
V A R I A N C E  E S T I M A T I O N  F O R  P U B L I C  U S E  F I L E S  U N D E R  
C O N F I D E N T I A L I T Y  C O N S T R A I N T S  

Wesley Yung, Statistics Canada 
R.H. Coats Building, 3-B, Tunney's Pasture, Ottawa, Ontario, KIA 0T6 

K e y  Words:  Confident ia l i ty;  Publ i c  use files; 
Variance  e s t i m a t i o n  

using data from Statistics Canada's National Popu- 
lation Health Survey, are presented in section 5. 

1. Introduction 

Many of Statistics Canada's surveys produce a Pub- 
lic Use Micro-data File (PUMF) which is made avail- 
able to analysts wishing to perform their own anal- 
ysis of Statistics Canada data. On these micro- 
data files, each record represents a sampled ele- 
ment (business, household, etc...) and includes a 
weight which usually incorporates adjustments for 
nonresponse and benchmarking. However, as part 
of disclosure avoidance procedures, design informa- 
tion such as stratum or cluster identifiers are not 
normally included oil the PUMF. In the absence of 
this design information, users of Statistics Canada's 
PUMF's are unable to calculate valid design-based 
variance estimators. 

C~lrrently, users are informed of sampling variabil- 
ity by means of 'Approximate Sampling Variability 
Tables'. These tables give an approximate coefficient 
of variation (CV) for estimates of totals, ratios and 
proportions for categorical variables. Unfortunately, 
these tables can not be used to obtain CV's for con- 
tim~ous variables or for complex statistics such as 
estimated regression parameters. As well, this ap- 
proach, in use since the 1970's, is now felt to be 
unsatisfactory for both ease of use and statistical 
i ' e a ~ l o I i s .  

In this paper, the use of the bootstrap method is 
proposed as a solution to the problem of estimating 
valid variance estimates from PUMF's while still re- 
specting confidentiality constraints. The bootstrap 
method can be used to calculate variance estimates 
for totals, ratios and proportions for categorical and 
continuous variables, as well as for complex statistics 
s~mh as regression coefficients and quantiles. In sec- 
tion 2, the construction of the approximate sampling 
variability tables and consequences of their construc- 
tion are discussed. Alternative methods investigated 
at Statistics Canada are presented in section 3 while 
the proposed bootstrap method is presented in sec- 
tion 4. Comparisons of the proposed method with 
the approximate sampling variability table method, 

0 Approximate Sampling Variability 
Tables 

Approximate sampling variability tables, or CV 
look-up tables, have been used for many years as a 
means of informing micro-data file users of sampling 
variability. Typically, these tables are produced at 
both the national and provincial levels and occa- 
sionally at sub-provincial levels. For each table, a 
set of approximately 30 key categorical variables is 
identified and exact variances are calculated for each 
response category cross-classified by age groups and 
sex. As well, variances are calculated under a simple 
random sample design and design effects (DEFF's) 
are obtained for each combination of response cate- 
gory, age group and sex. The 75 th percentile of these 
DEFF's  is then used as a representative DEFF for 
use in preparing the CV look-up tables. Use of tile 
75 th percentile means that the estimated CV will be 
an overestimate 75% of the time and an underesti- 
mate the remainder of the time. 

Users of Statistics Canada's PUMF's  have ex- 
pressed a wide range of views concerning the 11se of 
the CV look-up tables. Unsophisticated users do not 
understand how to use the tables and, as a reslflt, 
tend not to use them. Others want only an easy pro- 
cedure to deterinine the releasability of an estimate: 
releasable, qualified, or not releasable. Sophisticated 
users find the tables neither detailed enough nor ad- 
equate for complex analyses such as linear or logistic 
regression analyses. Still others find thetn burden- 
some because it is a manual procedure amid they have 
many estimates for which they require CV's. In sum- 
mary, it appears that there are two distinct groups 
of users: 

1. Basic analysts for whom the CV look-ltp tables 
are appropriate (if and when they use then l), 

2. Sophisticated analysts who find tile CV look-ltp 
tables burdensome and/or  inadequate. 

For the first group of users, it would be desirable to 
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find a more automated method to obtain the approx- 
imate CV's, while for the second group a method for 
the analyst to calculate a design valid variance esti- 

mator is desired. 

3. A l t e r n a t i v e  M e t h o d s  

At Statistics Canada, two alternative methods have 
been investigated as solutions to the PUMF variance 
estimation problem. The first approach utilizes the 
Generalized Variance Function (GVF) approach of 
Wolter (1985) while the second approach uses the 
jackknife variance estimator for a stratified multi- 
stage design in conjunction with collapsing of design 
strata  and clusters. 

3.1 G e n e r a l i z e d  Variance  Funct ions  

The method of generalized variance functions uses 
a mathematical  model to describe the squared CV 
of a survey estimator and its expectation. Possible 
models include 

C y  2 = c~ + f l / x ,  

and 

C V  2 = c~ + f l / x  + . y / x  2 

C V  2 : (Ot "t- f i X  n t- - y X 2 )  - 1  . 

Wolter (1985) notes that  there is very little theo- 
retical justification for any of the models presented 
above. For more on the choice of models, the reader 
is referred to Wolter (1985). To obtain estimates of 
c~, fl and q,, one would calculate many estimates of 
survey variables, )(i, and their corresponding CV's 
and then using ordinary or weighted least squares, 
obtain the estimates &, fl and -~. Assuming the first 
model was chosen, an estimate of the CV of a survey 
statistic 1~ is then obtained as 

GAy ~ _ ~ + ~/?: 

Although the GVF method appears to be a pos- 
sible replacement for the CV look-up tables, it still 
suffers from some of the same problems experienced 
by the look-up tables. For the basic analysts, the 
GVF method provides an easy and somewhat auto- 
mated method of obtaining approximate CV's. Un- 
fortunately, attempts to develop GVF techniques for 
continuous variables have been largely unsuccessful. 
As well, the GVF method is not valid for complex 
statistics such as regression parameters. Even with 
these short-comings, the GVF method is in use for 
the U.S. Bureau of the Census' Survey of Income 
and Program Participation (SIPP) and has been in- 
vestigated for Statistics Canada's Survey of Labour 
and Income Dynamics (SLID). 

3.2 Co l laps ing  

For use with Statistics Canada's  National Popula- 
tion Health Survey (NPHS), Mayda et al. (1996) 
proposed using the collapsing method of Rust (1986) 
to create "super-s t rat£ '  and "super-clusters" and 
then applying the usual jackknife variance estima- 
tor on the super-strata and super-clusters. Follow- 
ing Rus t  (1986), design s trata  are collapsed to form 
super-strata and then the original clusters are col- 
lapsed within the super-strata. The clusters are col- 
lapsed in such a way that  the super-clusters contain 
original clusters from the same design strata. The 
super-strata and super-cluster identifiers are then in- 
cluded on the PUMF thus allowing analysts to use 
the jackknife variance estimator. This method is il- 
lustrated in Mayda et al. (1996) using data froIn 
the NPHS. Although results from their empirical 
study are encouraging, one should take care when 
collapsing s trata  and clusters within s t rata  as Val- 
liant (1995) has shown that  under certain conditions 
the balanced repeated replication (BRR) variance 
estimator can become inconsistent when s trata  are 
collapsed. It is unclear at this point whether the in- 
consistency property of the BRR extends to the jack- 
knife variance estimator, but the asymptotic eq~fiv- 
alent of the BRR and the jackknife variance esti- 
mators, as shown in Rao and Wu (1988), indicates 
that  the jackknife variance estimator may also suffer 
under collapsing. 

4.  B o o t s t r a p  V a r i a n c e  E s t i m a t i o n  

The bootstrap variance estimation method for the 
lid case has been extensively stlldied, see Eft'on 
(1982). Rao and Wu (1988) provided an extension 
to stratified multi-stage designs but covered only 
smooth statistics 0 = g(Y) .  The design consid- 
ered by Rao and Wu (1988), and in this paper, as- 
sumes L design s t rata  with Nh clusters in the h th  

stratum. Within the h th  stratum, nh(>_ 2) chxsters 
are selected and further subsampling within selected 
clusters is performed according to some probability 
sampling design. Although the subsampling is not 
specified, it is assumed that  there is unbiased estilna- 
tion of cluster totals, Yh~, h = 1 , . . . ,  L; i = 1 , . . . ,  nh. 
From the survey design, design weights, Whik., associ- 
ated with the (hik) th sampled element are obtained. 
Also associated with the (hik) th sampled element is 
the variable of interest, Yhi~.. An estimator of the 
total Y is given by 

9= ~ wh~kYh~k (4.1) 
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where s denotes the sampled elements. 
Under this design, Rao, Wu and Yue (1992) gen- 

eralized the Rao-Wu bootstrap to cover non-smooth 
statistics as well as smooth statistics. To calculate a 
bootstrap variance estimator for 0 - g(])), where 1) 
is given by equation (4.1), the Rao-Wu-Yue method 
is as follows: 

i) Independently, in each stratum, select a simple 
random sample of mh clusters with replacement 
from the nh sample clusters. 

ii) Let m,~i be the number of times the (hi)  th clus- 
ter is selected ( ~  m~ - mh). Define the boot- 
strap weights as 

Whi k -- 
1 - 'm---A--h 

n h - - 1  + (4.2) 

n h -- 1 Tnh?Tthi Whik.  

If the size of the simple random sample, m h ,  is 
chosen to be less than or equal to nh -- 1, then 
the bootstrap weights, w~ik. , will all be positive. 

iii) Calculate 0", the bootstrap estimator of 0, using 
the bootstrap weights, w~.~:k, in the formula for 

iv) Independently replicate steps (i) to (iii) a large 
number of times, B, and calculate the corre- 

^ 0*  sponding estimates, 0~1),...,  (B). 

The bootstrap variance estimator for 0 is then given 
by 

1 ^ 2 

b 

^, ~, 
where 0(.) - (l/B)}--~b (b)" 

While Rao, Wu and Yue (1992) have considered 
only the design weights, Whik, they note that  the de- 
sign weights are often subjected to adjustments such 
as poststratification or generalized regression to en- 
sure consistency to known population totals. For 
example, suppose population totals for age groups 
and race groups are known but not the individual 
age-race group totals. In terms of a two-way table, 
the marginal totals are known but not the individ- 
ual cell totals. The generalized regression (GREG) 
estimator can use the known population totals to 
increase the efficiency of estimates (see Huang and 
Fuller 1978; Deville and Si~rndal 1992). 

To define the GREG estimator, let Xhik be a vec- 
tor of auxiliary variables with known population to- 
tals X. The GREG estimator of Y is given by 

YR -- E (VhikYhik 
(hik)Es 

where ?lJh ik  - -  W h i k a h i k  are the regression adjusted 
weights, ahik = 1 + x T i k ~ i , - l ( x -  X) is t he  re- 

gression adjustment, X = }-~(hik)esWhikXhik, and 

~k = ~ ( h i k ) e s  Whik, Xhik, xT~k • To calculate a boot- 

strap variance estimator for ])n, the following step 
is added to the bootstrap method described above: 

iia) To obtain the bootstrap final weights, per- 
form the same weight adjustment with the de- 
sign weights, Wh~k, replaced by the bootstrap 
weights, w~i k. For example, under a regres- 
sion adjustment, the bootstrap final weights are 
given as 

~* * * (4.3) Whi k --- Whikahik  

where 

a~i k = 1 + xTik  h - l ( x  - -  J ~ * ) ,  

(hik)Es 

(4.4) 

and 
A -  ~ W~.ikXhi~xTk. (4.6) 

(hik)es 

These bootstrap final weights are then used in 
place of the bootstrap weights in step (iii). 

A commonly used value for m h  is n h -  1, in which 
case equation (4.2) reduces to 

, n h  , ( 4 . 7 )  Whi k --- Tn, hiWhik.  
n h - -  1 

If a sampled element is in a cluster that  ha~s not 
been selected in a particular bootstrap sample, then 
rn~i - 0 and the bootstrap final weight is equal to 
zero. That  is, all sampled elements in the cluster 
have bootstrap weights equal to zero and in the case 
of multiplicative weight adjustments (ex. poststrat- 
ification or regression), will also have bootstrap final 
weights equal to zero. Now, within each bootstrap 
sample at least one cluster per s tratum will have 
bootstrap final weights equal to zero, so that  mere- 
bers of the same cluster can not be identified by 
their zero weights. Unfortunately, when the boot- 
strap final weights are combined over all B boot- 
strap samples, cluster membership can be identified. 
By grouping individuals based on zero and non-zero 
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bootstrap final weights, the members of each cluster 
can be identified. Although location of the clusters 
is not given on the PUMF, use of other variables on 
the PUMF may allow users to deduce the location 
of a cluster and thus breaching confidentiality. 

This problem occurs because under a stratified 
multi-stage design, the bootstrap resamples entire 
clusters. In the case of stratified simple random 
sampling, confidentiality is conserved since the clus- 
ter consists of a single element. Unfortunately, for 
stratified multi-stage samples (commonly used in so- 
cial surveys), the bootstrap method does not meet 
Statistics Canada's confidentiality guidelines. 

As a possible solution to this problem, it was sug- 
gested to change the size of the simple random sam- 
ple, 'rnh, so that  equation (4.2) does not reduce to 
(4.7). Reducing m h  to be less than n h -  1 may cause 
problems as it is common to select only 2 clusters 
per stratum. In this case, some sort of collapsing 
would be necessary to increase the ImInber of clus- 
ters per stratum. Increasing 'm,h to be greater than 
n h -  1 would lead to negative bootstrap weights, 
which does not pose any problems as long as the an- 
alysts accept the negative weights and use them only 
for variance estimation and not for point estimation. 
Upon closer examination though, it was noted that  
the zero weights obtained by using m h  = n h -  1 were 
simply replaced by negative weights and the problem 
with confidentiality still exists. 

Two solutions have been investigated to solve the 
confidentiality problem: modifying the regression 
M.justment and replacing the bootstrap weight with 
an average bootstrap weight. The two solutions will 
be presented separately. 

4.1 Modi f i ed  R e g r e s s i o n  A d j u s t m e n t  

In the context of jackknife variance estimation for 
the GREG estimator, Yung and Rao (1996) state 
that the jackknife variance estimator can be approx- 
imated by retaining the inverse for the full sample, 
£ - 1  and modifying the regression adjustment ahik .  
They showed that  the resulting jackknife variance 
estimator is equivalent to the standard linearization 
variance estimator and is therefore a consistent es- 
t imator of the variance of the GREG estimator. In 
the context of the bootstrap, the modified regression 
adjustment for w~ik, -¢ 0 is 

= 1 + x * )  

and the modified bootstrap final weight is 

~* * ~* if * Whi k -- Whikahi  k Whi k ~ 0 

and 

~)~ik -- WhikXTik h - l ( x  - -  X*) if W~ik, = 0. 

That  is, 

- + - X * ) .  

Thus, even if w~i  k - O, the final bootstrap weight is 
equal to 

- - 1  ( x  - x * )  

which is zero only if Whik. = 0 or X = X*. The lxse 
of this modified regression adjustment will not af- 
fect the accuracy of the bootstrap variance estiinator 
since the term X -  :K* converges to zero asymptoti- 
cally, but the resulting bootstrap variance estimator 
maybe slightly less efficient. 

4.2 M e a n  B o o t s t r a p  Weight s  

The confidentiality problem oc('.lu's when 'rn*h~ -- 0 for 
one or more clusters. To avoid this problem, pro(lll(:e 
R bootstrap samples and averagc the m*hi'S over the 
R samples. As long as each cluster appears in at 
least one of the R bootstrap samples, the averages 
will all be non-zero. The steps to perforin the mean 
bootstrap are as follows: 

i) Independently, in each stratum, select a siinple 
random sample of ( n h -  1) chlsters with replacc- 
Inent from the nh sample chlsters. 

ii) Repeat step (i) R tithes. 

iii) Let 'm,*h~(~ ) be the immber of titheS the (h i )  th 

cluster is selected in the r t h  bootstrap sample. 
Let m'hi(. ) -- (I/R)E~m.*hi(~) be the average 

immber of times the (h i )  th cluster is selected 
over the R bootstrap samples. 

iv) Define the mean bootstrap weight as 

, n h  , • 

Whik(') = nh  -- 1 Hthi(')71)hik" 

v) Obtain the bootstrap final weights, ~L;~ik(.), })Y 
performing the same weight adjllstment except 
replace tile design weight, Whik, with the incan 
bootstrap weight, w~ik(.). For example, in the 
context of a regression adjustment, we simply 
replace w~i k in equations (4.3), (4.4), (4.5) and 
(4.6) with w~ik( . ) .  

vi) Calculate 0* using the bootstrap final weights 
in the formula for 0. 
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vii) Independently replicate steps (i) to (vi) a large 
number of times, B, and calculate the corre- 
sponding estimates, 0(1), . . . ,  (B)' 

The bootstrap variance estimator is then given as 

R )2 

b 

- -* . Heuristically, one where 0~.) = (1/B) Eb0(b) 

can view 0(b ) as an estimate of a mean so 

0* - )2 is an estimator for that ( 1 / B ) ~ b ( ( b )  -- 0~.) 

(1/R)Var(O), thus justifying the factor of R in the 

formula for VMB(O). The size of R should be large 
enough so that the chance of 'mhi(m) = 0 for all 
r = 1 , . . . , R  is very small, but it should not be so 
large that drawing R x B bootstrap samples becomes 
unrealistic. 

5. Empirical Comparisons 

Although consistency of the bootstrap variance es- 
timator has been previously established, the per- 
formance of the bootstrap variance estimator was 
coInpared to the CV look-up tables empirically. For 
this comparison, tile PUMF of Statistics Canada's 
1994 National Population Health Survey (NPHS) 
was used. 

5.1 N a t i o n a l  P o p u l a t i o n  H e a l t h  S u r v e y  

The NPHS was designed to collect information re- 
lated to the health of the Canadian population. The 
objectives of the NPHS included: 

• to aid in the development of public policy by 
providing measures of the level, trend and dis- 
tribution of the health status of the population; 

• to provide data for analytic studies that will 
assist in understanding the determinants of 
health; 

• to increase the understanding of the relation- 
ship between health status and health care uti- 
lization, including alternative as well as tradi- 
tional services. 

The design of the NPHS consisted of a stratified 
two-stage design. In the first stage, homogeneous 
strata were formed and independent samples of clus- 
ters were drawn from each stratum. In the second 
stage, dwellings were selected within each sampled 
cluster. The design weights were obtained based 
on both stages of sampling. To obtain the final 

weight, a series of twelve weighting adjustinents were 
performed with the last adjustment being a post- 
stratification adjustment. More information on the 
NPHS design and weighting is available in the NPHS 
PUMF documentation. 

To implement the bootstrap, n h -  I clusters 
were sampled with replacement within each stra- 
tum. Mean bootstrap weights were calculated using 
twenty bootstrap samples and 100 sets of mean boot- 
strap weights were generated (i.e. 2000 bootstrap 
samples in total). For each set of mean bootstrap 
weights, only the poststratification adjllstInent was 
performed. For comparison purposes, the flfll jack- 
knife variance estimator, without any (:ollapsing, was 
used to obtain a 'true CV'. The choi(:e of the jack- 
knife CV as the true CV is justified since if an ana- 
lyst wishes to obtain a true CV, tile jackknife vari- 
ance estimator would be used at Statistics Canada 
to calculate the CV. Table 5.1 gives some results of 
the comparison between the CV's obtained froin the 
bootstrap, collapsed jackknife and CV look-up ta- 
bles for means, totals and ratios of categorical and 
continuous variables. 

Table  5.1 - N a t i o n a l  P o p u l a t i o n  H e a l t h  
S u r v e y  

CE - CVj Bootstrap Collapsed CV 
Jackknife Table 

+ 1 %  64 41 45 
(86.8 70) (45.6 70) ( 50.0 %) 

+2 % 82 62 58 
(91.1%) (68.9 %) (64.4 %) 

+3 % 88 72 64 
(97.8 %) (80.0 %)  ( 7 1 . 1 % )  

±4 % 90 77 71 
(100.0 %) (85.6 %) ( 78.9 %) 

> 4 % 90 75 
(lOO.O %) (8~.3 %) 

In Table 5.1, CVi is the CV based oil the boot- 
strap, collapsed jackknife or the look-up tables and 
CVj is the CV obtained from full jackknife variance 
estimator. Table 5.1 shows one of the drawbacks of 
the CV look-up table method. Of the 90 estimates, 
15 involved a continuous variable which could not be 
handled by the CV look-up tables. Of tile reInain- 
ing 75 estimates, 71 were within +4% of the trllc 
CV. The bootstrap and the collapsed jackknife both 
performed well for all estimates with the bootstrap 
performing better than the collapsed jackknife (87% 
versus 45% of the estimates were within +1% and 
100% versus 85% of the estimates were within +4%). 
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To illustrate the versatility of the bootstrap 
method, CV's were calculated for the regression co- 
efficients for the model relating a person's health sta- 
tus to a measure of the restriction of activities, age, 
type of drinker and household income. The model 
was fit separately within five provinces giving a total 
of 25 parameter estimates. Again, the full jackknife 
CV was treated as the true CV. The results of this 
comparison are given in Table 5.2 

Table 5 . 2 -  Regress ion Coefficients for 
N P H S  

CVi - CV Bootstrap Collapsed 
Jackknife 

+ 1 %  13 (52.0 %) 6 (24.0 %) 
±2 % 19 (76.0 % ) 11 (44.0 % ) 
±3 % 20 (80.0 % ) 15 (60.0 % ) 
±4 % 21 (84.0 % ) 18 (72.0 % ) 
> 4 %  25 (100.0%) 25 (100.0%) 

From Table 5.2, we can see that the bootstrap 
performs better than the collapsed jackknife with 
52% of the estimated CV's within +1% for the boot- 
strap compared with only 24 % for the collapsed 
jackknife. Also, the bootstrap has slightly more es- 
timates within -t-4% (84 % versus 72 %). 

6. Conc lus ions  

The addition of bootstrap final weights to PUMF's 
will allow users to calculate correct design-based 
variance estimators (and hence CV's) for categorical 
and continuous variables as well as complex statis- 
tics such as regression coefficients. Although some 
technical knowledge is required, it is felt that the 
calculation of the bootstrap variance estimators is 
straight forward. Empirical comparisons with the 
currently used CV look-up method shows the superi- 
ority of the bootstrap method both in terms of accu- 
racy and the types of estimators which can be used. 
While comparisons with the collapsed jackknife indi- 
cate only a slightly better performance for the boot- 
strap CV's, it is felt that the bootstrap methodology 
has better theoretical justifications. 
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