
D E V E L O P I N G  AN E S T I M A T O R  TO E S T I M A T E  T H E  V A R I A N C E  OF MEAN W A G E  RATES C O M P U T E D  
F R O M  G R O U P E D  DATA IN T H E  O C C U P A T I O N A L  E M P L O Y M E N T  STATISTICS  SURVEY 

Kenneth W. Robertson, Albert Tou, Larry Huff 
K.W. Robertson, U.S. Bureau of Labor Statistics, 2 Mass. Ave. N.E., Washington, D.C. 20212 

Outline. 
I. Description of Problem. 
II. Data. 
III. Research. 
IV. Results. 
V. Conclusions. 
VI. Future Research. 

I. Description of Problem. 
The Occupational Employment Statistics (OES) 

survey is an annual mail survey of business establishments 
conducted by the U.S. Bureau of Labor Statistics. The 
design of the survey has recently been changed from a 
State / Industry based survey collecting occupational 
employment totals to a Metropolitan Statistical Area / 
Industry based survey collecting occupational employment 
totals and occupational wages. The respondents are asked 
to classify their establishments' employees into a matrix 
structure which includes Occupational Titles and 11 
contiguous, nonoverlapping wage intervals. These wage 
data are obtained from payroll records by the responding 
establishments. Therefore, we assume that there is no 
memory-related recall error associated with these wage 
data. Estimators for both the mean and median have been 
developed for use with these wage data. To date, however, 
no variance estimators have been derived for these 
statistics. The impetus for this project was the need to 
develop a variance estimator for the mean wage estimates. 
The wage intervals currently used are shown in the 
following table. 

OES Survey, Wa[[e Intervals 

. . . . . . . . . . . . . . . . . . . . . . .  i .......................... . . . . . . . . . . . . .  

A less than $5.74 
B 
C 
D 
E 
F 
G 
H 
I 
J 

K 

less than $11,960 
$5.75 - $8.49 $11,960- $17,679 
$8.50 - $9.99 $17,680 - $20,799 

$10.00 - $11.24 $20,800 - $23,399 
$11.25 - $13.24 $23,400- $27,559 
$13.25 - $15.74 $27,560- $32,759 

, , ,  

$15.75- $19.24 $32,760- $40,039 
$19.25 - $24.24 $40,040- $50,439 
$24.25 - $43.24 $50,440- $89,959 
$43.25 - $60.00 $89,960- $124,800 

more than 
$60.00 

more than 
$124,800 

Data collected in intervals are somewhat less clear 
than an exact data point would be. For example, a person 
who indicates that their salary is within wage interval F 
($27,560 - $32,759) actually has one precise data point 
within that wage interval which describes their salary. 

Therefore, the data collected within any particular wage 
interval possesses some unknown, underlying distribution 
bounded by the endpoints of the interval. 

This project is primarily concerned with one 
approach to variance estimation for wage data collected 
within intervals. An obvious choice for an estimator for 
the variance of these data is the usual variance estimator 
for frequency data. This grouped data variance estimator 
(GDVE) can be expressed as follows 

Z nr (Cr _ ~ ) 2  

1 [equation 1] S 2 _ _  r 

a -  n - 1  ' 

where r indicates a class or interval, and Cr represents the 

midpoint of class r. This estimator has several 
shortcomings. First, when all of the data are in one interval 
this estimator gives us a variance of zero. This is because 
we assume that all data points within the interval are 
located at the midpoint. When considering the distribution 
of data points underlying the frequency data this is an 
underestimate of the true variance. An empirical 
investigation of this estimator (see the Table below) shows 
a second shortcoming. When all of the data are not in one 
interval it has a considerable upward bias for variance 
estimation of the underlying distribution. 

Empirical Distribution of the Percentage E r r o r  
the Grouped Data Variance Estimator when 

. 
coin tared to the Standard Variance Estimator . 

L;iiiiii, ii!iii!i i?iiiiiiil;ii!iii?iliiiiiiii?i!!!!!!iii!iii!!ili!iii!!i'i!!!!!i! 
0.01 -100.00 % 

0.05 -74.56 % 

0.10 -31.28 % 
, ,  

0.25 -6.20 % 
0.50 6.15 % 

The Standard Variance Estimator is 

of 

0.50 6.15 % 

0.75 17.27 % 

0.90 33.26 % 
0.95 45.39 % 

0.99 83.29 % 

Ss2 = /--l n _  1 

** = ~ - 1 *100 , 

also see the description of Q later in this document. This corresponds 
to the percentage by which the standard errors differ for the 9,625 
empirical estimates obtained from the data when applying the grouped 
data variance estimator and the standard variance estimator to these 
data. The data are described in Section II. Note that these values were 
derived by classifying the data by Industry and Occupation. The values 
provided later in the paper were classified by Geographic area, 
Industry, and Occupation. 
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The table above provides us with the percentile 
distribution of the percentage errors obtained when using 
the Group Data Variance Estimator instead of the Standard 
Variance Estimator. The statistics in the table above show 
us that 50% of the grouped data variance estimates are 
overestimating the true variance (the Standard Variance 
Estimator) by 6.15% or more. Since we would expect an 
unbiased distribution of errors to have a median near 0%, 
this median of 6.15% indicates a significant upward bias 
to this distribution of errors. At least 1% are 
underestimating by 100%. That is, the standard variance 
estimate is non-zero, while the grouped data variance 
estimate is zero. Further examination of this distribution of 
errors shows that it is bimodal. There is a pronounced 
spike a t - 1 0 0 %  and a peak at 6.15%. Therefore, the 
problem is that the most obvious estimator for the variance 
of these grouped data is biased and produces an error 
distribution which is bimodal. 

An alternative approach to variance estimation is to 
utilize an auxiliary data set to derive a set of location 
parameters for use with the interval data set: These 
location parameters are referenced in this paper as 
Dispersion Location Statistics (DLS's). These parameters 
would replace Cr in [equation 1] above with values 

optimized to produce desirable variance characteristics. In 
this paper we explored this alternative approach. 
Constrained multivariate optimization is used with an 
auxiliary data set to develop optimized parameters for use 
in variance estimation for the interval data. The auxiliary 
data set must contain data which were not collected by 
interval. We make the basic assumption that the 
distribution of the auxiliary data is the same as the 
distribution underlying the interval data. 

these observations to estimate a mean and variance for the 
wage data in this category. These data will also be used to 
simulate interval data using the intervals developed for the 
OES survey. 

The data are reasonably classified by attributes 
reported by the survey respondents. The primary attributes 
used for classification are the category attributes, area, 
industry and occupation. It would make sense to use this 
classification in our research. Unfortunately, there is not a 
complete one-to-one mapping of categories from the 
OCSP survey to the OES survey. The OCSP survey 
collects data on only a subset of the occupations that the 
OES survey collects. Therefore, in order for this research 
to be of general use for the OES survey, some set of 
attributes which provides a complete one-to-one mapping 
for the surveys must be used as a classification 
mechanism. 

We chose to use the empirically determined 
start/end interval as a grouping mechanism. For example, 
we located all Industry/Occupation categories which have 
data reported in both wage interval A and wage interval B, 
but in no other intervals, and call this group AB. Similarly, 
we could locate all categories which have data reported in 
wage interval A through wage interval C, but in no other 
intervals, and call this group A C. This classification does 
map one-to-one between the OCSP and the OES surveys. 
Classifying the data in this manner results in 66 groups. 

Notice that within each group there are a number 
of categories. We emphasize that each category contains 
many observations. An estimate of the mean and variance 
must be produced for each category. Therefore, within 
each group there will be a number of variances to 
examine. 

II. Data. 
In this project we utilized a data set containing 

wage values collected via personal visit by the Office of 
Compensation and Working Conditions of the Bureau of 
Labor Statistics (BLS). These data were collected for the 
Occupational Compensation Survey Program (OCSP). The 
data set contains approximately 1.3 million observations 
which are classified by Industry and Occupation. Each 
observation contains a wage rate, and the number of 
employees within the organization in a specific 
Occupation making that wage rate. Using these data we 
can estimate the mean wage rate by Area, Industry, and 
Occupation. Each Industry / Occupation combination 
defines an estimation category. For example, one category 
may be defined as Warehouse Specialists within the 
Furniture and Fixtures industry in Area 1. 

The classification values allow us to arrange the 
observations into 12,424 Area / Industry / Occupation 
categories. For example, we may have hundreds of 
observations for Warehouse Specialists in the Furniture 
and Fixtures industry. These observations would cover a 
considerable range of salaries. Therefore, we could use 

III. Research. 
There are several statistics associated with a 

probability distribution that are in common use. The more 
common of these statistics can be placed in two classes, 
those that tell us something about location, and those that 
tell us something about dispersion. Imagine, if you will, 
that we have an additional location statistic which is also 
useful in describing dispersion. Let's call this statistic the 
DLS, for Dispersion Location Statistic, and denote it with 
m. For the simplest case we could define this as follows: 

~ ( m _  .2)2 = ~ ( x  i _.2)z 

[equation 2] i--t ~=l 

n(m-.2)  z = ~ ( x , - . 2 )  2 
i=i 
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X i 

m = . 2 +  
m 

, m > x  

- -  i=l  
m = x  - 

n 

w 
x > m  

Therefore, Im-~] describes an average dispersion of the 

data about the mean. As described above, In could replace 
all of the individual xi values in the sum of squares 

calculation without changing the value of the sum of 
squares. If we consider this in conjunction with data 
placed into intervals, it is easy to imagine that there is 
some D L S ,  or In within each interval. At this juncture it 
might be useful to take a closer look at  the standard 
variance estimator sum of squares in an interval setting, 
and expand it using the usual ANOVA techniques. 
Additionally, we will look at what a sum of squares 
calculation would look like with the In vector in place. 

2 [equation 3] 

Z Z ( X r i  --'X)2-'Z£((Xri--Cr)Jt'(Cr--'X)) 2 ~ -  
• i • i 

Z n r ( C r  _ ~. )2  +. Z Z ( X r i  _ Cr)2 + 2 Z Z ( X r  / _ Cr)(Cr _ .~) 
• • i r i 

[equation 4] 

Z £ (mr - 2) 1 = Z Z ((mr - c• )  + (c r - 2)) 2 = 
r i r i 

~.~nr(cr  _ ~)2 + ~_~nr(mr _)2cr + 2~_~nr(m r _ Cr)(Cr _ ~)  
r r r 

A comparison of these two equations shows that 
the definition of m described earlier is no longer 
completely appropriate unless r is equal to one and 
c• = Y . The addition of multiple intervals and midpoints 

forces us to reevaluate what these m statistics mean in this 
setting. In [equation 3], the final term provides for some 
measure of cancellation within each interval r, as we 
would expect that the Xri are dispersed on both sides of the 

midpoint Cr. In fact, if c r = Y• then the final term sums 

to 0. That is, the dispersal to either side of the midpoint is 
exact by definition. In our case c~ ~ Y• at the level of 

estimation. However, it is probably somewhere near that 
statistic since it is a "global" midpoint for that interval. 
We would thus expect some dispersion around this 
midpoint, but not a complete cancellation of this term. 
When examining [equation 4] , however, we see that 
cancellation is not taking place at all in this context in the 
final term. Therefore, m must be chosen within each 
interval in a way which minimizes any error due to this 

loss of cancellation. While Im~ - c~ I can still be thought of 

c o n c e p t u a l l y  as indicating a measure of dispersion about a 

midpoint, there is now some error associated with this 
conception. If we take values for In chosen based on the 
dispersion within each interval as defined previously, and 
then make slight adjustments to m we could reduce this 
error. The only cost of this adjustment is that of deviating 
from our conceptual definition. Obviously, a complete 
derivation of an interval based vector of m values and an 
adjustment to account for the interval induced error is 
significantly more complex than that given so far. Given 
the scope and intent of this project, a complete algebraic 
derivation of the more complex case will not be made 
here. 

So far, we have described a statistic which can 
accurately substitute for known data in a sum of squares 
calculation. Further, we have discussed a conceptual 
extension of this statistic (with some error) into a vector of 
statistics to represent known data within an interval 
structure in a sum of squares computation. Now imagine 
that we must use one vector of these statistics to represent 
data in multiple categories. Additionally, we are going to 
use this vectors to minimize the errors associated with a 
ratio variance estimator. Obviously, there will not be one 
vector which will provide us with an exact replacement 
for data in each interval of each category. In this scenario 
we would expect to have an error term associated with 
each category. What we would like to do is pick the m 
vector in such a way that the errors from all categories are 
minimized. 

We make the assumption throughout the rest of 
this paper that there is an m vector, as described above, 
underlying data placed within intervals or groups. If the 
data are factually represented by the midpoint of the 
interval, then the m vector will equal the midpoints of the 
intervals. In this case, use of the m vector in variance 
estimation would provide the same sum of squares as the 
grouped data variance estimator. If the data are not 
factually represented by the midpoints of the intervals, 
then using the m vector should provide an increase in the 
accuracy of the variance estimates. Because of the 
complexity of a mathematical derivation of the vector, and 
because of the m vectors dependence on the data within 
each interval, we must find some other method for 
determining the value of the m vector. When attempting to 
locate a minimum or maximum of a complex function we 
often turn to numerical techniques. Numerical techniques 
have been developed which are useful for solving complex 
function minimization problems. These methods include 
both simple searches, and optimization techniques. Since 
we have a complex function we need to estimate, 
optimization is an appropriate technique to use. 
Optimization will allow us to develop values for an m 
vector which minimizes a sum of ratio variance estimate 
errors from multiple estimates simultaneously. 

As mentioned earlier, in order to map one-to-one 
from the OCSP data to OES data, we had to classify the 
data into 66 Groups. Therefore, instead of calculating an 
exact m vector for each of the 12,424 categories, we must 
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calculate an m vector for each Group which provides us 
with a good approximation for each category contained in 
the Group. One additional constraint must be added to our 
discussion of the m vector. Since each mr  represents 

every Xri within interval r, its value should be constrained 

such that lb r_< mr___ u b r , w h e r e l b r i s t h e l o w e r  

bound of interval r, and ub r is the upper bound of interval 

r. We could then find the values of m which minimize the 
s u m  

[equation 5] ll wl   ll wly  xlll 
j~Group - n ~ ( / 2  ~)) -- ~7~-2;n 2 -~) 

= Z ( s L -  Sls) 
j ~ Group 

S2m- PSRVE 

S2s = SRVE 

Yi "- ZXi,ri~lr 
r 

Yi = reported wages for  unit i 

where 
i = establishment, 
r = interval, 
x = employment, and 
j indicates an Industry/Occupation 
category. The summation is over all 
categories within the current Group. The 
index value j is assumed on each variable. 

PSRVE denotes a "Parameter Set" Ratio Variance 
Estimator, and SRVE denotes a "Standard" Ratio 
Variance Estimator. 

That is, we want the estimated sum of squares to be as 
close as possible to the target sum of squares. 

Using the auxiliary wage data set we calculated the 
mean and the variance for each Area / Industry / 
Occupation category. We then placed these data into the 
OES survey wage intervals. Using these data we can then 
approach the problem of determining the optimal values of 
mr  to use to minimize  the difference between the 

estimated sum of squares and the target sum of squares. 
Each Industry / Occupation category was further classified 
by the data start interval and end interval as indicated 
earlier. This allowed us to develop parameter sets for 
groups of data with similar characteristics. This also leaves 
us with a manageable number of parameter sets, which 
could later be used in the systematic production of 
variance estimates. 

After exploring several options we decided to use 
the following optimization function: 
[equation 6] 

( / 2 
2 2 

Minimize X SR3a SRi~ 
(S s (S s 

Subject to 

Ib < m r < ub , r e { l ,  2 . . . . .  11} 

Where 
o~= {0 ,1 /16 ,2 /16  ..... 1} 

as before, j is assumed on all variables 

As indicated by [equation 6], a is being allowed to 

range from 0 to 1 by 16 ths. The size of the gradation was 
chosen to be fine enough to allow as wide range of a 
values as possible without over-taxing the processing 
capabilities of the system used. By altering a we make 
adjustments to the shape of the function near the local 
minimums. This results in slightly different parameter sets 
which must then be evaluated through additional testing to 
determine which is best. Different parameter sets will, of 
course, result in variance estimates with different 
distributional characteristics. Therefore, a particular 
optimized parameter set, while providing us with the 
minimum of that particular optimization function, may not 
be as "optimal" in other regards. This is one of the primary 
reasons why a is being altered in the optimization 
equation. It provides us with an opportunity to test the 
distributional results of slightly different parameter sets 
and choose which is best. 

Again, we should mention that within each group 
there are a number of categories. An estimate is produced 
for each category. Therefore, there are a number of 
PSRVE estimates and SRVE estimates within each group. 
Obviously, our goal here is to produce a set of estimates 
for each group which is relatively unbiased, and closely 
associated with their target values. Therefore, what we are 
hoping to have is a distribution of variance errors (Ev = 

PRSVE-SRVE) which are centered at zero, and have as 
small a median absolute deviation as possible. In addition 
to this, in order to be conservative we would rather 
overestimate the variance than underestimate it. This last 
criterion is achieved by only looking at parameter sets 
which produce estimate sets with a group median error 
greater than or equal to zero. If no parameter sets fit this 
criterion, then the parameter set which resulted in the least 
negative group median error was selected for that group. If 
multiple parameter sets pass this test, then a Median 
Absolute Deviation (MAD) statistic was calculated. The 
final parameter set for each group was chosen by finding 
the parameter set which produced the smallest MAD. This 
value was calculated as follows 

[equation 7] 

M A D e =  medianle m - median(era) [ 

where e.j.,, = PSRVE j.,, - S R V E j  
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Evaluating the Results. 
Once these optimization functions have been 

minimized and we have chosen a final parameter set, we 
must have a way of evaluating the results. While the 
optimization function is reasonable, there are a few 
undesirable characteristics when using that function as a 
final tool in evaluating the results. Primarily, the resulting 
distribution of errors will be difficult to interpret. For 
example, if the distribution is centered at a numerical 
value of 5,000, does this mean that we did a good job of 
parameterization, or a bad job? A further complication is 
that the scale changes as a changes. For these reasons a 
separate function would prove useful in evaluating the 
results. 

A function which can be used to evaluate the 
results of the optimization is 

S2m 
[equation 8] W -  z 

SRs 
We will primarily look at the distribution of 

[equation 9] Qp = ( , f w  -1 )*  100 

This distribution will provide us an indication of the 
percentages by which we are over and underestimating the 
relative standard error. This also gives us an indication of 
how accurate the associated confidence interval will be. 
For example, if Qp is -10, then this tells us that the 
confidence interval will be 10% smaller than the target 
confidence interval. 

In order to call this method a success, we would 
like to have a large percentage of the distribution of Qp to 
be between -50 and +50. This will provide us with a large 
percentage of relative errors between -50% and +50% of 
the target value of the relative errors. Additionally, we can 
compare this distribution to the distribution generated by 
Qc, which compares the modified grouped data variance 
estimator to the standard ratio variance estimator. 

IV Results. 
As a first step in our evaluation, we looked at a 

ratio estimator modification of the Grouped Data Variance 
Estimator. We then looked at the error distribution of this 
estimator, grouped by the number of intervals into which 
the data fell. A review of Equations 3 and 4 shows that we 
can partition the variance into three terms; the variance 
within an interval, the variance across intervals, and a 
cross product. As the number of intervals into which the 
data falls becomes larger, we expect that the contribution 
of the across-interval component to the variance would 
also become larger. Conversely, the within-interval 
component would tend to become less important. When 
we looked at the distribution of errors from this modified 
grouped data variance estimator, by the number of 
intervals into which the data fell, we observed exactly this. 
As the number of intervals rose, the error distribution 
became smaller, and less biased. In fact, the modified 

grouped data variance estimator was providing acceptable 
results with as few as three intervals. Because of this, and 
due to the amount of time the optimization routine was 
taking, we decided to produce m-vectors for groups where 
the data fell into only one or two intervals. 

The following table shows the median, the mean, 
and the number of estimation categories by the number of 
intervals the data fell into. 

Mean and Median of the Error Distributions by the 
number of intervals the data fell in. 
~ P 

1 30.3 
2 3.8 

~ c  ... 

i ii!iiiiiii l  ii i!iii!i i i iii!iiiiiiii iii  
6.2 'i;290" 

-4.6 2,976 

-100.0 -100.0 1,290 
2 -13.8 -19.2 2,976 
3 4.2 2.2 2,962 
4 6.1 4.6 2,272 
5 4.7 4.5 1,512 
6 4.5 3.5 951 
7 1.9 2.1 385 
8 3.0 4.1 71 

8.7 9.4 5 

The reader can readily see the improvement when 
using the PSRVE as opposed to the SRVE for data falling 
into less than three intervals. Notice that the median of 
the error distribution shifts from -100% to +6.2% when 
the data fall in one interval, and from 
-19.2% to -4.6% when we use the PSRVE instead of the 
SRVE. 

The following table indicates the proportion of the 
error distribution which is less than -50%, the proportion 
which is between -50% and +50%, and the proportion 
which is greater than 50%. 

Proportion of Error Distributions within the bounds 
indicated, by the number of intervals the data fell in. 
QP 

I 1 4.9% 66.2% 28.9% 
2 13.2% 70.8% 16.0% 

• ....~..c .......................................................... 

..... ii,..i.[..i,iiiiii.iiii!i!Tii ................ l...iii ........ iii ii.i...i ...... i...i .................. ............... {i...ii..i..i! ........................... ii[..ii..iliLLil ............... 

100.0% 0.0% 0.0% 
2 23.7% 66.7% 9.6% 
3 5.5% 86.7% 7.8% 
4 2.0% 93.9% 4.1% 
5 1.1% 97.5% 1.5% 
6 0.5% 98.2% 1.3% 
7 0.8% 99.0% 0.3% 
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8 0.0% 100.0% 0.0% [ 

I 9 0.0% 100.0% 0.0% 

As in the previous tables, the reader can readily see 
the improvement when using the PSRVE, as opposed to 
the SRVE when the data fall into less than three intervals. 
Notice that the proportion of the error distribution 
between-50% and +50% shifts from 0% to +66.2% when 
the data fall in one interval, and from 66.7% to 70.8% 
when we use the PSRVE instead of the SRVE. 

The final table, below, provides information on the 
error distributions by percentiles. 

Distributions of Qc and qp ,  b percentile 

............. !j!ii!i iii!iiii!iiiiiiiiiiiiiiiiii!iiiiiii!iiiiiiii iiiiiiiiiiiiii  i!i! ii!!ii!!il ii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii  iii 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.05 -100.0% 
-100. 0% 

-29.5% 

-1.6% 

13.0% 

32.5% 

51.2% 

-49.8% 
-35.7% 

-14.0% 

2.0% 

17.6% 

47.6% 

83.6% 

When viewed this way, we can see that the PSRVE 
is providing us with a larger set of errors between -50% 
and +50% than is the SRVE, which was our goal. We can 
also see that the middle 50%, as well as the middle 80% of 
the distribution is more centered for the PSRVE. 
Furthermore, we note that where once we had a noticeable 
bias towards underestimation with the SRVE, we now 
have shifted that to an upward bias with the PSRVE. 
While this upward bias is not desirable, it is preferred over 
a downward bias for variance estimation. 

V. Conclusions. 
The first topic explored in this paper was a 

construct called the DLS, or Dispersion Location Statistic. 
This was defined as a statistic useful for variance 
estimation. This statistic, and the mean, allow us to 
calculate the average dispersion of the data. This statistic 
can replace the individual data points in a simple variance 
calculation without a loss of precision. A conceptual 
extension of this statistic as a multivariate vector was 
described. This extension proves useful when data are 
collected in contiguous, nonoverlapping intervals. If 
appropriate values can be estimated for this vector, and the 
data are not factually represented by the midpoints of the 
intervals, then the usual grouped data variance estimator 
can be improved by using this vector. This is especially 
the case when the data fall in only a few intervals. 

We then described an optimization procedure 
which allowed us to estimate values for the vector 
described above. These values were then used to improve 

the usual grouped data variance estimator. The results 
show that this estimator provides a better error distribution 
than the usual grouped data variance estimator if we 
assume that the data are not factually represented by the 
midpoint of the interval. A considerable improvement in 
both the bias and the dispersion of the estimator is 
demonstrated. The results suggest that the parameter set 
variance estimator developed using optimization on an 
auxiliary data set will prove to be useful for it's intended 
application in developing a wage variance estimator for 
the OES survey. 

The results also suggest that this methodology 
might be useful in a more general sense when it is 
erroneous to assume that the data within a group are all 
represented by the midpoint. That is, if it is not correct to 
assume that all data within an interval are represented by 
the midpoint, then this methodology may provide the user 
with a considerable increase in the accuracy of the 
variance estimates as compared to the usual grouped data 
variance estimator. 

VI. Future Research. 
Future research might include investigating a 

method to include the secondary distributional testing as 
part of an optimization function. Additionally, we need to 
test the effectiveness of the parameters on a data set other 
than the one used to develop them. Another issue of 
interest would be to try different "grouping" methods than 
that used here. That is, we could have classified the 
categories by blue and white collar, or by some other 
classification mechanism which maps one-to-one across 
surveys. Each of these issues, both independently and 
collectively could potentially improve the results obtained 
here. 

Disclaimer 
Any opinions expressed in this paper are those of 

the authors and are not to be construed as policy of the 
Bureau of Labor Statistics. 

Several of the issues in this paper are discussed in 

greater detail in an earlier work by Robertson 3. 
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