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A b s t r a c t :  

In multiple frame surveys, samples are drawn in- 
dependently from overlapping frames that together 
cover the population of interest. We propose jack- 
knife variance estimators for multiple frame surveys 
and establish their design consistency. 

1. I n t r o d u c t i o n  

In a dual frame survey, two sampling frames, A and 
B, together cover the population of interest U. Inde- 
pendent probability samples are taken from frames 
A and B, and information from the two samples is 
combined to estimate quantities of interest. 

A common use of dual frame surveys occurs when 
frame A is an area frame and frame B a list frame. 
Frame A is complete but expensive to sample; frame 
B, while incomplete, also has a lower cost per unit 
sampled. For example, frame A might be an area 
code/prefix frame used with random digit dialing 
in a telephone survey, and frame B a commercial 
directory of residential telephone numbers. Frame 
A contains all telephone numbers in the population, 
but has no auxiliary information that  can be used 
to design an efficient sampling scheme; most of the 
numbers in frame B are from residential households 
and the frame includes additional information such 
as address, but not all residential households appear 
in frame B. Vogel (1975) discusses some applications 
in agricultural surveys. 

Let Yi be a measurement from observation unit 
i. A number of estimators have been proposed for 
estimating the population total Y = ~ i c u  Yi by 
Hartley (1962, 1974), Fuller and Burmeister (1972), 
Lund (1968), Bankier (1986), Kalton and Anderson 
(1986), Skinner (1991), and Skinner and Rao (1996). 
Most of this work has focussed on the derivation of 
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point estimators ? for Y, although Skinner and Rao 
(1996) mention variance estimators for Y based on 
asymptotic results using linearization. In this pa- 
per, theoretical results for a jackknife estimator of 
the variance are presented, and they are illustrated 
for the pseudo-maximum likelihood estimator (Skin- 
ner and Rao, 1996) of the population total. 

2. E s t i m a t o r s  o f  a T o t a l  

Following Hartley (1962, 1974), let ~4 and B denote 
the sets of population units in frames A and B, re- 
spectively. Then the universe may be divided into 
three mutually exclusive domains, U - a U ab U b, 
where a - AB e, a b -  AB, and b -  ACB. The quan- 
tities N, NA, NB, Na, Nb, and Nab are the number of 
population elements in U, A,B, a, b, and ab, respec- 
tively. The sample from frame A is denoted SA, the 
probability of inclusion in SA is ~A = P{i  E SA}, 
and SA contains nA observation units. Correspond- 
ing quantities for frame B are SB, ~S _ P{ i  E SB }, 
and riB. 

Let Ya, Yab, and Yb be the population totals, and 
#a - Ya/Na, #ab -- Yah~Nab, and #b -- Yb/Nb be 
the population means, in domains a, ab, and b re- 
spectively. Estimators of Y - Ya + Yah + Yb pro- 
posed^in the references cited above are all of the 
form Y = ?a + ?ab + ?b; they differ in how the infor- 
mation from the two samples is combined to obtain 
estimators of the components Ya, Yab, and Yb. 

We assume that  NA and NB are known, and 
that  Na > 0 and Nb > 0. Let w A and w B 
be the sampling weights for the designs used in 
frames A and B, respectively. For NA and NB 
known, w A - YA[Tr A ~--'jCSA (1/,n-A)] -1 and w B = 

NB[ 7rB EjESB (1/TrB)] -1" Let ha(i) = 1 if i C A 
and 0 otherwise; and 5B(i) -- 1 if i E B and 0 other- 
wise. Then define the domain estimators 

2vA -- EieSa  w¢(1 -- 5B (i)) 

? ~  -- EiesA wA( 1 -- 5B(i))yi 
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and 
ire = Eics.  wB (1 - (~A (i)) 
2V B -  Eic8 wBSA(i) 
I~b B -- E i ~ a .  wB( 1 -- 5A(i))yi 
~B_ Ei~& wBSA(ilY,. 

Also define 

?o~(o) - o ?  2 + (1 - o ) ? 2  

S;o~(e) - e , g  + (~ - e ) ~ g .  

Hartley and Fuller-Burmeister Estimators.  
Hartley (1962) proposed the estimator 

? , ( o )  - 7 2  + ? :  + ?o~(e), 

and Fuller and Burmeister (1972) proposed 

~'rFB (/~1,/~2) -- 13"2 + Yb B + ~"ab (~l  ) + ~2 ( g a b  -- ]VaBb ) • ^ A 

The optimal values of the^parameters O, ill,  and 
/~2 minimize the variance of YH(O) and YFB(fll, ~2), 
and thus depend on covariances of 13"A and yB.  
In practice, of course, the true covariances are un- 
known, and must be estimated from the data. As 
both ~FB and OH rely on estimated covariances, 
the optimal Hartley and Fuller-Burmeister estima- 
tors YH(OH) and ~'FB(~FB) are not in general linear 
functions of y; a different set of weights would need 
to be calculated for each response variable. Besides 
adding to the amount of calculation, the different 
sets of weights may lead to disagreements^among 
estimates. For example, if 1>H1, YH2, and 1~/3 are 
Hartley estimates for the total number of asthmat- 
ics in age groups 0-16, 17-45, and over 45, then 
1>H1 + IYH2 + 17Ha will not necessarily equal the Hart- 
ley estimate of the total number of asthmatics in the 
entire population. 

P s e u d o - m a x i m u m  likelihood estimator.  
Skinner and Rao (1996) proposed modifying the 
maximum likelihood estimator for a simple random 
sample to obtain a pseudo-maximum-likelihood 
estimator (PML) for a complex design. The PML 
estimator, unlike the Hartley and Fuller-Burmeister 
estimators, is linear in y, and is of the following 
form: 

~',.M~ (e) = ..:V.~ - ~ r ~ - ~  (e) ~.A 
,A 

,, , ^ ]QPML +NB - ]VffbML(O) YbB + '  q,̂ b, (0) gab(O) , (1)  

where 1vPML(o), a function of /f/A /f/B, and 0, is 
the smaller of the roots of the quadratic equation 

1-O ~ f B  

+ N a b ( O )  -- O. 

Skinner and Rao (1996) suggested choosing 0 = Op 
to minimize the asymptotic variance of ]QaPbML(o), 
with 

Op = NaNBV(NaBb) (2) 

NaNBV(Ng) + NbNAV(NA) " 

In practice, Na, Nb, and the variances in (2) are 
unknown and must be estimated from the data. The 
resulting estimator is ]TPML(Op). The PML estima- 
tor uses the same set of weights for each response 
variable, and thus avoids some of the difficulties as- 
sociated with the Hartley and Fuller-Burmeister es- 
timators. If independent simple random samples are 
taken from frames A and B, the P ML estimator is 
equivalent to the Fuller-Burmeister estimator. Skin- 
ner and Rao (1996) found a sufficient condition for 
the PML estimator to be optimal. 

Single Frame Estimators.  Bankier (1986), 
Kalton and Anderson (1986), and Skinner (1991) 
proposed estimating the population total by treat- 
ing all observations as though they had been sam- 
pled from a single frame with modified weights for 
observations in the intersection ab. The modified 
weights for the single-frame estimators of Kalton and 
Anderson (1986) and Skinner (1991) do not require 
identification of units found in both samples. These 
weights are w i -  1]rr A for i e a, w i -  1/rr B for 
i E b, and wi - (rr A + 7rB) -1 for observations in 
both frames, so that 

]'zSF = E wiYi + E wiyi. 
iESA iCSB 

As Bankier (1986) noted, the single frame estimator 
may be extended to multiple frame surveys. 

The single frame estimator YsF does not use any 
auxiliary information about the population totals 
NA and NB. It can be adjusted either through rak- 
ing ratio estimation (Bankier 1986) or regression es- 
timation, as discussed in Rao and Skinner (1996) 
and Lohr and Rao (1997). 

3. V a r i a n c e  E s t i m a t i o n  

Skinner and Rao (1996)^described a method for esti- 
mating the variance of YPML using Taylor lineariza- 
tion. In this section, we define a jackknife variance 

553 



estimator for estimators from dual frame surveys, 
and show that  the jackknife variance estimator is 
asymptotically equivalent to the Taylor linearization 
estimator. We state the results for dual frame sur- 
veys to simplify notation; however, the results of this 
section are easily extended to multiple frame surveys 
in which independent samples are selected from the 
frames. We refer the reader to Lohr and Rao (1997) 
for proofs and further details. 

Suppose frame A has H strata and stratum h 
has N A observation units and .f/A primary sampling 
units (psu's), of which h A are sampled. Frame B has 
L strata and s t ra tum 1 has N B observation units 
and ~ B  psu's, of which h B are sampled. Define 
h A  EhH__l hA, hB L -- -- Y~'~,=I riB, WA - NhA/NA, 
and W B = N B / N B .  

It is a common practice to sample the psu's with- 
out replacement with inclusion probabilities propor- 
tional to size. But at the stage of variance estima- 
tion, the calculations are greatly simplified by treat- 
ing the sample as if the psu's were sampled with 
replacement. This approximation generally leads to 
overestimation of the variance of the estimated total, 
but the relative bias will not be large if the first-stage 
sampling fractions are not large. Jackknife variance 
estimators and other resampling variance estimators 
use this set-up. We follow the same approach for 
multiple frame surveys. 

Denote the psu inclusion probabilities in frame A 
~A - A  A A as 7rhi -- nhPhi  , w h e r e  Phi is t h e  n o r m a l i z e d  s i z e  

measure with ~ i p h  A -- 1. Let A be a q-vector of 
population totals for frame A, and let B be an r- 
vector of population totals for frame B. Then A is 
estimated by 

~A ~A H nh H nh H 

t h i  ahi _ h E  1N2~th,  -EE = EEN2 --# - 
h = l  i=1 h--1 i=1 = 

where ,h, hi is an unbiased estimator of the pop- 
ulation totals in sample psu i of stratum h, 
and ahi -- A h i /  A A (Nh Phi)" The estimators t3 - 

~t=lL z_.,j=l x-'a~ N B b t j / h ~  and btj are defined similarly. 
Under the assumption of with-replacement sam- 

pling, the ahi'S a r e  independent unbiased estimators 
of the population mean in stratum h of frame A. 
Similarly, the btj 's  are independent unbiased esti- 
mators of the population mean in stratum 1 of frame 
B. 

A s y m p t o t i c  r e su l t s .  For the purposes of devel- 
oping asymptotic theory, we consider parameters 
that may be expressed as functions of the popula- 
tion means A - A / N A  and ]3 - B / N B .  Consider a 

parameter of the form 

~ -  g(h,B) .  

The population means A and B are estimated by 
~k - -  H Eh--1  W A a h  and I~ ~L=I WBbt,  and T is 
estimated by 

- g ( ) . ,  f i ) .  

Estimators of population totals discussed in Sec- 
tion 2 may be studied in this framework by writ- 
ing Y - N Y  - Ng(/k, 13). If, for example, A - 
(Ya , Yab, Nab, N A  ) T, B - (Yb , Yah, Nab, N B  ) T, and 

g(A f3) - N A  (A1  + OA2) + N B  [ U l  -]-- (1 - 0 ) U 2 ] ,  ' - K  --K 

then Ng(]k, fi) - YH(O). The PML estimator, for 
fixed ~9, may be expressed in similar fashion as a 

function of ) t  and t~ by noting that  2f~aPb i i  (0) is a 

function of ~3 and B3, and then using (1). 
Define 

S A - -  ( h  A --  1) - 1  E(ahi- fih)(ahi- f i h )  T 

i--1 

and 

~f 
Sf - -  (n B --  1) - 1  E(b t j  - l~,) (btj - ~,)T 

j=l 
F ' - - 7  

Then S A estimates the variance o f  ~/h~ah,  say 

~--]A and S A H A 2 A ~ A ~--]A h, -- ~ h = l  (Wh ) Sh /nh estimates = 
H ~-,h=l (Wh A2  A A.  Similarly, / h, the variance of ) E h h A 

the variance of I~, say ]E B, is estimated by S B = 

Using the asymptotic setup of Isaki and Fuller 
(1982), we need the following conditions. Conditions 
(A1) and (A2) were used in Rao and Wu (1985) to in- 
vestigate properties of variance estimators in multi- 
stage stratified samples; condition (A3) ensures that  
the sample from one frame does not dominate the 
other sample asymptotically. 

A1. w A h A / h  A -- O(1) and w B h B / h  B -- O(1) 

for all h and 1. In addition, assume that  

- E ,  wf f - 

A2. Let gA (a-, [)) be the q-vector of first derivatives 
with respect to the components of a, evaluated 
at fi and b. Analogously, gB(a, b) is the r- 
vector of first derivatives with respect to the 
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components of b, evaluated at ~ and b. Simi- 
larly, let g~ (~, b) be the q x q matrix of second 

derivatives 02g/cOajOak, and g~(~,b)  be the 
r x r matrix of second derivatives cO2g/ObjcObk, 
evaluated at ~ and b. Assume that g~ and g~ 
are continuous and bounded in a neighborhood 
of (A, B). 

A3. hA/h  ~ k E (0,1), where h = h A + h B. 

T h e o r e m  1. Under conditions (A1) to (A3), 

v(+)  - 
-~-ffT(]k,S)~B gB(h,S ) q- O(h-1). 

In addition, the linearization variance estimator 

-- 9 ~ ( ~ , f i ) s A f f A ( ~ , ~ )  

f i ) s ' g . ( h ,  fi) 
= V(7-) q- op(h-1). 

Conditions (A1) through (A3) are also used to 
show the consistency of the jackknife variance esti- 
mator, va(~), by showing its asymptotic equivalence 
to the linearization variance estimator, VL(~'). 

Let ~A.. be the estimator of the same form as tn~) 
when the observations of sample psu i of stratum h 
are omitted: 

^A - fi), 
^ 

where /k(hi) is the estimator of A computed after 
omitting sample psu i of stratum h in frame A. Sim- 
ilarly, let 

^B 
--~ 

where B(tj) is the estimator of B computed after 
omitting sample psu j of stratum l in frame B. A 
jackknife variance estimator of ~ is then given by 

-A ~A x'-'~H n h -1  ~...-~n h t ^A  ^~2 
Z )J (T ) - -  ]--~h--1 hA 2~i--l(T(hi) - T )  (3) 

__  X"~L ~ - 1  x'~£1~ "^B " 2  
-r 2_~1=1 a~ 2_.,j=1 (Toj) -- 7) . 

T h e o r e m  2. Suppose that conditions (A1) - (A3) 
hold. Then 

VJ(T)  ---- VL(T ) q- Op(h-1). (4) 

The single frame estimator is expressible as a 
smooth function of population means. The other 
estimators are also smooth functions of population 
means, as long as the parameters Op, 0H, and ]~FB 
are fixed and not estimated from the data. Thus 
Theorem 2 shows that the jackknife variance esti- 
mator is consistent for the optimal form of each es- 
timator. 

Full  and  modi f ied  jackkni fe .  The estimators 
~P, ~H, and ~FB,  however, are functions of S A 
and S B, which cannot be expressed as differentiable 
functions of means in general stratified samples. 
Thus Theorem 2 does not always apply directly to 
estimators that are functions of sA and S s .  An ad- 
ditional difficulty in using the jackknife can occur in 
highly stratified samples, because 

(wA) 2 [ 2sAh 
sa  + 2 

(ah - r] (5) 

cannot be calculated when h A - 2. Similarly, S~j) 

cannot be calculated when h s - 2. We provide a 
modified jackknife to handle the case of h A - 2 or 
h B - - 2 .  

The jackknife (or a modification of the jackknife 
for two-psu-per-stratum designs which we shall in- 
troduce below) still provides a consistent estimate of 
the variance when the estimator depends on S A and 
S B. Suppose 

= fi) - fi, z),  

with 
fl - [ E  A + EB]-I[e  A + eB], 

where each element of the p x p matrix E A is a lin- 
ear combination of elements of E A, each element 
of the p-vector e A is a linear combination of ele- 
ments of E A, and analogously for E B and e B T h e n  
the estimators ~"PML(~p), YH(OH), and ~'FB(~FB) 
are of the form N¢ - N f (~ ,~3 ,  ~), where /~ sub- 
stitutes sA and S B for the population covariances 
in ft. For example, if A = (Ya, Yah, Nab, NA) T and 
B = (Yb, Yab, gab, NB) T, then Hartley's estimator 

YH(~H) may be written as 

YH(flH) + ( f i l l -  flH)[NA(22 -- fi~2) -- NB(h2 --/~2)], 

where 

~2EA(1, 2 ) -  ]EB(1, 2 ) -  EB(2, 2) 
flH -- -- ~2EA(2, 2) + EB(2, 2) ' 

-- NA/NB, and EA(1, 2) denotes the (1,2) element 
of EA. For the PML method, the appropriate pa- 
rameter is fiR = ~,2EA(3,3)/EB(3,3). 

Let ¢~hi) be the estimator of the same form as 
when the observations of sample psu i of stratum 
are omitted" 

~(Ai) f (~ (h i ) ,  f i ,  ^A - 
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where ^A ~(hi) is the estimator of fl using S~hi) and S B 

(assuming h A > 2). Similarly, 

¢(,'j) - S ( i ,  fi(,j), D(,'j)), 

provided h B > 2. A jackknife variance estimator of 

is then given by 

- 

~A 

h=l hA i=1 
L a~ hB 1 

/--1 hB j--1 

A modified jackknife variance estimator, V M J ( ¢ ) ,  

has the same form as va(¢) but uses/~ rather than 

/3~hi) or /~ t j )when  calculating ~(ahi ) or ~ j ) .  The 
modified jackknife variance estimator may be used 
when h A - 2 or h B - 2. A Taylor linearization 
variance estimator is of the form 

- g ~ ( ~ ,  fi)SAgA ( i ,  fi) 

where t)A and gB use D rather than ~. 
The three variance estimators vg(~), VMa(~), and 

VL (~) are asymptotically equivalent in the sense that 
the difference between each pair is of order ov(h -1). 
Details are given in Lohr and Rao (1997). 

The results in this section apply to general strat- 
ified multistage designs in which psu's are selected 
with replacement. The case of stratified simple ran- 
dom sampling in one of the frames, say a list frame 
B, follows as a special case, provided the sampling 
fractions are negligible. Here, btj is a vector of val- 
ues associated with the jth unit in s t ratum I of frame 
B, and h B - n B is the number of units sampled from 
the N s units in s t ra tum 1 of frame B. If the sam- 
pling fractions n B / N  B are not negligible, then we 
replace (n B - 1)lnt B by [(n B - 1)/nB][1 - -nBINB] ,  
similar to the case of single frame jackknife (Wolter, 
1985, p. 176). 

Calculating jackknife variance est imates.  Es- 
timators of Y in Section 2 may be written in the 
form 

- Z + E (6) 
tESA tCSB 

for modified weights @A and @B. For example, 
YPML(tg) uses 

wA[NA -- NaPbML(o)]/]V2 if t E a 

-   ML(o)I ob(O) if t e ab 

and 

@B _ { wB[NB -- NPML(o ) ] IN~  
w~(1 - O)  NPML(o)/IVab(8) 

i f t E b  
if t E ab 

If 0 is estimated by 0p, we replace 8 by ~p in the 
above weights ~b A and zb s .  

To calculate the jackknife estimates ^A Y(hi) we sim- 

ply replace the weights w A by the jackknife weights 
A . Wt(hi ) If the unit t is in cluster k of s t ra tum 

A g and frame A, then W t ( h i  ) - -  0 if (hi) - (gk); 

Wt(h O A  -- h A / ( h  A - 1)w A if h - g and i ~ k; and 

Wt(hi)A - -  w A if h ~ g. Similarly, we obtain Y(tj)̂ B from 

the corresponding jackknife weights w B Then we t(tj) " 
estimate the variance of Y using (3). 

If the modified weights ~b A and @B depend on el- 
ements of S z and S B, as occurs for YVMZ(gv), then 
the full jackknife requires that  elements of S~h/) be 

computed in order to calculate ^A Y(hi)" The matrix 

S~h0, for h A >__ 3, may be calculated by applying the 
jackknife again, this time to the data  set with obser- 
vations in psu i of s t ratum h deleted. Alternatively, 
equation (5) may be used to speed calculation. 

4.  S i m u l a t i o n  R e s u l t s  

To study empirical properties of the variance estima- 
tors, we used the simulation study design described 
in detail in Skinner and Rao (1996). The popula- 
tion was presumed infinite, and the sample design 
for each frame had one stratum. A two-stage clus- 
ter sample with h A clusters and thirty elements per 
cluster was generated as the sample from frame A 
and a simple random sample with nB observations 
was generated as the  sample from frame B. 

We generated 10,000 datasets for each combina- 
tion of the design parameters. From each dataset 
we calculated YPML(~P) and the three variance es- 
timates presented in Section 3: linearization (L), full 
jackknife (J), and modified jackknife (MJ). Table 1 
gives some of the simulation results for the variance 
estimators, using N a / N  = 0.1, N b / N  = 0.2, #a = 9, 
/Zab = 10, and #b -- 11. The empirical mean squared 
error (the average squared deviation of the estimate 
from the true value) and all variances in Table 1 were 
multiplied by 100 to improve readability. 

The simulation results in Table 1, and other sim- 
ulations performed, demonstrate that  all three esti- 
mators of the variance grow closer to the empirical 
MSE as the sample sizes increase. For the smaller 
sample sizes, though, the linearization and the mod- 
ified jackknife methods substantially underestimate 
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Table 1: Simulation results for variance estimators. 
~A nB avar' EM ' L J MJ 
10 100 4.61 4.92 4.39 5.03 4.40 

(1.61) (2.69) (1.60) 
20 2.79 2.75 2.75 2.9  2.77 

(.so) (1.01) (.Sl) 
20 200 2.30 2.39 2.25 2.41 2.25 

(.58) (.77) (.58) 
NOTE: avar is the theoretical asymptotic variance 
of the estimate, and EM is the Monte Carlo mean 
squared error for the 10,000 simulation runs. L, J, 
and MJ represent the averages of the 10,000 vari- 
ance estimates for the linearization, full jackknife, 
and modified jackknife methods, respectively. Stan- 
dard deviations are in parentheses. 

the empirical MSE because they do not account for 
the extra variability incurred by estimating 0p from 
the data. The full jackknife does not share this neg- 
ative bias. 

The full jackknife, though, is less stable than 
the other two estimators of the variance. When 
~t A - -  1 0 ,  the sample standard deviation of the full 
jackknife estimator of the variance is much higher 
than that of the linearization estimator. However, 
the stability improves as the sample sizes increase. 

5. D i s c u s s i o n  

The jackknife estimator of the variance has been the- 
oretically justified, and has exhibited smaller bias 
than the linearization estimator of the variance in a 
simulation study. An advantage of the jackknife is 
that it is readily applied to nonlinear functions such 
as the ratio of two population totals. The partial 
derivatives used in linearization variance estimators 
of such nonlinear quantities are more complicated 
in dual frame surveys than in single frame surveys; 
these calculations can be avoided altogether through 
using the jackknife. 

Other methods of variance estimation that are 
commonly used include balanced repeated replica- 
tion (BRR) and the bootstrap, and dual frame vari- 
ance estimators may be developed for these meth- 
ods along the lines of the jackknife variance estima- 
tors by using appropriate weights. The advantage 
of BRR and bootstrap is that they can be applied 

^ 

to nonsmooth functions. However, for estimators Y 
that depend on S A or S B, BRR and bootstrap meth- 
ods also need modification in a two-psu-per-stratum 
design, as was noted in Section 3. 
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