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1. Introduction. Most surveys conducted by the 
National Center for Education Statistics (NCES) apply 
complex designs. Complex designs which combine 
some of sampling techniques such as sampling without 
replacement or with unequal probability, stratification, 
or multistage sampling, etc., induce a non-iid structure 
to the data. Conventional variance estimation methods 
are often difficult to extend to these complex survey 
data structures or are cumbersome to implement. The 
standard statistical software packages, such as SAS and 
SPSS, give inappropriate and usually too small variance 
estimates. One solution to this difficulty is to use 
replication-based variance estimation approaches, also 
called resampling variance estimation approaches in 
some cases. A number of replication methods have 
been proposed over years. Among them, the jackknife, 
bootstrap, BRR, Fay's method, and random group have 
received broad attention. 

The problem of variance estimation with small 
numbers of primary sampling units (PSUs) happens 
most often with stratified multistage sampling, which is 
often adopted by NCES surveys. With this type of 
sampling design, although the total number of PSUs is 
very large, some strata (explicit and/or implicit) may 
only have small numbers of PSUs but may contribute 
substantial numbers of secondary units to the sample. If 
we are interested in some subpopulation parameters, we 
may encounter the problems of variance estimation 
with small numbers of PSUs since many sub- 
populations will only have small numbers of PSUs. 

In case when a large sample of secondary units 
are drawn from only a few PSUs, it may be able to 
provide a pretty close point estimator, but it may not be 
able to provide a reliable variance estimate. This is 
because direct variance estimators must, explicitly or 
implicitly, estimate the between PSU component of 
variance. The precision of this between-PSU variance 
estimator will be low due to the small number of PSUs. 
Burke and Rust (1995) conducted a simulation study on 
a subsample of National Assessment of Educational 
Progress (NAEP) to examine the performance of two 
jackknife methods, the usual jackknife and the paired 
jackknife, with small number of PSUs. 

This paper is to evaluate the six replication-based 
variance estimation approaches stated earlier when only 
small numbers of PSUs are available. We conducted a 
simulation study on a subset of 1993-94 Schools and 
Staffing Survey (SASS). Our simulation population 
consists of 182 private schools of SASS sample. It 
differs from Burke and Rust (1995) in five aspects: (1) 
different variance estimation methods; (2) different 
evaluation criteria; (3) different software used; (4) 
different statistics; (5) different simulation populations. 

2. Replication-based variance estimation methods 
The basic idea behind the replication methods is to 
select subsamples repeatedly from the whole sample, to 
calculate the statistic of interest for each of these 
subsamples, and then use the variability among these 
subsample or replicate statistics to estimate the variance 
of the full sample statistics. Denote the estimator of the 

statistic of interest for the r-th replicate sample by 0r 

(r=l, ..., K), and the estimator based on the parent 

sample is 0. The design-based estimators 0r and 

are obtained through standard estimating approaches. 
Then replication-based variance estimates take the form 

K 

r=l 

o r  

r=l  

where 0 = 2 0~ and c is an adjusting constant. It 
r=l  / ' 

is apparent that (1) and (2) are identical for linear 
estimators, but, for nonlinear estimators, (1) is more 
conservative than (2). However, in many surveys, the 
expectation of the difference between (1) and (2), 

K ( 0 - ~ ) 2 ,  is small. The software VPLX of Fay uses 
the estimator (1), so does our simulation since we 
mainly used VPLX to implement the methods. Wolter 
(1985), however, in his discussion on the properties of 
the replication methods, focuses on estimator (2), 
which is easier to discuss theoretically. 

The key difference among the different replication 
methods is that they draw different replicate samples to 

form the estimates 0r ( r=l, 2, ..., K). Some methods 

such as the jackknife use more PSUs each time, and 
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therefore the variation among the replicate statistics is 
smaller and hence we need larger adjusting constant c 
in (1) and (2); while some such as the random group 
use less PSUs each time. Next we will briefly present 
how each method constructs its replicates and what 
software is available for it. 

Random Group: In this method, the full sample 
is randomly divided into K parts, called random groups, 
in a manner designed to represent the major sources of 
variation arising from the sample design. Each random 
group is used as one replicate sample. Since, among the 
six methods, it uses the fewest PSUs in each replicate 
sample, the variation among the replicate estimates is 
the largest and thus we need the smallest c=I/K(K-1). 
This method has been implemented by the following 
software packages: (1) VPLX of Fay (public domain); 
(2) OSIRIS IV of Kish (commercial); (3) CLUSTERS 
of Verma (a normal charge). 

Simple and Stratified Jackknife: The simple jack- 
knife creates replicate estimates based on all but one 
PSU in succession; that is, each replicate estimate omits 
one PSU while re-weighting the remaining K-1 PSUs 
by the factor K/(K-1). Since this method uses the most 
PSUs in each replicate sample, the variation among the 
replicate estimates is the smallest and thus the adjusting 
constant c=(K -1)/K is the largest among the methods. 

In the stratified jackknife, we assume that S strata 
have been formed and there are Ks PSUs in the s-th 

stratum. The (r, s)-th replicate estimate t~rs (r=l, ..., Ks, 

s=l, ..., S) is obtained by omitting the r-th PSU and re- 
weighting the remaining Ks-1 PSUs by the factor 
KJ(Ks-1) in the s-th stratum while using the original 
weights for the PSUs from the other strata. Then the 
stratified jackknife variance estimate is given by 

Vsjk(O) = ~ Ks-1 ~(Ors _ ~ ) 2 .  (3) 
s=l Ks r=l 

The simple and stratified jackknife have been 
implemented by the following software products: (1) 
VPLX of Fay(public domain); (2) WesVarPC of Westat 
(public domain); (3) OSIRIS IV of Kish (commercial); 
(4) GES V4.0 of Statistics Canada (commercial); (5) 
BOJA of Boomsma (commercial). 

Balanced Repeated Replication (BRR): The BRR 
is a special half-sample replication method. It uses half 
of the sample each time and is usually applied to 
stratified sample designs in which the sample consists 
of two PSUs from each stratum. If some strata have 
more than two PSUs, we may either group them into 
two super-PSUs or divide those strata into smaller 
(artificial) strata such that each stratum consists of two 
and only two PSUs. After the desired strata have been 
created, one PSU from each stratum will be selected to 
form one replicate. There is a total of 2 s possible half- 

sample replicates, where S is the number of strata. The 
BRR uses K (out of 2 s) orthogonal balanced half- 
sample replicates to obtain variance estimates through 
Hadamard matrix (Wolter, 1985). The information 
contained in the 2 s replicates can be captured by K 
balanced replicates. The minimum number of replicates 
needed to have full information is the smallest integer 
greater than or equal to S which is divisible by 4. 

The adjusting constant for the BRR is c=l/K, 
which is larger than 1/K(K-1) for the random group but 
smaller than (K- 1)/K for the jackknife. 

This method has been implemented by: (1) VPLX 
of Fay (public domain); (2) WesVarPC of Westat 
(public domain); (3) OSIRIS IV of Kish (commercial). 

Fay's method: This method is a modified version 
of the BRR. In the BRR, half of the sample is zero- 
weighted while the other half is double-weighted. Fay's 
method assigns weight p (0_<p<l) to one half sample 
and 2-p to the other half. The adjusting constant for this 
method is c=l/K(1-p) 2, which is larger than c=l/K for 
the BRR. In this simulation, 9=0.5 was used in Fay's 
method. Fay's method has been implemented by: (1) 
VPLX of Fay (public domain); (2) WesVarPC of 
Westat (public domain). 

Bootstrap: Bootstrap replicates are created using 
two steps: (1) using the parent sample, construct an 
artificial population U*, assumed to mimic the real but 
unknown population U; (2) draw K independent 
bootstrap replicate samples from U* using a design 
identical to the one by which the parent sample was 
drawn from U. The adjusting constant for the bootstrap 
is c=l/K, which is the same as the one for the BRR. 

No software product has yet been developed for 
the general bootstrap method. So far, BOJA written by 
Boomsma and reviewed by Dalgleish (1995) may be 
the best software for the bootstrap method. Resampling 
Statfor Windows (Version 4.0) can only be used for the 
simple random sampling design. 

3. Simulation population, sampling scheme and 
implementation. In the 1993-94 SASS, private 
schools were first stratified by Affiliation (19 groups), 
School Level (3 levels) and Census Region (4 regions). 
Within each stratum, the schools were further sorted by 
six variables: State, Highest Grade, Urbanicity, First 
Two Digits of Zip Code, 1991-92 Enrollment and PIN 
number. Then the school samples were selected with 
systematic PPS sampling schemes from each stratum. 
The measure of the PSU (school) size was the square 
root of the number of teachers from the 1991-92 
Private School Survey. 

Our artificial simulation population consists of 
182 private schools from the four smallest affiliations 
in the 1993-94 SASS: 26 schools from the Association 
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of American Military Colleges and Schools, 60 from 
the Friends Council on Education, 44 from the 
Solomon Schechter Day Schools, and 50 from Other 
Lutheran affiliation. 

The 182 private schools in the artificial population 
were first divided into three strata by the school level 
variable: elementary, secondary, and combined. Within 
each stratum, the schools were further sorted by the 
same six sorting variables used in the original SASS 
design. Then the systematic PPS sampling algorithm 
was used to select the schools. 

In our simulation, we employed the systematic 
PPS sampling scheme used in the original SASS, but 
did not exactly apply its stratification strategies. A 
stratified sampling scheme first allocates a sample size 
to each stratum, then draws a subsample from each 
stratum, and then combines all the subsamples into one 
overall sample. In our simulation, in order to find the 
true variance, we had to compute variance estimates for 
all possible samples. If we had applied the stratification 
strategy, the number of all possible samples would have 
become too large to implement. Therefore we decided 
not to pre-allocate the sample size to each stratum 
before performing systematic PPS sampling. Although 
we did not pre-allocate the sample sizes to the strata, 
the subsample sizes of the strata obtained through our 
overall systematic PPS sampling scheme were almost 
identical to what a stratified PPS sampling scheme 
would have allocated to the strata if we had employed 
the stratification strategy. Thus we applied the stratified 
jackknife method anyway for sample sizes over 12. 

For each sample size n (n=2, 4, ..., or 30), there is 
a total of 182 possible systematic PPS samples, the 
same number as the artificial population size. This is 
the case for most systematic PPS sampling designs. We 
only chose even numbers as sample sizes to make it 
easier to implement Fay's method and the BRR. For 
these two method, every two adjacent PSUs were 
grouped into an artificial stratum. Full orthogonal 
balanced replicates are generated for the BRR method 
through the Hadamard matrix. 

For the bootstrap, we used a non-systematic PPS 
sampling scheme to draw re-samples from the artificial 
population U* constructed by each possible sample, 
which is actually equivalent to drawing simple random 
samples with replacement directly from the sample S. 

The random group and jackknife methods needed 
no special treatment to generate replicates. 

After all the possible systematic PPS samples had 
been selected for each sample size through an Excel 
spreadsheet and SAS program, the re-sample selection 
for the bootstrap was implemented by Resample Stat 
for Windows, while it was done automatically for the 
other methods by VPLX. 

4. Analysis of simulation results. In this study, we 
chose two estimatesmstudent-teacher ratio and total of 
full-time equivalent teachersufrom the 1993-94 SASS 
private school data. Four criteria have been used in the 
evaluation: (1) Bias of variance estimates; (2) MSE of 
variance estimates; (3) coverage probability of covering 
the true parameter; (4) 95% true confidence intervals of 
the variance. 

The first column of the tables 1 and 2 gives the 
true variances for all the sample sizes under study. 
Generally, we would expect the variance to decrease as 
sample size increases. But some cases obviously violate 
this trend. For sample sizes 18, 22, and 24, the true 
variances for both the student-teacher ratio and the total 
of full-time equivalent teachers are unexpectedly small. 
This is probably because the systematic sampling 
scheme hits some pattern in the population so that the 
average variation among all possible PPS systematic 
samples are much smaller than the average variation 
among all possible PPS random samples. However, for 
sample size 26, the true variance is unexpectedly large 
for the student-teacher ratio, but is unexpectedly small 
for the total of full-time equivalent teachers. Similar 
reasons are responsible for the results. We should keep 
it in mind that we try to estimate the design-based 
variance, the variance among all possible systematic 
samples, and have no interest in the variance among all 
possible random samples since our estimates are based 
on systematic samples. 

4.1 Bias of variance estimates. From Figure 
1, it is evident that all the replication methods tend to 
overestimate the variance of the student-teacher ratio. 
One reason for this is that our simulation samples are 
drawn without replacement (WOR sample), while the 
replication methods assume that the samples are drawn 
with replacement (WR sample). Generally, a WOR 
sample has larger within-sample variation. If we treat a 
WOR sample as a WR sample, we will overestimate the 
true variance. Actually, Efron and Stein (1981) and Fay 
(1989) show that, even if the samples are drawn with 
replacement, the jackknife, random group, and half- 
sample methods still tend to overestimate the variance. 

For the student-teacher ratio, the random group 
method always has the highest positive bias, while 
Fay's method always has the lowest negative bias. 
Since all the methods tend to overestimate the variance, 
Fay's method appears to be the best or close to the best 
in terms of bias except for the sample sizes 2 and 4. For 
those two cases, Fay's method seriously underestimates 
the variances. The other four methods are comparable. 

All six methods have very large positive biases 
when sample size equals 18, 22 and 24. As we stated 
earlier, these cases have very small true variance. The 
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true variance actually measures the variation among all 
possible parent samples, while each replication variance 
estimate is based on resamples from one parent sample. 
If the resamples mimic the parent samples well, we 
expect the replication variance estimate to be close to 
the true variance. However, if the within-parent-sample 
variation is much larger than the between-parent- 
sample variation (the variation in the population), then 
the variation between the resamples will be much larger 
than the variation between the parent samples, and 
therefore the replication method will overestimate the 
true variance. This is what happens for sample sizes 18, 
22 and 24. 

For the total of full-time equivalent teachers, the 
simple jackknife and the random group are identical, 
while the BRR and Fay's method are indistinguishable. 
Figure 2 shows that all methods tend to overestimate 
the variance, and all methods except the stratified 
jackknife are comparable. The stratified jackknife 
always has the largest positive biases except for sample 
size 30. This is probably because the within-stratum 
variations are not significantly smaller than the overall 
sample variations for the linear statistic, and the overall 
sample size is not large enough, and consequently some 
strata have too few PSUs, which leads to large variance 
estimates within those strata. 

4.2 MSE of variance estimates. For the student- 
teacher ratio, the random group provides much less 
accurate variance estimates than any other methods. In 
many cases, the MSEs of the random group variance 
estimates are more than ten times larger than those of 
the other replication variance estimates. The random 
group's large biases account for a major part of its large 
MSEs. The BRR behaves very poorly when the sample 
size is less than or equal to 12, but after then it catches 
up with the other methods. Overall, Fay's method is 
again the best. It almost always has smaller MSEs than 
the BRR. Sample size 22 seems to be a breakdown 
point for all methods but the BRR and Fay's method. 
The stratified jackknife is among the best except for 
sample size 22. The simple jackknife is a little worse 
than the stratified jackknife but a little better than the 
bootstrap. 

For the linear statistic, all methods except the 
stratified jackknife are comparable in terms of MSE. 
The stratified jackknife method has the largest MSEs 
except when the sample size is 30, in which it has the 
smallest MSE. 

4.3 Coverage probability. The primary interest of 
Burke and Rust (1995) is the coverage probability of 

the 95% confidence interval t~0i + t (0 .975)~ /cover ing  

the true parameter, where t ( 0 . 9 7 5 )  is the 97.5th 
percentile of the t-distribution. In our simulation, the t- 

distribution has n 1 + n 2 + n 3 - 3 degrees of freedom 

for the stratified jackknife and K-1 for the others, 

where K is the number of replicates, and n s (s=l, 2, 3) 

is the number of PSUs in the s-th stratum, t)0i (i=l, ..., 

182) is the estimator for the i-th parent sample and does 

not depend on the replication methods, while the ~3 i 

varies from one replication method to another; that is, 
the above intervals have the same center but different 
widths for different methods. Larger variance estimates 
will lead to higher coverage rates. In this situation, 
since all the methods tend to overestimate the variance, 
higher coverage rates almost always imply larger 
positive biases of variance estimates, which in turn 
means a worse replication method. 

Our simulation results show that: (1) for sample 
sizes 18, 22 and 24, the coverage rates are too high 
(almost always 100%), which is because the variance 
estimates are too large (leads to too wide intervals); (2) 
for the student-teacher ratio, the random group has the 
highest coverage rates in most cases since it has the 
largest positive biases (leads to the widest intervals); 
(3) for the total of full-time equivalent teachers, the 
stratified jackknife almost always has the highest cover- 
age rates since it always has the largest positive biases; 
(4) most of the coverage rates are very high since all 
the methods tend to overestimate the variance. 

We do not think this is a good criterion for the 
evaluation of the replication-based variance estimation 
approaches due to three reasons: (1) the replication 
methods tend to overestimate variance, and therefore 
this type of coverage rate is high and not worrisome as 
seen in both Burke and Rust's simulation and our 
simulation; (2) in most cases, higher coverage rates 
imply a worse approach, which contradicts the usual 
sense of coverage probabilities; (3) if the normality 
assumption of the estimates does not hold, it is not 
appropriate either to compare the coverage rates to 
95%, the nominal level. 

4.4 95% confidence intervals Table 1 presents 
the 95% confidence intervals for the variances of the 
student-teacher ratio estimates obtained through the 
actual distribution of the variance estimates based on 
all possible PPS systematic samples. In table 1, the 
highlighted confidence intervals do not cover the true 
variances. In all of these cases, the true values sneak 
out of the intervals from the lower limits, which means 
that at least 97.5% of variance estimates are larger than 
the true variance. They are seriously positively biased. 
The random group and the simple jackknife both have 
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three such bad cases with sample sizes 18, 22 and 24, 
the stratified jackknife has two with sample sizes 22 
and 24, and the bootstrap has one with sample size 24. 
However, for these three cases, the BRR and Fay's 
method cover the true variances with convincingly 
shorter intervals. 

For the student-teacher ratio, Fay's method is the 
obvious choice. It provides very sharp confidence 
intervals which always cover the true variances. The 
BRR's intervals always cover the true variances, but 
they are not sharp. Both jackknife methods sometimes 
give very sharp intervals but they can also be seriously 
biased. The confidence intervals of the bootstrap are 
considerably wider than those of Fay's method. The 
random group has much wider confidence intervals 
which still can not cover the true variances sometimes. 

For the total of full-time equivalent teachers, 
Table 2 shows that Fay's method/BRR again has the 
overall best performance. Its 95% confidence intervals 
always cover the true variances, and it more likely 
provides shorter confidence intervals than any other 
method. The random group/simple jackknife sometimes 
provide very short intervals for the true variances, but 
they are not robust as shown by the two seriously 
positively biased cases in which the 95% confidence 
intervals can not cover the true values. All confidence 
intervals of the bootstrap cover the true variances, but, 
again, this method does not seem very sharp. 

The stratified jackknife obviously has the worst 
overall performance for the linear statistic. It has three 
seriously biased cases. Its lower confidence limits 
always have the highest values, but it never leads to 
short intervals. This implies that it has a great tendency 
to overestimate the variance, which agrees with our 
findings in the bias analyses. The random group/simple 
jackknife always have the second largest lower confide- 
nce limits following the stratified jackknife. 

5. Summary. All the replication methods tend 
to overestimate the variance on average for both linear 
and non-linear statistics, and the confidence intervals 

00i + t0.975 ~ /  generally have very high coverage rates 

for covering the true parameter. Since higher coverage 
rates in this situation are almost equivalent to higher 
positive biases, we do not think that this is a good 
criterion for evaluating replication variance estimation 
methods. When the systematic sampling design hits 
some underlying pattern in the population such that the 
average variation among all possible systematic 
samples is much smaller than the average variation 
among all possible random samples, the replication 
variance estimates will be seriously positively biased. 

For non-linear statistics, the random group should 
not be considered a candidate for variance estimation. It 
always gives much larger biases and MSEs, and much 
broader confidence intervals for the variances which 
are sometimes still unable to cover the true variance. 
Although our simulation is for small sample sizes, we 
do not recommend using this method even for large 
sample sizes since no evidence shows that the random 
group gets closer to the other methods. We believe that 
the random group will not perform so poorly if more 
PSUs are included in each random group, but it 
requires a large number of PSUs since each PSU is 
used only once by the random group method. 

For non-linear statistics, Fay's method has the 
best overall performance in terms of bias, MSE, and 
95% confidence interval for variance estimation, and 
should be recommended as long as the number of PSUs 
in the sample from the sub-population of interest is 
larger than 4. The BRR performed poorly and should 
not be used when the sample size is smaller than 14. 
The bootstrap variance estimates have slightly larger 
MSEs, slightly broader confidence intervals compared 
to the best method in most cases. The stratified 
jackknife gives very sharp variance estimates in some 
occasions, but also provides seriously positively biased 
estimates in a few other cases. The simple jackknife is 
slightly worse than the stratified jackknife. 

For linear statistics, the random group/simple 
jackknife has the overall best performance in terms of 
MSE, but they lose to the BRR/Fay's method and the 
bootstrap in terms of 95% confidence intervals. The 
stratified jackknife has the overall worst performance 
according to all the criteria used in the simulation. 
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Figure 1. Bias of variance estimate for student-teacher 
ratio (JK--simple jackknife, SJK--stratifiedjackknife) 
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Figure 2. Bias of variance estimate for total of full- 
time equivalent teachers 
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Table 1 95% confidence interval for variance of the student-teacher ratio estimate 
Smpl True 
size Variance 

2 9.8274 
4 5.0131 
6 1.9082 
8 1.2428 
10 0.8926 
12 0.7122 
14 0.7858 
16 0.6202 
18 0.3367 
20 0.5485 
22 0.2622 
24 0.2117 
26 0.7385 
28 0.5227 
30 0.4070 

Random Simple Stratified 
group jackknife jackknife BRR 

Fay's 
method 

.011-38.4 .011-38.4 

.196~21.3 .158~21.7 

.477-13.8 .366-7.11 

.368-13.7 .336-4.66 

.450~ 13.1 .407~2.80 

.011~ 38.4 
077~20.0 
138~9.55 
207~6.68 
245-3.51 

.011-28.2 

.067-16.1 

.110-6.91 

.205-5.68 

.235~3.02 
.482-10.0 .365~2.96 .326-2.64 
.387~7.16 .286-2.63 .258~2.55 
.275-5.98 .354~1.82 .299~1.54 
• 345-4.71 .384-1.94 .236~1.38 
.494~3.97 .338~1.31 .284~1.16 

Bootstrap 

.126-20.5 

.283~10.2 

.190-5.18 

.331~3.46 
323-3.60 .308-2.33 .330~2.58 
168~2.01 .167~1.85 .297-1.99 
257~1.74 .236~1.68 .280~1.94 
.223-1.33 .254-1.21 .269-2.07 
.163-1.19 .148-1.08 .197~1.55 

• 315-3.12 .322-2.99 .274-2.66 .238~1.42 .229~1.29 .196-2.73 
• 399-3.02 .307-1.51 .219-1.46 .204~1.53 .198~1.26 .247-1.49 
.294~2.91 .221~1.05 .225~.876 .134~.789 .134-.752 .137~1.13 
.299-2.11 .257~.672 .217~.616 .133-.589 .132-.568 .182-.743 
.282~1.70 .250~.785 .228~.746 .096-.669 .094-.643 .176-.908 

Table 2 95% confidence interval for variance of total of full-time equivalent teachers (in millions) 
Smpl True 
size variance 

2 2.4807 
4 1.3399 
6 0.7288 
8 0.5151 
lO 0.5776 
]2 0.2512 
14 0.2417 
16 0.1756 
18 0.1168 
20 0.2493 
22 O. 1004 
24 O. 1060 
26 0.1023 
28 0.1197 
30 0.1863 

Random group/ Stratified BRR/ 
Simple jackknife jackknife Fay's method Bootstrap 

(.003, 14.9) (.003, 14.9) 
(.034, 4.94) (.013, 4.43) (.006, 5.17) 
(.083, 3.50) (.034, 4.26) (.048, 4.21) 
(.127, 2.90) (.054, 1.97) (.058, 1.92) 
(. 136, 1.87) (.073, .997) (. 129, 1.36) 
(.079, 1.51) (.181, 1.99) (.069,2.01) (.066, 1.61) 
(.098, 1.09) (.166, 1.37) (.051, .920) (.064, 1.13) 
(.071, .877) (.141, .925) (.058, .743) (.064, .931) 
(.137, .618) (.154, .732) (.075, .611) (.091, .685) 
(.086, .708) (.128, .823) (.055, .726) (.073, .781) 
(.105, .468) (.132, .491) (.096, .416) (.088, .584) 
(.069, .549) (.105, .601) (.061, .684) (.051, .658) 
(.088, .319) (.111, .354) (.073, .412) (.061, .412) 
(.066, .392) (.085, .393) (.053, .357) (.048, .399) 
(.070, .297) (.103, .360) (.059, .451) (.056, .393) 
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