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Abstract  

The challenge of the problem of data disclosure 
avoidance lies in finding a compromise between pro- 
tecting respondents'  identities while providing the 
analyst with useful information. Statistics to be 
preserved most commonly include, means, variances 
and covariances by domains of the classification vari- 
ables; regression coefficients; independence and mea- 
sures of association; and parameters of loglinear 
and logistic regression models. In this paper, a lin- 
ear transformation of the original data is presented, 
which preserves means, covariances, and eventually 
higher order moments. 

Introduction 

Several methods of disclosure limitation have been 
proposed in the literature. Cell supression was in- 
vestigated by Greenberg and Zayatz [10], Cox [3], 
[4], and Carvalho et al. [1]. It involves the elimina- 
tion of records at high risk of identification. When 
data is being summarized in cross-classification con- 
tingency tables, cells with few counts are deleted but 
the marginal totals of contingency tables are pre- 
served. Swapping observations was proposed origi- 
nally by Dalenius and Reiss [5], [6]. A variant of 
this method was implemented by the Census Bu- 
reau for the 1990 Census [12]. Rounding and trunca- 
tion methods are discussed in [11]. Data smoothing 
and imputation [15], [9] consist in releasing a sam- 
ple from a distribution with similar characteristics 
as the original data. Kim [13] proposed a method of 
addition of random noise, by which the transformed 
data mantains many of the statistical characteristics 
of the original data. Inclusion of simulated data has 
also been implemented in the past. Entire simulated 
rows are introduced to the data. Cell supression, 

*This paper  repor ts  t h e  general results research under- 
taken by the Census Bureau  staff. The views expressed are 
a t t r ibu tab le  to the au tho r  and do not necessarily reflect those 
of the Census Bureau  

random noise, and inclusion of simulated data, are 
all particular cases of matrix masking, a technique 
that  was introduced by Duncan and Pearson [8]. 

In the sequel, X will denote an n x p real valued ma- 
trix of the original data. Matrix masking involves 
the release of mapped data Y = A X B  + C for some 
matrices A, B, and C. In this paper we seek a trans- 
formation of the type Y = T X, where T is a suit- 
able m x n matrix, so that  the transformation T 
preserves means, covariance matrix, and eventually, 
depending on m, n and p, higher order moments. In 
other words, 

1 m 1 n 

- - E Y i j  -- - - E X i j  and (1) 
m n 

i=1 i=1 

1 m 1 n 
- y :  - - (2) 
m n 

i=1 i=1 

j , k -  1 , . . . , p  

or equivalently, 

1 y , l m -  l X ' l n  
m n 

1 y , y _  l x ,  x 
m n 

and (3) 

(4) 

where 1~ = ( 1 , 1 , . . . ,  1)'; the subscript shall be 
omitted if it is obvious from the context. Given 
a vector u = (Ul ,U2, . . . ,u~) ' ,  Ilu[I will denote its 

2 1/2 usual ~ norm, I lu [ I -  ( ~  ui) . Methods of ran- 
dom noise are presented in section 3. While some- 
what restrictive in that  the transformation T is given 
by an n × n matrix, it offers a simple, intuitive, and 
easy to implement methodology. In section 4 the 
general case is proposed. 

2 Matrix Representat ions  

Some basic results of linear algebra are reviewed 
here. ['or a more in depth reading, see for instance 
[7], [18], [20], [19], [17]. A square matrix P is said 
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to be orthogonal  if P~P = I. Viewed as a lin- 
ear transformation,  an orthogonal matr ix produces 
a rotation of the coordinate axes, preserving there- 
fore norms and angles. If P is orthogonal, so is P ' ,  
and we have P - I  = p~. The spectral decomposition 
theorem asserts that  any symmetric matrix A can be 
expressed as A = P A P  ~, where A is a diagonal ma- 
trix of eigenvalues of A and P is an orthogonal ma- 
trix whose columns are the standardized eigenvec- 
t o r s o f A .  A n m x n m a t r i x  L, m < n  ( m > _ n ) , i s  
said to be column orthonormal  (row orthonormal) if 
A ~ A = I  ( A A  ~ = I ) .  A n y m x n m a t r i x  X, m > _ n ,  

can be represented as X -  LA1/2P  ~, where A is 
an n x n diagonal matr ix  of the eigenvalues of X~X, 
P is an n x n orthogonal matr ix of its standardized 
eigenvectors, and L is an m x n column orthonor- 
mal matr ix  whose columns consist of the n normal- 
ized eigenvectos of X X  ~ associated with the n largest 
eigenvalues of this matrix.  This is called the singular 
value decomposition theorem. For any matrix A we 
have rank[A] = rank[A']= rank[A A'] = rank[A' A]. 
For conformable matrices the nonzero eigenvalues of 
A B are the same as those of B A. In particular, if 
A is m × n column orthonormal,  then the m nonzero 
eigenvalues of A A ~ are all equal to 1. Given f~, a 
vector subspace of ~ ,  every n x I vector y can be ex- 
pressed uniquely in the form, y = u + v ,  where u E f~ 
and v E fla_, the last being the orthogonal comple- 
ment of ~2. There is a unique matrix P , ,  called the 
projection onto f~, such that  u = P, y; this matrix 
is further symmetric and idempotent.  The projec- 
tion of ~ onto ~2 ± is given by I -  Pn. If ~2 = TO[X] 
(the range of X), then Pn = X ( X ' X ) - X ' ,  where 
(X~X) - is any generalized inverse of X~X. 

3 R a n d o m  N o i s e  

The method of random noise can be viewed as a 
particular case of matr ix masking in which m, the 
number Of records of the transformed data, equals 
n, t he  number of records of the original data. Let 
E = {¢ij }nxp be matrix of random noise. Set 

Y - X + E  

Yi j  - -  x i j  + g i j .  

Which in general can be expressed as 

Y - T D X -  ( I - 2 D ) X .  

In this section we seek sufficient conditions for T D 
to satisfy ( 3 ) a n d  (4). 

3 . 1  A g e n e r a l  s o l u t i o n  

If T is orthogonal, (4) is satisfied, because 

Y ' Y  = ( T X ) ' ( T X ) =  X ' T ' T X  = X ' I X  = X ' X .  

If D is symmetric and idempotent,  thus an orthog- 
onal projection, T D = I -  2 D is orthogonal,  since 

( I  - 2D) ' ( I  - 2D) = I - 4D + 4 D ' D  = I .  

It follows that  the transformation Y - T D X  -- ( I -  
2 D ) X  satisfies (4). Assume further tha t  D is an 
orthogonal projection into a subspace of 1~. We 
have 

YI1 = X I ( I -  2 D )'1 - X ' I ,  

hince (3) also holds. 

3 . 2  A n  e x p l i c i t  s o l u t i o n  

A relatively simple technique of construction of such 
a random noise matrix is as follows. Let cil = 
ci2 . . . .  - ¢ip - ci ,  where ~ - ( c 1 , . . . , c ~ ) '  is 
an arbitrary zero mean vector, so as (1) holds. Set 
yij - xi j  - Ajci for some constants )~j to be deter- 
mined. The As that  satisfy (2) are solutions of the 
system of p(p + 1)/2 equations 

n n n 

E A j A k  C i - -  X ik  --  X i j  

i = 1  i = 1  i = 1  

By straighforward calculations such solutions are 

2 Ei =l xij ej ( x j ,  e ) 
= . = 2 . (5) 

This leads to the following 

T h e o r e m  1 For any n x 1 zero mean vector  e the 

t rans format ion  T~ given by 

• x -  

preserves  means  and covariances.  

The proof is straightforward, since equation (6) fol- 
lows directly from (5). 

Remark 1. A trivial solution of the type Aj = 0 
leaves unchanged the column X j  of X. To avoid 
trivial solutions, the vector ~ must be chosen so that  
(~ ,Xj)  # O, j = 1 , . . . , p .  If no column Xj  has a 
constant values, such choice of ¢ is always possible. 

Remark 2. Regressions performed in either set will 
clearly produce identical results provided that  no 
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quadratic term or interactions are included in the 
model. To mantain unchanged regression outcomes 
when quadratic terms or interactions are included, 
the new data must preserve third order moments as 
well. 

n n 

E YiJYit:Yit -- E xijxikxil 
i = l  i=1  

The only constraint that  the vector e must satisfy 
is ~ ¢ i  - 0. The choice o f ¢  has therefore n -  1 
"degrees of freedom". We can impose additional 
conditions to produce specific results. By a suit- 
able choice of ~, for instance, third order moments 
may be preserved if n >__ p 3 +  1; variables that  are 
positive by design may be transformed into positive 
values; the change lY i j -  x i j l -  IAjvil may also be 
controlled. This change depends on the choice of the 
vector ~. Large values of IAjl are likely to produce 
larger differences. Since the values of the )~s depend 
on the choice of e, a good choice of this vector may 
increase the value of a particular )~j, but this is not 
necessarily possible for all the )~s altogether (unless 
the variables Xj are highly correlated), because this 
method does not provide a different choice of e for 
each column of X. Section 3.4 deals with the rela- 
tionship between ~ and A. Later in section 4.2 a 
more general transformation is discussed, which al- 
lows for separate effects in each of the variables. 

3.3 Categor ica l  variables  

Theorem 1 can readily be extended to the case in 
which the data set also contains categorical vari- 
ables. Suppose that  the data set contains q discrete 
variables, 1/1, V2,... Vq in addition to the p numerical 
variables X1, X2, . . .  Xp. Let r be the number of cells 
in the cross-classification table by the q categorical 
variables. By partitioning the data into r subsets 
and applying this method to each subgroup, the last 
results will apply to each of the subdomians. In ma- 
tricial form, suppose that  m8 is the number of ob- 
servations in cell s, s = 1 , . . . ,  r. For any cell s with 
m, > 2 select a random vector e, = ( ¢ s l , . . . ,  ~,,ms)' 
as before and apply the transformation T , , X *  as 
in Theorem 1, where X* is the subset of observa- 
tions in cell s restricted to the numerical variables 
of the data set. Finally repeat this procedure to all 
cells with counts greater than 1. Clearly Theorem 1 
applies in each transformed cell. To construct this 
mapping first sort X by the set of categorical vari- 

ables and secondly construct the matrix 

D V  

,~ 0 0 . . .  0 
D,~ 0 . . . 0 

• . • 

0 0 0 . . .  D ~  

where Des are m., by m. matrices defined by (6). 
This leads to 

T h e o r e m  2 If a data set contains p numerical vari- 
ables X1, X2, . . . , Xp, and q categorical variables 
V1, V2,.. . ,  Vq, then the transformation 

Y - T , X  - ( I -  2 D . ) X  

preserves means and covariance matrices in every 
domain defined by levels of the categorical variables. 
In particular, results of regressions and analyses of 
covariance are preserved. 

3.4 Geometric Approach 

Consider the n x p matrix X as p points of ~ .  For 
a given variable Xj, (2) implies that  

n n 

- y: - o .  

i=1  i=1  

It follows that  

n 

2 2x~e~)-  (~ ~ 2 x ~ ) -  0 - , - . 

i=1  

Thus, as a point of ~n, Aj~ must be located on the 
surface of the n-dimensional sphere 5' with center 
at xj and radious ]lxj]]. To satisfy (4), ~ must lay 
in the hyperplane a passing through the origin and 
perpendicular to the vector 1. Hence, the vectors 
Aje lay in the ellipsoid generated by the intersec- 
tion of a with S. When var(xj) = 0, xj is colinear 
to the vector 1; the numerator in (5) is equal to 
zero and the intersection of a with S is restricted 
to one single point, the origin. In this case .~j - 0 
and the only solution of (1) and (2) is xj itself. As 
var(xj) increases, xj moves away from 1 and there 
are increasing values of Aj that  solve these equations. 
Given xj,  the maximum value of IAjl in the set of so- 
lutions of (1) and (2)is  reached when the numerator 
in (5) is maximum, which in turn will be achieved 
when ¢ is the projection of xj onto the plane a, 
that  is, when ¢ij = x i j -  2j, in which case £j = 2. 
It is clear that  the ¢i values that  produce a large 
change in one variable Xj should also produce large 
changes in all the other variables that  are highly cor- 
related with Xj. Variables uncorrelated with Xj, by 
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contrast, should produce only small changes. This 
suggests a more general t ransformation of the type 

Yij --  Xij  -- )~j(Xij  -- ~Cj) , 

whose solution is "~1 - -  ~ 2  . . . .  - -  ,~p - 2. Hence, 

Yij -- 2~.j -- x i j .  

By straightforward calculations it can be seen that  
the above transformation satisfies (1) and (2) and 
produces the max imum change in each of the vari- 
ables. This approach alone is not of interest, since 
the original data  can be reconstructed from the 
transformed data. There are variants of this case, 
however, which allow for large individual changes 
while preventing disclosure. This in turn requires 
proper definition of distance between t w o d a t a  sets. 

3 . 5  W e i g h t e d  d a t a  

If the records are associated with weights wi, to ac- 
count for different probabilities of selection, a similar 
procedure may be used. The weighted mean ~ and 

2 weighted variance ~w are respectively given by 

w- -  ~i~__ and ~rw= n 
1 Wi Ei=I Wi 

Choose e so that  ~ w i c i  - 0 and )~j = 
2 The previous results apply 2 E W i X i j C i / E  W i ~ i .  

also to the weighted data. The details are left to 
the reader. 

3 . 6  N o n - U n i q u e n e s s  

To provide protection from disclosure, we must in- 
sure that ,  given a transformed data Y, there are at 
least two different data  sets Xi and two transfor- 
mations T~, such that  T ~ X i  - Y. It is easy to 
see that  the inverse of T~ is T_s .  Hence, for any 
transformed matr ix  Y, if e u, u E F, is the set of all 
zero mean n-dimensional vectors, any of the matri-  
ces X ~  = T~ Y could be the one with the original 
data. 

4 T h e  g e n e r a l  case  

In this section we study a general linear transforma- 
tion Y = T X  given by an m x n matr ix T. When 
m # n, not only the values of the entries in the origi- 
nal data  are changed, but also the number of records 
is modified, providing an extra protection against 
disclosure. The transformed records have completely 
lost their identity. Matching records between these 

two matrices is meaningless, since each record in the 
transformed data is obtained as a weighted average 
of all the records of the original data. 

4 . 1  P r e l i m i n a r y  R e s u l t s  

The following results will be needed in the sequel. 

L e m m a  1 Given two n - d i m e n s i o n a l  vectors a and 

b ,  with I [a l l -  Ilbl], there is an orthogonal  m a t r i x  C 
such that  C a -  b. 

Proof. Let r2, r 3 , . . . ,  r,~ be n - 1  n-dimensional vec- 
tors such that  the system a, r 2 . . . ,  r~ is orthogonal 
and let A be the orthogonal matrix whose columns 
are these n vectors. Define B in a similar way, for 
another orthogonal system b, s2 , . . ,  s,~. It follows 
that  

IIo11  

A la - B i b  - 

0 

The lemma holds with C - B A '  0 

L e m m a  2 Given 2 vectors, a ( n  x 1) and b ( m  x 
1), with n <_ m and I l a l l -  Ilbll, there is a co lumn 

or thonorma l  m x n ma t r i x  H such that  H a -  b. 

Proof. Let A be an arbitrary m x n column orthonor- 
mal matr ix and let z - Aa.  Since 

Ilzll - z ' z  - a ' A ' A a  - [ l a [ [  2 - J J b [ [  2 , 

By Lemma 1 there is an orthogonal matr ix  C such 
that  Cz - b. The lemma holds for H - CA.  Ul 

L e m m a 3  Let p < m < n. For any n x p col- 

u m n  o r t h o n o r m a l  m a t r i x  I, there is an m x n row 

o r t h o n o r m a l  m a t r i x  H such that  H L is co lumn or- 

thonormal .  The ma t r i x  H can f u r t h e r  be chosen so 

that  H t a -  b f o r  any two given conformable  vectors 

a and b ,  provided that  ] la]]-  ]]bl]. 

Proof. Since p ___ m, it is possible to chose an or- 
thogonal system of n x 1 vectors vl, v 2 , . . .  , Vn such 
that  the last n -  m vectors V n - m + l , " " ,  Vn are or- 
thogonal to the p column vectors of L. Denote by A 
the m x n matr ix  whose first m columns form the 
m-dimensional identity matrix and the last n -  m 
columns are zero, A - (Ira 0), and let P be the 
orthogonal matr ix  whose columns are the n vectors 
vi. Define H -  AP ' .  It must be proved that  H L  is 
column orthonormal.  For this, 

( H L ) ' ( H L )  - L ' H ' H L -  ( L ' P ) ( A ' A ) ( P '  L) .  

448 



Note that  

A ~ A _  ( In O )  
0 0 ' 

By the selection of the column vectors of P, the 
last n -  m columns of P, being otrhogonal to all 
p row vectors of L', we conclude that the last n -  m 
columns of L ' P  are zero. Therefore, 

( L ' P ) ( A ' A ) ( P ' L ) -  ( L I p ) ( P ' L )  - I 

as we wanted to prove. Given now any two vectors 
a and b with I la l l -  Ilbll, let H ' a -  z. 

z / z  -- a ' H  H ' a -  a ' a -  llall 2 - I l b l l  2 

and by Lemma 1 there is an orthogonal matrix C 
such that  C z -  b. Then choose H1 - H C. V1 

4 . 2  G e n e r a l  T r a n s f o r m a t i o n  

In this section, a matrix T satisfying (3) and (4), 
which is not unique is found. The non-uniqueness 
of T is essential to prevent the reconstruction of X 
from Y. 

T h e o r e m  3 Let p <_ n, m. For any n x p matrix 
X of rank p there is an m x n matrix T such that 
the transformation Y -  T X  satisfies (3) and (~). 

Proof. Suppose first that  m >_ n. Let H be 
an m x n column orthonormal matrix such that 
H(n-1/21n)  - m-1/21m, whose existence is guar- 
anteed by Lemma 2. Let T - v / m / n H .  Thus, 
T ' T  - ( m / n ) I  and (4)readi ly  follows. On the 
other hand, 

n n T~ 1,~ - m T I T  1~ - m l m .  
r n  m 

Hence, 

1 y ' l m  - I X ' T '  lm - l x '  1~ 
m m n 

and (3) also holds. Suppose now that m < n. By 
the singular value decomposition theorem, X can be 
expressed as X - L A1/2P I, where P is the orthogo- 
nal matrix of eigenvalues of X 'X,  A is the diagonal 
matrix of its eigenvectors and L is column orthonor- 
mal. Let H be as in Lemma3 ,  i.e. H L i s  column 

• orthonormal and H / (m -1/2 lm) - n - 1 / 2  ln. De- 
fine T - ~ n ' / m  H. By straightforward calculations, 
similar to those in the previous case, it can be seen 
that  (3) and (4) are satisfied for this T. [i] 
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