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1. Introduction 

Consider the following sampling problem. Sample 
units are to be selected for two designs, denoted as D i 

and D 2, with identical universes and stratifications, with 

S denoting one of the strata. The selection probabilities 
for each unit in S are generally different for the two 
designs, as are the number of units to be selected from S 
for each of the designs. The sample units are to be 
selected simultaneously for the two designs. We wish 
to maximize the overlap of the sample units, that is to 
select the sample units so that: 

There are a predetermined number of units, n j ,  

selected from S for the Dj sample, j= 1,2. (1.1) 

The i-th unit in S is selected for the Dj sample 

with its assigned probability, denoted rcij. (1.2) 

The expected value for the number of sample units 
common to the two designs is maximized. (1.3) 

In this paper we demonstrate how the two- 
dimensional controlled selection procedure of Causey, 
Cox and Ernst (1985) can be used to satisfy these 
conditions and the additional condition that: 

The number of sample units in common to any D l 

and D 2 samples is always within one of the 

maximum expected value. (1.4) 

Overlap maximization has generally been used as a 
technique to reduce data collection costs, such as the 
costs associated with the hiring of new interviewers 
when the units being overlapped are primary sampling 
units (PSUs), that is geographic areas, or the additional 
costs of an initial interview when the units being 
overlapped are ultimate sampling units (USUs). Most 
of the previous work on maximizing the overlap of 
sample units considered the case when the two sets of 
sample units are PSUs that must be chosen sequentially, 
as is the case when the second design is a redesign of 
the first design. The number of sample PSUs chosen 
from each stratum is generally small. This problem was 
first studied by Keyfitz (1951), who presented an 
overlap procedure for one unit per stratum designs in 

the special case when the initial and new strata are 
identical, with only the selection probabilities changing. 
Keyfitz's procedure is optimal in the sense of actually 
producing the maximal expected overlap. (Although 
we refer to all the overlap procedures as procedures for 
maximizing the overlap, many of these procedures do 
not actually produce the maximal expected overlap, but 
instead merely increase the expected overlap to varying 
degrees in comparison with independent selection of the 
two samples.) For the more general one unit per 
stratum problem, Perkins (1970), and Kish and Scott 
(1971) presented procedures that are not optimal. 
Causey, Cox and Ernst (1985), Ernst (1986), and Ernst 
and Ikeda (1995) presented linear programming 
procedures for overlap maximization under very 
general conditions. The Causey, Cox and Ernst 
procedure always yields an optimal overlap, while the 
other two linear programming procedures generally 
produce a high, although not necessarily optimal, 
overlap. These linear programming procedures impose 
no theoretical restrictions on changes in strata 
definitions or number of units per stratum, but the size 
of the linear programming problem increases so rapidly 
as the number of sample PSUs per stratum increases 
that these procedures are generally operationally 
feasible to implement only when the number of sample 
PSUs per stratum is very small. This operational 
problem is most severe for the Causey, Cox and Ernst 
procedure, which is one reason that the other two linear 
programming procedures have been used even though 
they do not guarantee an optimal overlap. 

Overlap procedures have also been used for 
sequential selection at the ultimate sampling unit (USU) 
level, where the number of the sample units per stratum 
can in some case be fairly large and for which, 
consequently, none of the above procedures are usable. 
Brewer, Early and Joyce (1972), Brick, Morganstein 
and Wolter (1987), Gilliland (1984), and Ernst (1995b) 
present overlap procedures that are usable under these 
conditions. These first two of these procedures are 
optimal but do not guarantee a fixed sample size, while 
the opposite is true for the other two procedures. 

In certain overlap applications it is possible to 
choose the samples for the two designs simultaneously. 
For example, the Bureau of Labor Statistics recently 
planned to select new sample establishments from 
industry × size class strata for the governments samples 
for two compensation surveys, the Economic Cost 
Index (ECI) and the Occupational Compensation 
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Surveys Program (OCSP). To reduce interviewing 
expenses we wanted the two surveys to have as many 
sample establishments in common as possible. Since 
ECI has a much smaller sample than OCSP we actually 
wanted an ultimate form of overlap, that is for the ECI 
governments sample to be a subsample of the OCSP 
governments sample. In fact, a special case of (1.1)- 
(1.4), which generally applies in this application, occurs 
when zri2 < 7~il for all units in S, in which case, as we 

will show, (1.3), (1.4)can be replaced with the more 
stringent requirement that: 

Each D 2 sample unit in S is a D l sample unit. (1.5) 

Previously, Ernst (1996) presented an optimal 
solution to the overlap problem in the context of 
simultaneous selection under different conditions than 
considered here. That solution is limited to one unit per 
stratum designs, in contrast to the procedure in this 
paper which has no restriction on the number of sample 
units in a stratum. On the other hand, the procedure in 
Ernst (1996) applies when the two designs have 
different stratifications, while the procedure in the 
current paper requires that the stratifications be 
identical to insure that the optimal overlap is attained. 
The procedure of Ernst (1996) also uses the controlled 
selection algorithm of Causey, Cox and Ernst (1985), 
although in a different way than in the current paper. 
Pruhs (1989) had earlier developed a solution to the 
overlap problem considered in Ernst (1996) using a 
much more complex graph theory approach. 

In Section 2 we describe the basic idea of the 
current procedure and list a set of requirements that are 
sufficient to satisfy (1.1-1.4). In Section 3 the 
controlled selection procedure of Causey, Cox, and 
Ernst (1985) is presented and a solution to our overlap 
problem is obtained which satisfies the set of 
requirements listed in Section 2. 

In Section 4 it is shown how the procedure of 
Sections 2 and 3 can be easily modified to solve the 
problem of minimizing the expected overlap of sample 
units under the same assumptions. Overlap 
minimization has typically been used to reduce 
respondent burden. Most, but not all, of the overlap 
maximization procedures previously mentioned can 
also be used to minimize overlap. In addition, Perry, 
Burt and Iwig (1993) presented a different approach 
than presented here to the minimization of overlap 
when the samples are selected simultaneously. Their 
approach has the advantage of not being restricted to 
two designs. However, their method is not optimal and 
assumes equal probability of selection within a stratum. 

Due to space limitations, an illustrative example is 
omitted here as have the final two sections of the paper, 
one which describes how our procedure can be 

modified, although with loss of optimality, for use when 
the strata definitions are not identical in the two 
designs, and the other which presents the results of the 
application of our procedure to the selection of the ECI 
and OCSP government samples. The complete paper is 
available from the author. 

2. Outline of Overlap Procedure and List of Set of 
Conditions to Be Satisfied 

The basic idea of controlled selection is as follows. 
First, a two-dimensional, real valued, tabular array, 
S = (s~/), is constructed which specifies the probability 

and expected value conditions that must be satisfied for 
the particular problem. (A tabular array is one in which 
the final row and final column are marginal values, that 
is each entry in a particular column in the last row is the 
sum of the other entries in that column and each entry 
in a particular row of the last column is the sum of the 
other entries in that row.) The array S is known as the 
controlled selection problem. Next, a sequence of 
integer valued, tabular arrays, M1 = (~/l) ,  

M 2 = (m/j2) ..... M l = (mijl), with the same number of 

rows and columns as S, and associated probabilities, 
Pl .. . . .  Pl, are constructed which satisfy certain 
conditions. This set of integer valued arrays and 
probabilities constitute a solution to the controlled 
selection problem S. Finally, a random array, 
M = (mi j ) ,  is then chosen from among these l arrays 

using the indicated probabilities. The selected array 
determines the sample allocation. The set of integer 
valued arrays and their associated probabilities 
guarantee the expected value conditions specified by S 
are satisfied. 

We proceed to describe S and M 1 ..... M l for the 

procedure of this paper in greater detail. In our 
application of controlled selection, each stratum 
corresponds to a separate controlled selection problem 
and S is a (N + 1)x5 array, where N is the number of 

units in the stratum universe. Thus, there are N internal 
rows and 4 internal columns in S. Each internal row of 
the selected array corresponds to a unit in the stratum 
universe. In the i-th internal row, the first element is 
the probability that the i-th unit is in the D l sample 

only; the second element is the probability that it is in 
the D 2 sample only; the third element is the probability 

that it is in both samples; and the fourth element is the 
probability that it is in neither sample. The marginals in 
the final column of the N internal rows are all 1 since 
each unit must fall in exactly one of the four categories. 
The marginals in the first 4 columns of the final row are 
the expected number of units in the corresponding 
category, and the grand total is N. 
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We next explain how the values for the internal 
elements of S are computed. The key value is si3, the 

probability that the i-th unit is in both samples. Let 

si3 = min{zril '/t'i2 }, (2.1) 

s/j = zrij - si3, j = 1,2, (2.2) 

3 
Sin = 1 -  Z sii (2.3) 

j - !  

Now (2.1) is motivated by (1.2) and (1.3). That is, 
if (1.2) held then the probability that the i-th unit is in 
both samples clearly could not exceed either tril or 

zri2, and therefore (1.3) would be satisfied if the 

probability that unit i is in both samples equals si3 for 

each i. Also (2.2) is required by (1.2), that is the 
probability that the i-th unit is in the Dj sample only is 

simply the probability that it is in the Dj sample minus 

the probability that is in both samples. Finally, (2.3) is 
required by the fact that for each sample, every unit 
must be in exactly one of the four categories determined 
by the four internal columns. 

Note that by (2.1), (2.2), all the entries in the 
second column of S are 0 in the special case when 
/17i2 --< ~il for all units in S, and hence each D 2 sample 

unit in S will be a D l sample unit, as required by (1.5), 

provided the sampling procedure preserves all the 
probability and expected value conditions specified in 
S. 

We next describe the conditions that must be 
satisfied by the sequence of integer valued arrays, 
M 1 ..... M t, and associated probabilities, p~ ..... Pl,  

which determine the sample allocation. In each internal 
row of each of these arrays, one of the four internal 
columns has the value 1 and the other three have the 
value 0o A 1 in the first column indicates that the unit is 
only in the D 1 sample; a 1 in the second column 

indicates that the unit is only in the D 2 sample; a 1 in 

the third column indicates that the unit is in both 
samples; and a 1 in the fourth column indicates that the 
unit is in neither sample. The probability mechanism 
for selecting the integer valued array guarantees, as will 
be shown in the next section, that for each unit a 1 
appears in each column with the correct probability, 
that is the probability determined by S. 

We next list a set of requirements which, if met by 
the random array M, are sufficient to satisfy (1.1)-(1.4). 
Note that (1.2) will be satisfied if 

P ( m  U = 1) + P(mi3 = 1) = s~i + si3 = zc 6 , 

i=1 ..... N, j = 1,20 (2.4) 

In addition, (1.3) will be satisfied if we also have 

P(mi3 = 1) = si3, i = 1 . . . . .  N .  (2.5) 

Consequently, if we can establish that 

l 
E ( m i i )  = Z Pkmijk = sij, 

k=l 
i = 1  ..... N + I ,  j = l  .... ,5, (2.6) 

then (1.2) and (1.3) hold, since (2.6) implies (2.4), 
(2.5). 

To additionally establish (1.1) we need only show 
that 

m(N+l)j k 4- m(N+l)3 k = n j ,  j = 1,2, k = 1 ..... I. (2.7) 

Finally, to establish (1.4) it suffices to show that 

imiik -- sij I < 1, i = 1 . . . . .  N + 1, 
I 

j = l  ..... 5, k = l  ..... l ,  (2.8) 

since then, in particular, 

Im(N+l)3 k --S(N+I)31 < 1, k = 1 ..... l, 

where S(N+I)3 is the maximum expected number of 

units in common to the two samples and m(N+l)3 k is the 

number of units in common to the k-th possible sample. 
Also observe that in the special case when 

i2 <- 7t'il for all units in S, then si2 -- O, j = 1 . . . . .  N .  

Consequently, by (2.6). (2.8), we would have 
mi2 k = 0 ,  i = 1 . . . . .  N ,  k = 1 . . . . .  l ,  and hence (1.5) 

would follow. 
We demonstrate in the next section how the 

controlled selection procedure of Causey, Cox and 
Ernst can be used to establish (2.6)-(2.8) in general, 
which will complete the development of the overlap 
procedure. 

3. Completion of the Overlap Algorithm 

The concept of controlled selection was first 
developed by Goodman and Kish (1950), but they did 
not present a general algorithm for solving such 
problems. In Causey, Cox and Ernst (1985), an 
algorithm for obtaining a solution to the controlled 
selection problem was obtained. We demonstrate here 
how their solution can be used to complete the 
algorithm of this paper, that is to construct a finite set of 
(N + 1)x5 nonnegative, integer valued, tabular arrays, 
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M I ..... M t, and associated probabilities, Pl . . . . .  Pl,  

satisfying (2.6)-(2.8). 
The discussion of controlled selection will be 

limited to the two-dimensional problem. Although the 
concept can be generalized to higher dimensions, 
Causey, Cox and Ernst (1985) proved that solutions to 
controlled selection problems do not always exist for 
dimensions greater than two° 

The controlled selection procedure of Causey, Cox 
and Ernst is built upon the theory of controlled 
rounding developed by Cox and Ernst (1982). In 
general, a controlled rounding of an (N + 1) x (M + 1) 

tabular array S = (sij) to a positive integer base b is an 

(N + 1) × (M + 1) tabular array M = (mij) for which 

mij = L s , j / b i b  or (Ls(jl b j +  1)b for all ij, where LxJ 

denotes the greatest integer not exceeding x. A zero- 
restricted controlled rounding to a base b is a controlled 
rounding that satisfies the additional condition that 
mij = s(i whenever sij is an integral multiple of b. If no 

base is specified, then base 1 is understood. 
By modeling the controlled rounding problem as a 

transportation problem, Cox and Ernst (1982) obtained 
a constructive proof that a zero-restricted controlled 
rounding exists for every two-dimensional array. Thus, 
while conventional rounding of a tabular array 
commonly results in an array that is no longer additive, 
this result shows that is possible to always preserve 
additivity i f  the original values are allowed to be 
rounded either up or down. 

With S as above, a solution to the controlled 
selection problem for this array is a finite sequence of 
(N + 1)x(M + 1) tabular arrays, M l = (miil), 

M2 = ( m t j 2 )  . . . . .  Mt = (~j/), and associated 

probabilities, Pl ..... Pt, satisfying: 

M k is a zero-restricted controlled rounding of S 

for all k = 1 ..... l, (3.1) 
l 

~_, Pk -- 1, (3.2) 
k=l 

l 

Z m i j k P k = S i j ,  i = 1  ..... N + I ,  j = l  ..... M + I .  
k=l  

(3.3) 

If S arises from a sampling problem for which sij is the 

expected number of sample units selected in cell (i, j ) ,  

and the actual number selected in each cell is 
determined by choosing one of the M k's  with its 

associated probability, then by (3.1) the deviation of sij 

from the number of sample units actually selected from 
cell (i, j )  is less than 1 in absolute value, whether (i, j )  

is an internal cell or a total cell. By (3.2), (3.3) the 
expected number of sample units selected is sijo 

Consequently, with S as defined in Section 2, a solution 
to the controlled selection problem satisfies (2.6), (2.8). 

Although, as noted, any solution to a controlled 
selection problem satisfies (2.6), (2.8), it requires a 
great deal more work to establish (2.7), including an 
understanding of how solutions to controlled selection 
problems are obtained using the Causey Cox and Ernst 
(1985) algorithm, which we proceed to present. 

Causey Cox and Ernst obtained a solution to the 
controlled problem S by means of the following 
recursive computation of the sequences M~ ..... M t and 

Pl ..... Pl ,  along with a recursive computation of a 

sequence of real valued (N + 1) × (M + 1) tabular arrays 

A k=(a i j  k ) ,  k = l  ..... lo Let A l = S ~  while for k > l  

we define Mk, Pk, Ak+~ in terms of Ak as follows. 

M k is any zero-restricted controlled rounding of A k- 

To define Pk, first let 

i I 

dk : max{lm~j k -a6k 1" i=  1 ..... N + 1, j =  1 ..... M + 1}, 

(3.4) 

and then let 

Pk = ( 1 - d k )  if k = l ,  
k - I  

= ( 1 - ~ F . , p i ) ( 1 - d k )  if k > l .  
i=1 

(3.5) 

If d k > 0 then define Ak+l by letting for all ij, 

aij(k+l ) = mij k + (aij k -- mij k ) /dl¢. (3.6) 

It is established in Causey, Cox and Ernst (1985) that 
eventually there is an integer I for which d t = 0 and that 

this terminates the algorithm; that is, M l ..... M t and 

Pl ..... Pt constitute a solution to the controlled 

selection problem satisfying (3.1)-(3.3). It is also 
established in their paper that for all i, j , k ,  

Ls,,d<- aijk < Ls,,l+ 1, and auk = s U if sij is an integer. 

(3.7) 

Now to obtain (2.7), first note that for the array S 
defined by (2.1)-(2.3) we have by (2.2) that 

S(N+I)j at- S(N+I)3 = nj,  j = 1,2. (3.8) 

Unfortunately, (3.8) is not sufficient to guarantee that 
all solutions to the controlled selection problem S 
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obtained by the algorithm just described satisfy (2.7). 
A particular solution to the controlled selection problem 
that does satisfy (2.7) can be obtained, however, using 
the following approach. We first demonstrate that it is 
sufficient to show that if 

a(N+l)jk + a(N+l)3k = nj, j = 1,2, (3.9) 

for a particular k, then there exists a zero-restricted 
controlled rounding M k of A k for which 

m(N+l)j  k +m(N+l)3  k = n j ,  j =  1,2. (3.10) 

This is sufficient because (3.9) holds for k = 1 by (3.8), 
while if (3.9) holds for any positive integer k and M k 

satisfies (3.10) for that value of k, then (3.9) holds for 
k + l  by (3.6); consequently by recursion we could 
obtain a zero-restricted controlled rounding M k of A k 

satisfying (3.10) for each k, and thus (2.7) would hold 
for this set of arrays. 

To establish that (3.9) implies (3.10), we observe 
that by (3.9) and the fact that 

a(N+l)5 k = S ( N + I ) 5  = N, which is an integer; (3.11) 

it follows that the fractional parts of a(N+l) j  k , j = 1,2, 

are the same, as are the fractional parts of a(N+l) j  k , 

j = 3 , 4 .  Furthermore, one of two possible sets of 

additional conditions must hold. The first possibility is 
that aCN+l)j k is an integer for all j = 1,2,3,4. In this 

case (3.10) holds for any zero-restricted controlled 
rounding of Ak. 

In the second case, which is assumed throughout 
the remainder of this section, none of a~u+i)j k, 

j =  1,2,3,4, are integers, but the fractional part of 

a(N+l)j k , j = 1,2 plus the fractional part of a(O+l)j  k , 

= 3,4 is 1. In this case m(N+l)jk = La(U+l)jk J + 1 for J 
exactly two j ' s  among j = 1,2,3,4 for every zero- 

restricted controlled rounding M k of A k , since 
4 4 

N = m(u+l)5 k = Z m(S+l)jk = Z  a(S+l)jk ; 
1=I j=l 

and that for M k to satisfy (3.10) it is sufficient that 

additionally either 

or  

m~N+~)jk = La(u+l)jk J, j = 1,2, 

m(N+l)j k = La(N+~)jk ]+ l, j = 1,2. 

(3.12) 

(3.13) 

To show that we can obtain a zero-restricted 
controlled rounding M k of A k satisfying (3.12) or 

(3.13) we proceed as follows° It is established in Cox 
and Ernst (1982) that a linear programming problem 
which minimizes an objective function of the form 

N+I 5 

2Xci xo , 
i=i j=l 

(3.14) 

where the xij's are variables and the c U's are constants, 

subject to the constraints 

N 

Z x i j  = X(N+l)j, j = 1 ..... 5, (3.15) 
i=1 
4 

~_a Xij "- Xi5' i = 1 ..... N + 1, (3.16) 
j=l 

LaokJ<xij <LaijkJ+l, i = 1  ..... N + I ,  j = l  ..... 5, 

(3.17) 
x~i = ai# if auk is an integer, i = 1 ..... N + 1, 

j =  ~ .... ,5, (3.~8) 

can be transformed into a transportation problem for 
which there is an integer valued solution M k , that is 

M k is a zero-restricted controlled rounding of A k . In 

particular, since A k also satisfies (3.15)-(3.18) we have 

N+I 5 N+I 5 

Z ZcijmUk < Z Zcijaijk • 
i=1 j=l i=1 j=l 

(3.19) 

We will show that with the appropriate choice of 
objective function (3.14), a zero-restricted controlled 
rounding M k of A k which is a solution to the linear 

programming problem (3.14)-(3.18) will satisfy (3.12) 
or (3.13) and hence a solution to the controlled 
selection problem S that satisfies (2.7) can be obtained. 

There are three cases to consider. First if 

2 2 

Za(N+,)# < ~La~u+,,j~]+', 
j=l j=l 

(3.20) 

then by (3.19) a controlled rounding obtained by 
2 

minimizing ]~_xCN+l)j subject to (3.15-3.18) will 
j=l 

satisfy (3.12). Similarly, if the inequality in (3.20) is 
reversed, a controlled rounding satisfying (3.13) can be 

2 

obtained by minimizing - ~ x ~ N + l ) j ,  which is 
j=l 
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2 

equivalent to maximizing ~x~N+l)j • Finally, if the 
j=l 

inequality in (3.20) is an equality instead then, since 
a(N+l)l k is not an integer, we have by (2.2), (3.7) that 

0 < ai,lk < 1 for some i* with 1 < i* < N .  In addition, 

we have that 0 < ai, j ,  k < 1 for some j* e {2,3,4}, since 

ai,5k = 1 by (3o7). Furthermore, j * ~  2 since ai,2k =0  

by (2.2), (3.7). Then consider the (N + 1)×5 tabular 
p p t 

array A k = (a~i k) with internal elements ai, lk = ail k - E, 
P 

a i , j ,  k = a i , j ,  k + E, a(i k = a(i k for all other ij, where 

e > 0 is sufficiently small that the tabular arrays A~ 

and A k have the same set of zero-restricted controlled 
2 2 

roundings. Since a(N+l).jk < a(N+l)j k +1, a 
j=l j=l  

zero-restricted controlled rounding of A~ and hence of 

A k can be obtained which satisfies (3.12). 

4. Minimization of Overlap 

Sometimes it is considered desirable to minimize 
the expected number of sample units in S common to 
two designs rather than maximize it. The procedure 
described in Sections 2 and 3 can very easily be 
modified to minimize overlap. Simply redefine 
Si3 -- max{/ril + ~ i2  -- 1, 0}. The remainder of the 
procedure is identical to the maximization procedure. 

The rationale for the definition of si3 in the 

minimization case is analogous to the rationale for the 
definition of si3 in the maximization case presented in 

Section 2. For while min{rril ' 7t'i2 } is the maximum 

possible value for the probability that the i-th unit is in 
sample for both designs, the minimum possible value 
for this probability is m a x { ~ i l  + /Zi2  - l, 0} .  
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