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I n t r o d u c t i o n  

Suppose that  we want to measure a characteristic 
of interest of a target population. We have sev- 
eral different "instruments", one of them is "ac- 
curate", or it has smaller measurement error com- 
pared to the other ones. In practice we treat this 
instrument as "perfect", or no measurement er- 
ror. All other instruments will have larger mea- 
surement error and we treat them as "imperfect". 
Here we use "instrument" to refer the method used 
to measure the characteristic. It may include fac- 
tors such as the real instrument used, the person- 
nel involved, working environment, etc. It may be 
due to the cost, or lack of highly trained personnel 
for using the perfect instrument. We use imper- 
fect instruments to measure some samples drawn 
from the population, and use perfect instrument 
to some samples from the population. We combine 
all the data, both imperfect and perfect, to make 
inference on the parameters of the population. Of 
course, the inference should be more accurate com- 
pared to using only the perfect measurement data. 

Survey researchers have long been cognizant of 
the ill effects of measurement error on estimators of 
means and totals of finite populations. In general, 
compared with perfect measurements, imperfect 
but unbiased measurements increase the variance, 
but do not affect the bias of estimators of means 
and totals. However, the sample cumulative distri- 
bution function(CDF) is no longer an unbiased or 
consistent estimator of the population CDF even 
if the measurement error has mean zero. Several 
authors discussed these problems (Overton 1989, 
Fuller 1995, Luo, Stokes and Sager and the refer- 
ences cited therein). 

In this paper we propose to use the empirical 
likelihood method to make inference on parame- 
ters of interest by taking all the data into account, 
treating the imperfect measurements as auxiliary 

information. In section 2, we review Qin and Law- 
less's (1994) method of linking empirical likelihood 
and estimating functions or equations. Section 3 
presents how to use the empirical likelihood to 
solve the problems above. Section 4 discusses the 
associated asymptotic results. Several examples 
will be given in section 5. All proofs will be omit- 
ted. 

2 EL and e s t i m a t i n g  equa- 
t ions  

The outline of the empirical likelihood method 
as discussed by Owen (1988, 1990) is as follows. 
Let Xl, x2, . . . ,  xn be i.i.d, observations from a 
population with a d-variate distribution function 
F(a)  = P ( x  <_ a) and nonsingular covariance ma- 
trix. The empirical likelihood function is 

L ( F ) -  IIin=ldF(xi) - IIin_=lPi, (2.1) 

where Pi = dF(x i )  = P r ( x  = zi).  Only distribu- 
tions with an atom of probability on each zi have 
nonzero likelihood and (2.1) can be maximized 
by the empirical distribution function F,~(z) = 
n -1 Ei~=: l ( z i  < z),  where l(xi < z ) -  ( l (z i , :  < 
Z l ) , ' " ,  l(zi ,d < Zd)) ~, Zi,j and zj  are j - th  compo- 
nent of vector xi and x respectively, l (z i , j  < x j )  
is the indicator of set (zi,j < z j ) .  The empir- 
ical likelihood ratio is then defined as R ( F )  = 
L(F) /L(F,~) ,  which can be reduced to 

R ( F )  - IIn=: npi. (2.2) 

Suppose there is a p-dimensional parameter  0 as- 
sociated with F,  and the information about 0 and 
F is available in the form of r >_ p functionally in- 
dependent unbiased estimating functions (as dis- 
cussed by Qin and Lawless(1994)). That  is func- 
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tions gj(x,  0), j = 1, . . . ,  r, such that  

0)} =0, (2.3) 

where g(x, O) = (gl (x, O), . . . ,  gr(x, O)) r. Link- 
ing (2.2) and (2.3) together to get an estimator of 
0, we define the profile empirical likelihood ratio 
function 

n 

R . ( O )  - >_ 0. 1. 
i--1 

n 

~ p i g ( x i ,  O) - 0}. (2.4) 
i=1 

A unique value for the right side of (2.4) exists for 
a given 0, provided that  0 is inside the convex hull 
of the points g(x, O) = (gl(x,  0), . . . ,  gr(x, 0)) ~. 
An explicit expression for RE(O) can be derived 
by a Lagrange multiplier argument. The maxi- 
mum of II~= lnpi subject to the constraints pi >_ 

n 0, E i = I  Pi -- 1 and Ei=I pig(xi,  O) -- 0 is attained 
w h e n  

pi - pi(O) - n -1 { 1 + t ~ g(xi,  0)} -1, (2.5) 

where t = t(O) is a d-dimension vector given as the 
solution to 

~ t  

1 E {  1 + t ~g(xi O)}- lg(x i ,  O) - O. (2.6) 
n i : 1  

The (profile) empirical (negative) log-likelihood ra- 
tio function for 0 is then defined as 

IE(O) -- E log[1 -}- t T (O)g(xi ,  0)]. (2 .7)  
i -1  

e ~  

Minimizing 1E(O), we can get an estimator 0 of the 
parameter 0, called the maximum empirical likeli- 
hood estimator (MELE). In addition, this yields 

e ~  

estimator Pi, from (2.5) and an estimator for the 
distribution function F,  as 

F~ ( x ) -  ~ Pi l (x i  < x). (2.8) 
i--1 

Qin and Lawless have established some asymptotic 
e ~  e ~  

results on 0 and F,~ (x) under mild conditions. 
Large sample tests and confidence limits for pa- 
rameters are also obtained. 

In the next section we are going to show how to 
apply this method to solve the problems mentioned 
in section 1. 

E L  m e t h o d  i n  t h e  p r e s e n c e  

o f  m e a s u r e m e n t  e r r o r  

Suppose that  there are H different instruments 
used in measuring the characteristic of interest. 
The distribution function associated with instru- 
ment h (h = 1, . . . ,  H ) i s  Fh(a) = P(xh  < a), 
with unknown parameter 0, where 0 is p-dimension 
vector, and the H-th measuring instrument is 
taken as perfect. These H different populations 
are related by the common parameter 0. We also 
assume that  information about 0 and Fh is avail- 
able in the form of rh >_ p functionally indepen- 
dent unbiased estimation functions, that  is func- 
tions gh(x, O) such that  

EFh(gh(x ,O))=O,  (3.1) 

where gh(x,O) is a rh-dimension vector function. 
We further suppose that  Xhl, " ", Xhn~ is an i.i.d. 
sample from Fh(x), and samples measured by dif- 
ferent instruments are independent. The sam- 
pling scheme considered here is different from the 
method of Luo and others. They used two-phase 
sampling with the imperfect sample as the first 
phase sample and the second phase sample taken 
from the first phase sample. That  means that  
the second phase sample is dependent on the first 
phase sample, and usually the second phase sam- 
ple is a very small portion of the first phase sam- 
ple. We consider independent samples here for two 
main reasons. First, in the case different instru- 
ments are involved in measuring, the makers may 
have done a lot of testing and will give the accu- 
racies of different instruments. Or a great number 
of testing can be made to know the difference be- 
tween different instruments before practical mea- 
suring. The same thing can be said to the different- 
degree of trained personnel. Our method can take 
this kind of information into account, hence we can 
make more accurate inference. Second, as pointed 
by Luo and others, when the second phase sample 
is quite smaller compared to the first phase sam- 
ple, two samples can be treated as independent 
samples. Actually their recommended estimator 
for the CDF is based on independent samples. 

The empirical likelihood from the independent 
samples 

{Xhl, ' ' ' ,Xh,~h;h = 1 , . . . , H }  
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is given by 

- ~ , ( 3 . 2 )  L(F1, .. " , FH) IIH=l IIi=lPhi 

rth where Phi - -  P r ( x h  - -  X h i )  and ~ i=1  Phi -- 1 for 
each h. 0n ly  those Fh distributions which have an 
atom of probability on each Xhi have nonzero likeli- 
hood. (3.2) can be maximized by the empirical dis- 
tribution function Fh,~h (x) -- nh 1 ~-,i l(xhi < x), 
the empirical likelihood ratio is then defined as 

n(  r~ , .. , r .  ) 

= L(F~, . . . ,  FH)/L(F~,,~,, . . . ,  FH,,~,), 

which reduces to 

/~(F1, " ' ' ,  F H )  --  I I f=  111in_-h lr thphi.  (3.3) 

We remark that  formulas here and elsewhere in 
'S this paper do not require that  the Xhi be distinct. 

Since we are interested in estimating the parameter 
0, and we know the estimating equation (3.1), we 
define the empirical likelihood ratio function 

R E ( O )  --  8up{IIH:llIin__.h lr thphi I Phi ~_ O, 

i i 

where ghi(O) -- gh(Xhi, O) for all h and i. Here func- 
tion ghi(O) depends on h also, which is different 
from the one discussed by Zhong and Rao(1996). 

As discussed by Qin and Lawless(1994), for any 
r ~ h  given 0 and h, IIi=lPhi can be maximized, pro- 

vided 0 is inside the convex hull of the point 
, " " " • Hi= lPhi sub- ghl (0) , gh~h (0) The maximum of =h 

ject to the constraints Phi > 0, ~ i P h i  -- 1, and 
~ i  P h i g h i ( O )  --  0 is attained when 

Phi --  Phi (O)  --  nhl{1 + t~hghi(O)} -1, (3.4) 

where th -- th(O) is a rh × 1 vector given as the 
solution to 

n h  

1 E {  1 + t r h g h i ( O ) } _ l g h i ( O  ) __ O. (3.5) 
~h • 

Hence the left side of (3.4) is 

RE(O) -- IIhII,{1 + t;gh,(O)} -~, ( 3 . 6 )  

and the empirical (negative) log-likelihood ratio of 
0 is 

lE(O) - E E log[1 + t~hghi(O)]. (3.7) 
h i 

We can minimize IE(O) to obtain an estimator 0 
of the parameter 0, called the maximum empirical 
likelihood ratio estimator (MELRE). In addition, 

e~ 

this yields estimators Phi, from (3.5), and an e s t i -  

m a t o r  for the true distribution function FH as 

r t H  

7FH,nn ( x ) -  E PHi l (xHi < x). (3.8) 
i=1 

0 may be obtained by solving 

OlE(O) l ( Oghi(O) ) th _ 0 
O0 = E E 1 + trhghi(O) O0 r 

h i 
(3.o) 

and (3.6) together. 
In the following section we will discuss the exis- 

tence of 0 and study the asymptotic properties of 

o,r , .~,(~) .  

4 A s y m p t o t i c  p r o p e r t i e s  o f  

M E L R E  

First, we give the conditions for the existence of 0 
which will minimize lE(O) defined by (3.8). 

In the following, we will use [1' [1 to denote Eu- 
clidean norm and n -  ~ h  nh. 

L e m m a  1. Suppose as n ~ oo, n /nh  --~ kh > 0 
for all h. And  suppose that in a neighborhood of  
the true value 0o, Var[gh(Xh,O0)] = crh(O0) > 0 
~o~ ~u h, II Ogh(~h,O)/O0 II ~ d  II gh(xh, O)II 4 ~r~ 
bounded by some integrable function G(x)  in this 
neighbourhood, and the rank of  E[Ogh(Xh,O)/O0] 
is p. Then, as n ~ oc, with probability 1 1E(O) 

attains its m i n i m u m  value at some point 0 in the 

interior of  the ball II 0 -  0o I1_< n-~, ~nd ~ ~nd 
t h--t  h ( 0 )  satisfy 

Qh(O, th)  - 0, h - 1, . . . , H ,  

where 

OH+~(O, tl, . . . , t u ) - O ,  (4.1) 

1 "~ gh~(0) _ 
Qh(O, th) - nh 1 + t ;gh~(o) 'h 1, ,H,  

(4.2) 
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QH+I(O, t l ,  " " ",tH) 

1 

= E E  1 +t~hghi(O) h i 

..ghi,v, th - 0.(4.3) 
O0 

Ogh(Oo) ) OgH(O0) M~2!IE O.hl 
U H h  - -  I + E O0 ~ O0 ' 

B - Egh(~., 0o)1(~. < ~). 

T h e o r e m  1. 
Le mma  I above, we further assume that 02ah(~h'O) 0000" 
is continuous in 0 in a neighbourhood of  the true 

value Oo then ill[ O2gh(~h'O) II can be bounded by ' OOOO" 
some integrable function G(x) in the neighbour- 
hood for aI1 h, then 

e,o 

v/-~(0 -00) --+ N(0, V), 

Since usually nh >> nH for h - 1 , . . . , H -  
1, we can see the main part of the variance of 
e,o 

FH,,H (x) will come from the first term of (4.5), 

In addition to the conditions of which is smaller than the variance of the estima- 
tor FH,nH(X), the cumulative distribution function 
from the precise data X H 1 , ' ' ' ,  XHnH only. Some 
further discussion will be given in Section 6. 

e~  e~  

The estimators for variance of 0 and FH,nH (X) 
can be obtained by replacing each component of V 
and W by their obvious estimators. These estima- 
tors are asymptotically correct. 

~(r , , . .~ .  (~)- F/,(~)) ~ N(o. w). 5 

where 

FH,~. (x)- ~ PHi l(xHi < x), 
i 

~a  

PHi-- 
1 1 

nH 1 +  t H gill(O) 

M11 -- diag{crl(Oo),...,crH(Oo) } 

= diag{crl , . . . ,crH},  

M12 _ ( _ E O g l ( 0 0 )  OgH(O0)) r 
O - - - - V - - ' " - E  O------Y-- ' 

M21 - M[2, M22.1  - -  - M 2 1 M ~  1M12, 

y m 
ogh(Oo) ~;~zogh(Oo)] 

M ; l l  E k h E  O0 00" 
h 

• MS!l ,  (4.4) 

FH(X)[1-- FH(x)] 

--2B(rH1UHH B r 

+gO'H 1 U H H O'H Uh H O'H 1B T 

~ 1 (  ~h ) 
+B~h ~ ~ u~/~uhh~hl~(~,5) 

h = l  

og~(Oo) M;lzOg.(Oo) ) 
UHH -- I -+- E O0 r O0 a~I1 ' 

E x a m p l e s  

We present several illustrations of the estimation 
procedures. Procedures about how to solve equa- 
tions (4.1) through (4.3) will be given. Large- 
sample aspects of these estimators will be dis- 
cussed. 

We suppose only two different instruments are 
used, i.e., H = 2, for the following examples. 

E x a m p l e  1. C o m m o n  M e a n  M o d e l  

Suppose we only know that they are unbiased, 
i . e . ,  

EXl -- O, Ex2 - O, 

and x2 refers to the perfect measurement. Suppose 
that X l l , ' " ,  Xl~x and x 2 1 , ' " ,  x2~ are indepen- 
dent samples from x l and x2 respectively. Let 

then 

g l ( X l ,  0)  - -  Xl --  0, g 2 ( x 2 ,  0)  - -  X2 --  0, 

Og2 Ogl Og2 Ogl _ - - 1 -  -- E -- E - -  
oo - oo -SY oo' 

and equation (4.3) becomes 

n l  

n2  
- - - - t l .  nit1 + n2t2 -- O, i.e., t2 -- 

Substituting (5.1)into (4.2), we get 

= 0 ,  
1 ~ x l i - O  

nl 1 + t ( x l i  - O) 

= 0 .  
1 ~ x 2 i - O  

n2 1 - n--zt(x2i - O) 
n 2  

(5.1) 

(5.2) 

(5.3) 
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Solving (5.2) and (5.3) by Newton method or us- 
ing NAG Fortran library function with initial value 
(0, t) - (2, 0) often works, where 2 - ~ 2 1  + '~,~-~22. 

Let V a t ( x 1 ) -  agl, V a r ( x 2 )  - ag2. Since 

Ogh agh i Ogh __ E ]¢h ag; 1 

h h 

replacing kh by n / n h  we can get the asymptotic 

variance of 0 as 

V 

n 

-1  ) 
n h )1 

nh 

a g2 0"1 ) 0"10"2 
= - - +  - -  )2 '  ni n2 (ai + o'2 

which is the same as the variance of the optimal 
linear combination "estimator" 

O'2 - 0"1 - 
- ~ x l  + x2. 

0"1 -~- 0"2 0"1 -~- 0"2 

Note 0 is actually not an estimator since we do 
not know the variances agl and ag2, but we use it 
for comparison here and in the following. 

As for the asymptotic variance of FH,,~H (x) ,  
i.e., W given by (4.5), after a little calculation we 
get 

F2(x)[1 - F2(x)] + B2ag~ -1 

, [ag12-[-]C1]C21aglag23 _ _ 2 0 " 1 1  ] 

(agl I -~- 0"21) 2 0"1 1 ~_ 0.21 

= F2(x)[1 - F2(x)] + B 2 
-3  

0"2 

(O"11 -t- 0"21) 2 

() _ ~r2 - 2  ~2 

W m 

From above we can see that  if o'2 < <  agl, then com- 
bining the two samples will not improve the effi- 
ciency of CDF estimator compared to using only 
the perfect data. On the other hand, if ag2/agl is 
reasonable large, such as greater than 0.5, then for 
example, n 2 / n l  < 5/8, we will have a more effi- 
cient estimator for CDF. 

E x a m p l e  2 Addi t ive  M o d e l  

We consider the following model 

E x l  - 01, V a r ( x l )  - O2 + ago, 

Ex2  - 02, V a r ( x 2 )  - 02, 

i.e., the variance of imperfect measurement differs 
from that  of the perfect measurement by ago, where 
ago(> 0) is known. We note here that  if EXl = 
01 + vo, where uo is known, we can change the 
data X l to x l -  vo, and all the following discussion 
still applies. 

Suppose two independent samples from x l and 
x2 are Xl l , . .  ", Xln 1 and x2z , "  ", x2n2 respectively. 
Denote zl - (xl,x12) r, z2 - (z2, z~) r, 0 - 
(01,02)  r, g l (Z l ,  0) -- (Xl -- 01, Xl 2 -- 012 -- 02 -- 
ag02) ", g2(z2,0)  - ( z 2 - 0 1 , x ~ - 0 ~ - 0 2 ) ' ,  then 
Egl  - O, Eg2 - O, 

0gl ( 1 - 2 0 1 )  Og2 Ogl Og2 
00 ; - 1  - - ~  - E - ~ -  - E 0----0-' 

and equation (4.3) becomes 

nit11 + n2t21 -- 0, nl t l2 + n2t22 -- 0, 

or 
t 2 1 - - - n 2 t 1 1 ,  t 2 2 - - - n 2 t 1 2 .  

n l  n l  

Hence, (4.2) becomes 

' ~ '  (1In)(x 01) E 1 l i -  
dd i=1 

= 0 ,  

n l  
E ( 1 / n l ) ( x 2 i  - 02 - 02 - ag~) = O, 

dd 
i=1 

1 k x2i - 01 
n2 . dd z--1 

= 0 ,  

1 ~ ,  x~i - 012 - 02 
n2 ~ dd 

= 0 .  

where 

dd - 1 + t l l  (Xli - 01) + t12(x~i - 02 - 02 - o.2). 

We can solve the above four equations by letting 
the initial values 

n l  n2 _ 

01o - ~ 2 1  + ~ x 2 ,  
nl + n2 nl -}- n2 

n2 $2 
020 : ~ n l  S2n + ~ 2n2 

n l  + n2 1 n l  + n2 
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t11,0 = O, t12,0 = O. 

Using Newton's method will usually give us a so- ~ ~ 

lution to 01, 02, and hence Phi, Y2n2 (x). 
In order to get an idea of the asymptotic prop- 

erties of these estimators, we suppose X l and x2 
have normal distribution. We can get 

v = (k~0~ + k~0,)0~0,/(0~ + 0,)~ 

If we replace kh by n/nh, then Vat (O)~  (n~102 + 
n~tO, )020, /(02 + 0,) 2, which is the same as the 
variance of the optimal linear combination estima- 
tor 

d 02 _ O, 
- ~ x l  + ~ ~ 2 .  

02 + O, 02 + O, 

E x a m p l e  3. 

Suppose 

P r o d u c t  Mode l  

E x l  - 01, V a t ( x 1 )  - c02, 

Ex2 = 02, Var(x2) = 02, 

i.e., the ratio of variances of imperfect mea- 
surement to perfect measurement is a known 
constant(c > 0). The two independent samples 
f r o m  2:1 and  x2 are X11~' ' ' ,  Xlnl and X21, ' ' ' ,  X2n2 
respectively. The method to solve (4.1)to (4.3)is 
similar to example 2 and is omitted. 

In the following discussion, we suppose xl and 
x2 are normally distributed. Then we can get 

( ) ~ c 1 1 
- + - -  02, Var(O) ~ 1 + c nlc n2 

which is the same as the variance of the optimal 
linear combination estimator 

02 c02 _ 

- ~ J c l  + ~ x 2 .  
c02 + 02 c02 + 02 
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