c?=..  x , j  z'= r ;= c ;  
i=1 j=l  i=l ..... m j=l, . . . ,n 

where x'ij, r'~, c'~, and z r are the values after-editing of the 
values x~, r,  cj, and z, respectively. We will refer to the x,j 
as cell entries, to the r~ as row s u m s ,  to the cj as column 
sums, and to z as the grand total. In addition, we will use 

t 

the symbols x'ij, r'~, and c j to denote data based on x u , r,, 
and cj, respectively, that are in turn used to obtain x" U, r", 
and c~, respectively. We make the following 
assumptions" 
• z, the grand total, is fixed--i.e, z ' - z  -- and is a non- 

negative integer, 
• Balance equations are strictly additive (i.e. cells cannot 

be subtracted), 
• All rows contain the same number of cell entries, 
• All columns contain the same number of cell entries, 
• x,j, r~, and cj, are non-negative, and 

H ~ ,  p , ,  

• x ~, r i, and c j are non-negative integers. 
The following procedure performs 2d balancing: 

Step 1. Calculate 

R (R°gO= z-  E r i = residual for the row sums. 

If R (R°w) , 0, rake the row sums: r',. = r~ (z / Z ri) • 
If R (g°w) = 0, then r'~ = r~. 

Step 2. Calculate 

R (c°L)= z - ~  c i = residual for the column sums. 
J 

If R (c°L~ , 0, rake the column sums" c ~. = cj (z / Z cj) .  
t If R (c°L~ = 0, then c j = cj. 

Step 3. Calculate 

Ri (r°w)= r ' i - ~  xij -- residual for cells in row i 
J 
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RJ C°O-- c ) - ~  xij - residual for cells in column j 
l 

for i = 1,2 .... ,m, and j= 1,2,...,n. If all of the R~ e°W) and Rj e°° 
t are zero, then x u = xu. If any of the RF °w) or Rj e°° are non- 

zero, calculate adjusted cell entries, denoted x ) j ,  by 
performing two-dimensional raking of the x o. , via the 
iterative-proportional-fitting (IPF) algorithm. The IPF 
algorithm alternates between raking cell entries to row sums 
and raking cell entries to column sums. Oh and Scheuren 
(1978) provide an extensive bibliography on the IPF 
algorithm and Bishop, Fienberg, and Holland (1975) 
provide additional discussion. We first attempt to achieve 
additivity by changing only non-zero cell entries. If this is 
impossible, we restore the non-zero xu, change the cells 
containing zero to 1.0, and rerun the IPF algorithm. Fagan 
and Greenberg (1984) discuss the properties of two- 
dimensional raking when some of the cell entries are zero, 
and Fagan and Greenberg (1985) discuss methods in 
addition to two-dimensional raking for performing 2d 
balancing. 

! e t Step 4. If any of the x u, r ~, or c j are non-integer, use 
controlled rounding to obtain the x '~ ,  r]., and c'~. 
Controlled rounding changes each non-integer data value to 
either the integer immediately above the value or the integer 
immediately below the value in such a way that all additive 
relationships are preserved. (See Cox and Ernst (1982) and 
Causey, Cox, and Ernst (1985).) If all ofthe x'o., r'~, or c ) 

o t p p  ~, are integers, then x'~.j = x ~, r'~ = r ~, and c j c . 
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Figure 1. Spreadsheet for Trim-and-Adjust Algorithm. (Cells entries are calculation results for § 3.3 example.) 
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Figure 2. Network representation of a nested- 1 d 
balancing complex. 

Table 1. Simple- 1 d balancing--Situations 

Situation PV Procedure 
• ' (Table 2 describes 

balance,... Y words in bold) 
condition 

Y=Y_,xi 

y=0 and 
Ex,,O 

y,O and 
y_,x,=O 

y,0,  
~X i ~:0, 

and y~ ~_.x, 

No action taken. 

(~ '  = eV, Xi' =Xi) 
fixed ZERO SET each 

I 

x i =0. 

not fixed YSUMX 
| |  

fixed Same as y t0, 
.~ ~ x  i tO, and y ~ x i .  

not fixed ZERO_SET y ' =  0 .  

RAKE if ]R]/y is less than the specified 
(or default) raking tolerance. 
Otherwise, execute in script-specified 
sequence (stopping when an imbalance 
is no longer present) any script- 
specified ROUND (followed by 
RAKE), REPLACE-H (followed by 
RAKE), REPLACE-V (followed by 
RAKE), and TRIM if ]R/y is less 
than the script-specified (or default) 
custom-trim tolerance. If an imbalance 
is still present, execute either 
UNUSABLE or NSK if one is 
specified in the script, and execute 
TRIM otherwise. 

Table 2. Simple- 1 d-balancing-- Adjustment methods 

I Ahhr  1 1-)e.~erintion ] Definition 
| 

ZERO SET Set to zero 

YSUMX 

NSK 

UNUSABLE 

REPLACE-V 

REPLACE-H 

ROUND 

RAKE 

TRIM 

Set y to )-'.xj, 

Not specified 
by kind 

Mark data 
unusable 

Impute using 
category- 
average ratio 

Impute using 
historic data 

Round y or x~ 
by 1000 if 
]R 'l/y' is less 
than a 
specified 
threshold 

Rake details 
to total if ~RI/y 
is less than a 
specified 
threshold 

Trim-and- 
adjust 
algorithm 

= ' = 0 ;  y'  y, xi 
or Y' =0, x i' =x 1 

y ' = ~ x  t, x t' =x i 

y '  =y, x i' =xi, 
<NSK>=R 

y'  =<unusable> 
x 1' =<unusable> 
y '=y  

/ 
x i = [(xi/y)~ ] Y 

y '=y  

~/%v/,v~g& ) 
See § 2.2. 

yt =y, 

x,' =¢v/Ex,>, 
(Also, see § 2.1) 

See § 3. 

Table 3. Nested- 1 d balancin 

i 

no yes yes yes 
no yes yes no 
no yes no yes 
no no yes yes 
no yes no no 
no no yes no 
no no no yes 
no no no no 
yes yes yes yes 
yes yes yes no 
yes yes no yes 
yes no yes yes 
yes yes no no 
yes no yes no 
yes no no yes 
yes no no no 

none (baianced) 
n.a. (impossible) 
n.a. (impossible) 
xii (See § 4.1) 
z (See§4.3)  
xii (See § 4.1) 
,v t (See § 4.2) 
x~i, 2' i (See § 4.5) 
none (balanced) 
n.a. (impossible) 
n.a. (impossible) 
x, (See § 4.1) 

xtt, Yt (See § 4.4) 
x, (See § 4.1) 
,Vt (See § 4.2) 
x , ,  v, (See .~ 4.5) 
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