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In panel surveys, consideration of response 
burden dictates that sample members be ro- 
tated. Rotation of s~fl~saanples over time can 
also serve to improve the current estimate and 
the estimate of change from one time period 
to the next. This is done by ~lsing past data 
as auxiliary variables. 

Consider the following rotational design: 

A A E  F G 
B E B H I 
C F H C J 
D G 1 J D 

In this scheme every subsaanple is used exactly 
twice in a cycle of five time periods, and there 
is exactly one subsample common to any two 
times. For any epoch we fit a regression on 
the subsample common to that epoch and an- 
other epoch and use the other epoch's data to 
obtain an improved double sample estimate. 
The improved estimates for each subsaznple in 
a given epoch axe combined to yield the final 
estimate for the epoch. These regression esti- 
mates can run backward and forward in time, 
i.e., data  from subsequent years can be used 
to revise and improve e,xrlier estimates. 

Another such design is: 

I A A A B B  
D C B C D  . 
E D C E E 

Here every subsaanple is used three times. The 
number of subsamt)les common to adjacent 
epochs is two, while the number common to 
epochs separated by one or more epochs is one. 
The first and last epoch also have two in com- 
mon, an example of circular symmetry that 

permits the cycle to be repeated if desired. 
Neighboring epochsaxe typically more closely 
correlated and the change in the estimate from 
one epoch to the next is often of interest. Hence 
a scheme that offers greater overlap between 
adjacent epochs may be preferred. 

Yet another design is" 

A A B B C C 
C G A G B G 
D D E E F F 
F H D H E H 

Adjacent epochs, and the first and last. have 
two subsamples in common, as do epochs sep- 
axated by an epoch. But notice that the first 
and fourth epochs, respectively second and 
fifth, or third and sixth, have nothing in com- 
mon. This makes it possible to generate a 
completely independent estimate every three 
epochs. 

The designs above are examples drawn 
from a general theory of combinatorial designs 
that has been developed in recent years (see 
[1], [2], [3], [4]). Work in experimental de- 
sign by Fisher at Rothamsted Experimental 
Station and by others at Iowa State and the 
Indian Statistical Institute formed the back- 
ground for the present mathematical theory of 
designs. The latter is a blend of combinatorics, 
projective and affine geometry, hneax algebra, 
graph theory, Galois theory, and group theory; 
and has applications in coding theory as well 
as numerous ones in statistics. 

Suppose a set consists of d objects (sub- 
samples) and these are arranged into overlap- 
ping sets or blocks of size m, there being b 
blocks in total (all of them distinct) and each 
object being a member of exactly r of the 
blocks. In o~lr original vocabulary we have b 
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time epochs, m subsamples per epoch, a total 
of d distinct subsamples, with each subsample 
occurring in r different time epochs. Assume 
for simplicity that the subsamples are all of 
the same size, and thus this size can be ig- 
nored. An equitable distribution of response 
burden leads us to impose the condition that 
every subsaznple occurs r times. 

It is easily seen that mb - rd, and that 
r < b and m < d with all numbers being 
positive integers. In design theory one talks 
about t-designs, in which any t objects lie in 
a fixed number A of blocks. Thus a 2-design 
with A - 3 is one in which every pair of objects 
has three blocks in common. The intersection 
numbers of a design are the cardinalities of the 
intersections of distinct blocks. Thus, the first 
example above has intersection number 1, the 
second has intersection numbers 1 and 2, and 
the third has intersection numbers 0 and 2. 

As a general rule designs are more desir- 
able, and more practical, in which adjacent 
blocks- our blocks are time-ordered- have rel- 
atively large intersection numbers, while dis- 
tant blocks have low intersection numbers. 

Consider the following extreme design: 

X l  X2  , . ,  Xd_ 1 Xd ] . 

X2 X3 ... X d Xl  

Each subsample occurs twice, and in adjacent 
epochs there is a common subsample. There is 
also circular symmetry. But there is no other 
overlap. The intersection number is 1 for ad- 
jacent blocks, 0 for all others. 

Another extreme design is: 

Xl  Xl  X2 X3 ... 

X 2  X m T 1  XmT1 Xm+2 ... 

X3 Xm&2 X2m X2m ,.. 
. , ,  

, , ,  

Xm X 2 m - 1  X 3 m - 3  X 4 m - 6  .,. 

Xm 

X2m-1  

X3m-3  

Xd 

The only intersection number here is 1, and 
any two blocks have a subsample in common, 
or a fraction ± of the sample at each epoch. 

The total number of subsamples is d =m+, C2. 
This type of design is of less interest to us for 
panels. 

Any design offers opportunities for opti- 
mization depending on one's objectives. The 
formula for a double sampling regression esti- 
mate (see [5, p. 346]), with finite population 
correction factor omitted, is: 

a2 ( l - p2kn +--mnP2) 

where a is the standard deviation of the vari- 
able to be estimated (say, for the latest epoch), 
n is the size of each subsample, m the number 
of subsamples per epoch, k the number of sub- 
samples in common between the latest epoch 
and a second epoch, and p the correlation coef- 
ficient between the variables of the two epochs. 
When the double sampling estimate is com- 
bined with the mean for the current epoch on 
the m n -  kn unmatched elements, with opti- 
mal weights and with k chosen optimally, the 
variance of the resulting estimate is: 

a2 (1 + V/1 -  p2) 
2ran 

Without detailed knowledge of p we can 
still recommend designs that offer improved 
estimates for the different epochs. Cochran 
[5] shows that if the current estimate is to be 
optimized on the basis of overlap with one pre- 
vious epoch, then the preferred ratio of k to 
m never exceeds 50%. On the other hand, if 
the changes in an estimate from one epoch to 
the next are of interest, then the preferred ra- 
tio exceeds 50%. Economy also dictates high 
overlap between adjacent epochs, as Coehran 
[5] further observes. Our examples above sug- 
gest that overlaps as desired can be achieved. 

In general, a design of the following form 
has suitable properties: 

Xl  X m - r + l  . . . . . .  

X2 X m - r + 2  ...... 

X3 X m - r + 3  . . . . . .  

, , ,  

Xm X 2 m - r  . . . . . .  

X ( d - 1 ) ( m - r ) + l  

X (d -1 ) (m-r )&2  

X(d-1)(m-r)4-3  

X d m - ( d - 1 ) r  

Q 
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Here an element x~ represents a subsample of 
size n, but we treat each x~ ms a unit for sim- 
plicity. The intersection number between ad- 
jacent blocks in this design is r provided r < m 
and m + (m - r) < d. It can be shown that if 
g c d ( m - r ,  d) = 1, then each element occurs ex- 
actly r times and the design is equitable. The 
overlapping fraction between adjacent epochs 
is ~ and the frequency of appearance of a 

m 

i. e. r times in every given subsample is 7, , 
d epochs. Given a desired overlap ratio, we 
choose r and m accordingly. The remaining 
constraints affect d, but d can still be chosen 
large to minimize the response burden. 
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