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1. In troduct ion  

Imputa t ion is commonly applied to compensate 

for nonresponse in sample surveys (Kalton 1981, 

Sedransk 1985, l~ubin 1987). The nearest neigh- 

bor imputat ion (NNI) method is used in many sur- 

veys conducted at Statistics Canada and the U.S. 

Census Bureau. A computer software, the Gen- 

eralized Edit and Imputat ion System, provides a 

simple way of performing NNI. Although favoured 

by many users, there has little been done on the 

theoretical properties of the NNI method. In par- 

ticular, it is not clear that  under what conditions 

the NNI method is asymptotically unbiased. There 

has been no theoretically justified variance esti- 

mators. In this paper, we derive a bound for the 

asymptotic bias, obtain the asymptotic variance of 

the NNI method and construct its estimator which 

is shown to be good via simulation. 

For brevity, we only discuss the NNI method 

in the simplest case. More detailed discussion can 

be found from Chen and Shao (1997). Consider a 

bivariate sample (Xl, yl) , . . . ,  (xn, y,)  and suppose 

that  the first r of the n y-values are observed (re- 

spondents), the rest of m - n -  r y-values are 

missing (nonrespondents), and all x-values are ob- 

served. The NNI method imputes a missing yj, 

r + l ~ j  < n ,  byy i  ( l < i < r )  such that  

[xi - xjl -- min I x t -  xjl .  (1.1) 
l < / < r  

If there are tied x-values, i may be randomly se- 

lected from them. 

The NNI method has some nice features. First, 

it is a hot deck method in the sense that  non- 

respondents are substituted by respondents from 

the same variable; the imputed values are actually 

occurring values, not constructed values. Second, 

the NNI method may be more efficient than other 

hot deck methods. Third, the NNI method does 

not use an explicit model relating y and x. Finally, 

one of the results in the current paper shows that  

the NNI method provides asymptotically valid dis- 

tribution and quantile estimators. 

2. The Biases of  N N I  Est imators  

Consider a size N finite population with 

(xi, yi, ai) being the characteristics of the ith unit. 

We assume ai - 1 if yi is a respondent and ai - 0 

otherwise, and let .A be the vector of ai, 1 < i ~ N. 

A s s u m p t i o n  A. All units (xi, yi, ai)'s are iid re- 

alizations from a super-population and P(ai  = 

llxi ,  Yi) - P(ai  - -  l lxi  ). 

The assumption requires the response proba- 

bility P (a  - l lx ,  y ) depends on xi ,y i  through x 

component only. This is called "unconfounded re- 

sponse mechanism" by Lee, Rancourt and Sgrndal 

(1994), which is required for the validity of many 

popular imputat ion methods such as the mean, ra- 

tio, regression, and random hot deck imputat ion 

methods. If F is the marginal distribution of x 

and p -  P ( a -  1), then 

P(x < t la -  1)- P(a -  1Ix < t)F(t) /p-  Fl(t) 
(2.1) 

and 

P(x  < t l a - O )  

= P ( a -  OIx < t ) F ( t ) / ( 1  - p )  - Fo(t). (2.2) 

This means that  conditional on ai's, xi's may have 

two different distributions. 

Assume the sampled units are S = 

{1, 2 , . . . , n } .  For r + 1 < j < n, let ~)j denote the 

value imputed by NNI according to (1.1). Then 
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the NNI sample mean is 

1 ( ~  ~ ) 1~  YNNI - - -  - -  Yi + ~ l i  - -  - (1 + di)yi, 
n n 

i=l i=,+l ,:=l (2.3) 

where di is the number  of times that  unit i is used 

as a donor, 1 <_ i <_ r. Let x ( 1 ) , . . . , x ( , )  be order 

statistics. Under assumption A, 

d(i) Ixi, ..., Xr, S, .,4 ~ binomial (m, ri) 
(2.4) 

w i t h  ri - Fo (x(i+l)~ 21-x(i) ) - Fo (x(i'-F:(i-1)), i -  

1, ..., r, where x(0) - - o o  and x(,+l) - +oc.  

Let us first consider two interesting special 

c a s e s .  

E x a m p l e  1. Symmetr ic  F1 and F0. Assume that  

E(ylx)-~+~x, (2.5) 

where a and fl are unknown parameters,  and that  

F1 - F0 - F and F is symmetric.  Then YNN~ is 

exactly unbiased, i.e., 

E (YNN~- Y) -- 0, (2.6) 

where E is the expectation with respect to x and 

y, given S and .,4, and Y - N -1 }-'~=1 yi is the 

finite populat ion mean. 

Its proof can be done by observing the symme- 

try of d(i)x(i) + d(,- i+l)X(r-i+l) .  
Thus, YNN~ is exactly unbiased if xi is symmet-  

rically distributed. In survey problems, however, 

the distribution of xi's is seldom symmetric.  If Fz 

and F0 are not symmetric ,  we expect that  9NN~ is 

biased. 

E x a m p l e  2. Assume linear model (2.5) and that  

F1 - Fo - F and F is the exponential distribution 

with mean 1. We have 

E{~]NNI - IP} (2.7) 

/~m [ r - i  ~ 1 ] ( 2 . 8 )  
= - + ( 2 i +  n(r + 1) r i=0 

That  is, Y N N I  is biased unless fl = 0. 

Example 2 shows that  YNNI may be biased but 

the bias is asymptot ical ly  negligible. The following 

result shows that  this is true in general. 

T h e o r e m  1. Suppose tha t  (i) assumption A 

holds; (ii) there exist nonnegative constants M and 

c ( i  + )such that the f . m i o .  = 

E(ylx  ) is a monotone function when Itl > i and 

[ ¢ ( t ) - ¢ ( s ) [  <_ C I t - s  I when It[ < i and Is I <_ M; 

(iii) the marginal  distr ibution of x has a density, 

Slxl  3 < cx:), and El¢(x) l  3 < o~; and (iv) the re- 

sponse probabili ty P(a = llx ) satisfies 

inf P(a- 1Ix)> o, (2.9) 
xE:D 

where 79 is the support of the marginal  distr ibution 

of x. Then 

E(YNNI- ]~r) _ O(n-1/2), ( 2 . 1 o )  

where the expectation is with respect to z, V, S 

and A. 

R e m a r k  1. The assumption on ¢ is very gen- 

eral. The NNI method requires almost  no model 

between variables x and y. Condition (2.9) roughly 

means that  there are some p-respondents for every 

x-value. Intuitively, if P ( a  = llx) = 0 for x in a re- 

gion D 1 C D, then we do not have any information 

on the p-variable as long as x is in :D1. 

R e m a r k  2. From (2.10), 9N,I is asymptot ical ly  

unbiased for the population mean I~. The result 

in the next section shows that  the asymptot ic  vari- 

ance of 9NNI is of order O(n-1) .  Thus, the asymp- 

totic mean squared error of gNNI is O(n -1) and Y~,x 

is a v/n-consistent est imator  of Y. 

The most commonly used est imators in sur- 

veys are functions of several sample means or es- 

t imated  totals. Using Theorem 1 and Taylor 's  ex- 

pansion, we can immediate ly  conclude tha t  g ( Y N N I )  

is asymptot ical ly  unbiased for g ( l  >) when g is a 

differentiable function. 

Let Iyi(t ) be the indicator function of Yi. Re- 

placing Yi by I y , ( t ) i n  Theorem 1 ( ¢ ( x ) =  P(y  <_ 

tlx)), then 

1 Iyi(t ) Ju E [yi(t) ' P ( t )  - -g 
i = 1  i = r + l  
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is asymptotically unbiased for the finite population 

distribution, F(t) - g -1 ~Y=l Iy,(t). 

Consequently, the NNI sample qth quantile, 

/9-1(q), is asymptotically unbiased for the finite 

population qth quantile F - l ( q ) ,  0 < q < 1. 

3. The  Variances of  NNI  Est imators  

It is a common practice to report the survey 

estimates along with their variance estimates or 

estimates of coefficient of variation. Having shown 

that  NNI estimators are asymptotically unbiased, 

in this section we assess the variances of NNI esti- 

mators and then derive variance estimators. 

3.1. A p p r o x i m a t e  Variance Formulas 

We again consider YNNI in the simplest case 

where S is an srs, n / N  -+ O. Using the argument 

of conditioning, we obtain that 

V(YNNI) = n--~E (1 +d~)2V(y~lz~) 
i - -1  

+~-~V ( i  + di)¢(x,)  . (3.1) 
i - - I  

The first term on the right hand side of (3.1) is 

simple and its order is O(n -1). For assessing and 

estimating variances, we need an explicit (approx- 

imate) formula for the second term on the right 

hand side of (3.1). Like in Section 2, we first con- 

sider two interesting examples. 

E x a m p l e  3. Assume model (2.5) and that  F1 = 

F0 - F and F is the uniform distribution on [0, 1]. 

Then, the second term on the right hand side of 

(3.1) is 

t2  1 2 m ( r -  3) 
~ E  + 
n -i2 n ( r + l ) ( r + 2 ) ( r + 3 )  

l O m ( m -  i) - m ( r + 4 )  ] 

n ( ; + l l ( r + 2 l ( r + 3 l ( r + 4 )  (1) 
+ o  

U " 

E x a m p l e  4. Exponential F1 and F0. Assume 

model (2.5) and that  F1 = F0 = F and F is 

the exponential distribution having mean 1. Then, 

the second term on the right hand side of (3.1) is 

n - i t  2 + O(n-21ogn).  

In both examples, the second term on the right 

hand side of (3.1) satisfies 

n • V  ( i  + d i ) ¢ ( x i )  -- V[¢(x)] + o - 

i=1  n n 2)  

Although we conjecture that  result (3.2) is true 

in general, it is difficult to prove (3.2) for general 

¢, F1 and F0. The following result provides an 

approximate formula for V(YNNI). See Chen and 

Shao (1997) for details. 

T h e o r e m  2. Under the conditions in Theorem 1, 

the asymptotic variance of YNNI is 

~-~E (i + d,)2V(y,:lx~) + ~ ' n  
i=l (3.3) 

3.2. Variance Es t imat ion  

There are some methods for estimating vari- 

ances of NNI estimators, but none of them is theo- 

retically justified, which is perhaps the reason why 

these methods did not perform well in simulation 

studies (Kovar and Chen 1994, Rancourt, S/~rndal 

and Lee 1994, Lee, Rancourt and S£rndal 1994 and 

1995). Using a model-assisted approach, we derive 

in this section some asymptotically valid variance 

estimators for NNI estimators. We assume that  

n / N  -+0. 
From result (3.3), the asymptotic variance of 

YNNI consists of two terms. We first consider the 

term involving ¢. If ¢ were known, we could use 

the following text book estimator of the variance 

of 

Eie~, wi¢(xi ) (e .g . ,  Cochran 1977): 

[ r ] 2 n ~ i wi¢(xi)  
n - 1 . w i ~ ( x i )  - ?Z 

ie~' (3.4) 

When ¢ is unknown, we assume there exists a 

model ¢(z)  = E(ylx ) for the population. The 

simplest model is the linear model (2.5), but we 

may also consider some nonlinear or nonparamet- 

ric models. Let ¢ be the estimators of ¢ by fit- 

ting one of these models, using data yl , .  • • , yr and 
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x l , . . .  ,xr .  Under some weak conditions ¢ ( x ) i s  

consistent for ¢(x) .  Substi tut ing ¢(x)  in (3.4) by 

• ¢ results in a consistent est imator of the second 

term in (3.3). 

Next, consider the first term in (3.3). If we 

don' t  know anything about  V(y[x), then this term 

can be est imated by 

t 
2 

ie'P,i<r jeT~,j>r (3.5) 

where d i j  - -  1 if i is the nearest neighbor of j ,  

and d i j  - 0 otherwise. When there is a model 

for V(ylx ), we may obtain an improved estimator. 

A model for V(ylx ) frequently used in surveys is 

Y(ylx)  - cr2v(x) where cr 2 is unknown but v(x) i s  

a known function, e.g., v(x) - I x l  z. In the case of 

srs and one imputa t ion  class, (3.5) reduces to 

(1 + 
i=1 

i (xi) ?% " _  

+ n ( n - 1 )  i=1 

4. S o m e  S i m u l a t i o n  R e s u l t s  

As a complement to our theory, we present in 

this section some results from a limited simulation 

study. We examine the biases and variances of 

YNN~ and its variance est imator in the case of srs 

and one imputa t ion  class. The population distri- 

bution used to generate xi's and yi's is a real data  

set from 1988 Current Population Survey (Valliant 

1993), where x is the hours worked per week and 

y is the weekly wage. 

We consider n -  100 or 200. The respondents 

(for y) are generated according to the response 

probabili ty function 

exp(71 + 72 x) 
P(a -- l lx) - 1 + exp(71 + 72x) 

with various 71 and 72 (see Table 1). When 72 - 0, 

respondents are generated with equal probability 

(uniform response); when 72 --/: 0, response rate 

depends on the value of x (non-uniform response). 

When uniform response is considered, the response 

rate is chosen to be between 0.5 and 0.88. 

The nonrespondents are imputed by NNI with 

a single imputa t ion class. The NNI sample mean 

9NNI is computed according to (2.3). Unlike the 

NNI sample mean, the use of variance est imator 

in (3.6) requires a model on E(ylx ) and Y(ylx  ). 

We adopt the following simple but the most com- 

monly used model in sample surveys: 

E(ylx) - ~ +/~x and V(ylx) - ~2x. 

(4 .1 )  

The variance estimator for YNNI is then computed 

 ¢¢ording to  (3 .6 )  w i t h  - + - 

and 52 - Ei<r(Yi -- & -- ~X')2/ Ei<~ X,, where & 

and/~ are the weighted least squares estimators of 

a and fl based on the respondents. 

Table 1 lists 1,000 Monte Carlo simulation es- 

t imates of the mean values of 9NNx and its variance 

estimate V, the variance of 9NNI, the relative bias 

of V, and the standard deviation of V for different 

values of n, 71, and 72. The ranges of the response 

rate P ( a -  l lx ) are also given. The following is a 

summary  of the results in Table 1. 

The performance of YNNI is very good. The 

population mean in this problem is 372.3 and 

the relative bias of YNNI ranges f r o m -  1.1% to 

0.4%. Thus, the bias of 9NNI is negligible re- 

gardless of the nonresponse rate and whether 

the nonresponse is uniform. This confirms 

our theoretical result. The variance of YNNI 

increases as the number of nonrespondents 

increases, but does not depend on whether 

the nonresponse is uniform or not. 

2. Although model (4.1) is not perfect, the per- 

formance of the variance est imator V for 9NNI 

is still good. Its relative bias ranges from 

-11 .1% to 5.4% in the case of n - 100 

and -6 .4% to 8.6% in the case of n - 200. 

The s tandard deviation of V increases as 

the number of nonrespondents increases, but 

does not depend on whether the nonresponse 

is uniform or not. 
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A A 

Table 1. Empirical estimates of E(yNN,), V(YNNI), E ( V ) ,  relative bias (RB) of V, 

and standard deviation (SD) of V, based on 1,000 simulations 

A A . . ~  

n 3'1 3'2 P -  P+ E(YNNI) V (~-JNNI) E ( V )  I~B ( V ) S D ( V )  

100 2 0.00 0.88 0.88 372.4 728.9 690.5 -0 .053 123.3 

-0.01 0.73 0.88 372.4 757.9 740.7 -0.023 134.5 

-0 .02  0.50 0.88 372.0 866.5 809.1 -0 .066 158.3 

-0 .03  0.27 0.88 373.6 925.4 915.2 -0.011 189.5 

-0 .04  0.12 0.88 372.3 1102.6 1056.6 -0 .042 250.6 

1 0.00 0.73 0.73 373.6 842.4 853.3 0.013 164.8 

0.01 0.73 0.88 373.9 738.0 778.1 0.054 144.8 

-0 .01 0.50 0.73 372.2 1039.9 969.7 -0.068 208.2 

-0 .02 0.27 0.73 373.4 1151.3 1142.6 -0 .008 275.4 

0 0.00 0.50 0.50 372.9 1248.5 1235.6 -0 .010 319.4 

0.01 0.50 0.73 371.8 1070.7 1052.6 -0 .017 239.7 

0.02 0.50 0.83 372.8 1028.5 914.1 -0.111 185.9 

-0 .01 0.27 0.50 369.9 1558.8 1490.1 -0 .044 467.3 

-0 .02 0.12 0.50 368.0 2026.8 1852.3 -0 .086 639.3 

200 2 0.00 0.88 0.88 371.8 346.3 344.7 -0 .005 43.8 

0.01 0.88 0.95 371.6 320.3 328.9 0.027 39.1 

0.02 0.88 0.98 372.6 301.4 317.7 0.054 37.3 

-0.01 0.73 0.88 372.7 358.6 371.3 0.035 48.0 

-0 .02 0.50 0.88 372.3 401.2 405.2 0.010 54.1 

1 0.00 0.73 0.73 372.5 412.3 431.9 0.047 60.1 

0.01 0.73 0.88 372.3 354.1 384.6 0.086 49.5 

0.02 0.73 0.95 372.8 332.4 358.9 0.080 46.4 

-0 .01 0.50 0.73 372.9 521.6 488.2 -0 .064 76.8 

-0 .02 0.27 0.73 372.5 608.0 572.2 -0.059 100.0 

0 0.00 0.50 0.50 373.0 589.9 621.9 0.054 107.0 

0.01 0.50 0.73 371.5 532.4 524.4 -0.015 85.9 

0.02 0.50 0.88 372.0 434.0 461.8 0.064 66.8 

-0 .01 0.27 0.50 372.8 752.9 760.3 0.010 154.3 

-0.02 0.12 0.50 371.6 936.5 964 .0  0 . 0 2 9  230.3 

n -- sample size P_ -- minx P ( a  - 1Ix ) P+ - maxx P ( a  - 1Ix ) 

P ( a  - llx ) - exp(3,1 + 72x)/[1 + exp(3,1 + 3,2x)] 
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