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Introduction 

Interest in state estimates has increased over the past 
year with the passage of block grants ~ to the states 
replacing certain welfare programs. Currently two 
federal demographic surveys are producing estimates 
for every state and more may follow. The Current 
Population Survey (CPS) has been producing state 
estimates since the late 1970s, originally in response 
to the CETA act which required accurate state- 
specific labor force data to distribute federal funds. 
The National Immunization Survey has been 
producing state estimates since 1984, in response to 
President Clinton's immunization initiative. Other 
state specific surveys are under consideration or 
partial implementation (such as the BRFSS). As 
these surveys are analyzed, it is frequently 
overlooked that the properties of an ensemble of 
statistics can be as important as the properties of each 
specific state estimator. Important exceptions to this 
general neglect include Louis (1984), Spjotvoll and 
Thomsen (1987), Lahiri (1990), and Ghosh (1992). 
Ghosh and Rao (1994) nicely summarized this earlier 
work in Section 7.2 of their paper. It is important to 
consider the properties of the ensemble since states at 
one extreme are punished (through unfavorable 
publicity or lack of additional funds) while states at 
the other extreme are rewarded. Some statistics that 
depend on the ensemble include the rank ordering, 
the minimum, the maximum, the range, and 
percentiles. In this paper, we focus on the range. If 
there is a large range, then there will be calls for 
action to address the range and debates on the 
reasons for the disparity among the states. Much the 
same thing can happen in an industrial plant where 
some output from different sites is tested for quality 
in some way. Managers of sites with low quality 
ratings get punished and those with high ratings get 
rewarded. 

estimates should be published that are expected to 
have the correct range across the states or other 
domains of analytic interest. Concern over the range 
was first voiced to one of the authors in the early 
1980s by Barbara Bailar, then an Associate Director 
at the U. S. Bureau of the Census. When sample 
sizes are large for each state, the range of the sample 
means is approximately correct for the range of the 
true parameters. However, when the sample sizes per 
state are small and the natural variability among the 
states is small, the range in the sample means can be 
seriously positively biased. Beverly Causey 
developed an unpublished proof that this was true, 
but a solution to the problem alluded statisticians at 
the Bureau. 

Some years later, it is clear that the solution lies in 
constrained hierarchical Bayesian or constrained 
empirical Bayesian methods, as coined by Ghosh 
(1992). Pure design-based methods do not admit a 
solution to this problem. In this paper, we first 
review the basic results that the design-based 
estimate of the dispersion across states can be 
severely positively biased, that Bayes and Empirical 
Bayes estimates of the dispersion under standard loss 
functions can be severely negatively biased and how 
the constrained Bayes methods can strike the 
appropriate compromise between these opposing 
methods. We reason that if the dispersion is over- or 
under-estimated, then the same must be true for the 
range. In this review, we focus on the problem of 
estimating state means of normal characteristics since 
the results are easier to derive. Binary characteristics 
are of more interest for most demographic surveys, 
but there do not appear to be closed form expressions 
for the bias of the Bayes and Empirical Bayes 
procedures for binary characteristics. We then give 
the results from a small simulation study for a binary 
characteristic. Although we applied the constrained 
empirical Bayes method to obtain a solution to the 
original CPS problem, there was not enough space to 
show it. 

It would thus seem that although an argument can be 
made for publishing the best possible estimate for 
each state considered individually, it might be better 
to compromise the quality of individual state 
estimates in order to improve the properties of the 
ensemble. In particular, we argue that ensemble 
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Let 0 = (01,---,0 L)  be the vector of true state 

means for the characteristic of interest at a particular 
point in time. Examples would include state per 
capita incomes, unemployment rates, poverty rates, 
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immunization rates, substance abuse rates, and so on. 
Assume that the process giving rise to these true 
means at different points in time is a stochastic 
process. While it is impossible to verify whether the 
process is deterministic or stochastic, viewing the 
process as stochastic and making some further 
assumptions about the distribution goveming the 
process allows us to use Bayesian methods to make 
stronger inferences about the state means than is 
possible through design-based methods. It also 
allows us to make inferences about the characteristics 
of any ensemble of estimates for 0; something that is 
impossible with design-based methods. 

Assume that the process giving rise to the true state 
means is independent across the states with common 

2 
mean g and variance cr . If interest focuses on a 
binary characteristic, it is necessary to make the 

additional restriction that o 2 <la(1-g). Assume that a 

sample of size n i was drawn from the i-th state. Let 

O g  be a design-unbiased estimate of 0 i . Let 0 ~ D 

be the average of the design-unbiased estimates 
across the states. Then the expected dispersion of the 
design-based estimates with respect to both the 
sample design and the model is 

] E E M E D  L - 1 i = I  

1 2 E  Var D 0 0 i +o 
- L i = l  M 

where EM denotes expectation with respect to the 
model and ED denotes expectation with respect to the 
design. Note that the first term on the right is the 
expected measurement variance while the second 
term is the true process variance. This may be 
rewritten as 

2 2 2 
E M E D S  = q) + o  . 

Since the measurement variance is strictly positive, 
the sample means are expected to be more dispersed 
than the true state means. With higher dispersion, it 
is clear that the range of the estimated state means 
will be positively biased. Of course, if the 
measurement variance is negligible, then the bias in 
the range will also be negligible. 

If the characteristic is binary, then this expected 
dispersion of the design-based estimates is 

2 
2 g ( 1 -  g ) - o  2 

= ,-.., + ( 5 "  , E M E D S D  n 

where K is the harmonic mean of the state sample 
sizes. So the relative bias of design-based estimate of 
the dispersion across the states is 

RB(S 2) = 

g ( 1 -  ILt) 
~ - - 1  2 

0 

2 
where p = cr / (la (1 - g)) 

correlation for the characteristic. 

1 - p  

np 

is the intrastate 

Table 1 shows examples of the magnitude of 
overestimation for different intrastate correlations 
and state sample sizes. This bias is trivial when the 
intrastate correlation is high and the state sample 
sizes are high. For small intrastate correlation and 
small state sample sizes, the bias can be very large. 
Generally, intrastate correlations tend to be quite 
small for large geographic classes. For example, the 
intrastate correlation (at the state level) was just 
0.008 for the percent of the total population age 16 
and older that was employed in 1994. The intrastate 
correlation for the unemployment rate in 1993 was 
just 0.003. This suggests that the dispersion across 
the states will not be reasonably estimated by design- 
based estimators based on fewer than several 
thousand interviews per state. When high 
measurement variance is present (due to small 
sample sizes in the states), then many turn to model- 
based or Bayesian estimation procedures to estimate 
the state means. This is the field known as small area 
estimation. 

l a d l e  1. Nelative Bias in u e s i g n - D a s e a  E s t i m a t e s  ot  t i l e  

Dispersion across States 
State Sam pie Size Intrastate correlation 

0.001 0.005 0.01 0.025 0.05 0.1 0.125 

30 3330% 663% 

40 2498% 498% 

50 1998% 398% 

1 O0 999% 199% 

200 500% 100% 

400 250% 50% 

800 125% 25% 

1600 62% 12% 

3200 31% 6% 

6400 16% 3% 

330% 130% 63% 30% 23% 

248% 98% 48% 23% 18% 

198% 78% 38% 18% 14% 

99% 39% 19% 9% 7% 

50% 20% 10% 5% 4% 

25% 10% 5% 2% 2% 

12% 5% 2% 1% 1% 

6% 2% 1% 1% 0% 

3% 1% 1% 0% 0% 

2% 1% 0% 0% 0% 

However, Louis (1984) noticed that Bayesian 
estimates of the state means compress the variation 
too much. We may infer from this that the range of 
the Bayesian estimates is negatively biased. Louis 
(1984) dealt with the simple case where the 
distribution of the state means is normal with known 
variance and, given a set of realized state means, 
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each state sample is a simple random sample from a 
normal distribution with known variance. In this 

case, the conditional distribution of t37 given 0 i is 

N ( 0 i , ~ ) ,  the prior distribution for 0 i is 

{/2} 
N ( g , o ' 2 ) ,  g, • and o are all fixed and 

L / x2 
known, and the loss function is Z t()i - 0  i )  . It is 

i=1 
well known that for this model, the standard Bayes 

estimate of 0 i is 
^ 

Oi B = ( 1 - Y i ) g  +Yiei D 

where 
2 / (  2 2 

Yi =or ~t i +cy ). 

Assume further that the state measurement variances 
2 2 

are all equal. In this case, q~ -~gi and y - y i .  

Louis (1984) showed that under these conditions, the 
actual dispersion in the estimates is 

2S2 $2  =Y D" 

Combining this result with the earlier result, we have 
that 

2 2 2 2 
E M E D S  =y  (tp + o  ) = 7 o  . 

Using the new symbol 7, we note that the expected 
dispersion of the design-based estimates is 

2 
2 2 2 o 

E M E D S  D =¢p + o  = ~ .  
7 

So the design-based and Bayesian methods both mis- 
estimate the expected dispersion across the states by 
a factor of y. The design based estimate of the 
dispersion is too high by a factor of I/y, while the 
Bayesian method is too low by a factor of ¥. Louis 
(1984) then proposed a constrained Bayesian 
estimator with the correct expected dispersion across 
the states. 

Spjotvoll and Thomsen (1987) did similar work for a 
binary outcome variable. They developed an 
estimator by using design-based estimates of the 
measurement variance, and then subtracting this from 
the total observed weighted dispersion among the 
states to estimate the true variance among the states. 
They then used the components of variance to adjust 
the state estimates. Lahiri (1990) followed a similar 
approach but with some slight changes was able to 
develop an estimator with nice consistency 

properties. Ghosh (1992) developed a more general 
approach to the entire problem that relaxes some of 
Lahiri's assumptions. 

Lahiri's estimators work fine if a prior for the state 
means can be found such that the posterior expected 
values of the state means can be expressed as a 
linear function of the state sample means. When the 
characteristic of interest is binary, such linearity in 
the posterior estimates can not usually be achieved. 
The only admissible priors are those that yield state 
means in the range of 0 to 1. The most common 
priors for the means of binary variables are the beta 
distribution, the logit-normal distribution, the probit- 
normal distribution, and the truncated normal 
distribution. The logit normal is the most popular 
since it allows the specification of fixed and random 
effects on the same scale (Zeger and Karim (1991), 
Breslow and Clayton (1993), McCulloch (1997), 
among others). For these priors, the posterior 
expected state means can only be found by 
numerically intensive iterative methods. It appears 
that a combination of these methods with Ghosh's 
adjustment to correct the dispersion would constitute 
a very promising line of research. Unfortunately, 
these combinations would be very difficult to 
program and apply to many applications. We thus 
thought it useful to apply Spjotvoll and Thomsen 
and Lahiri's simple estimators to some simulated 
populations where the assumptions do not apply 
exactly to determine if these simple methods yield 
useful improvements over the design-based 
estimates. 

Spj~tvoll-Thomsen Estimator 

There appears to be an error in Spjotvoll and 
Thomsen's estimator of the process variance. They 
estimate the true process variance as 

d 2  T = max 0, 

n i 
E - - ( y i  - ; )  2 _ ~ (1  - ; )  

n 

T - k  

In every application we tried, this resulted in an 
estimated zero process variance. We think that they 
perhaps meant to write: 
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n i 
TZ - - (Y i  - ; )  2 _ k)~(1 - ; )  

^2 n 
S T  = max O, 

T - k  

The latter gives reasonable results, but we used the 

estimator of cy 2 suggested by Lahiri as described in 
the next section. Spjotvoll and Thomsen then 
estimated the measurement variance as 

^2 ~(1 - ;~) - C~2T 

q)i = 
n i 

They then define a compositing factor of 

• S T  
°ti  = ^ 2  ^2  

q)i + c Y S T  

and an estimator for the i-th state of 

o;.ST - - 
= o~iy i + (1 - oc i ).~, 

1 
where ; = -- ~. n i y i  • 

n l 

Lahiri Est imator  

Rather than working with the design-based estimates, 
Lahiri first derives empirical Bayes estimates of the 
state means under the linearity assumption and then 
adjusts the empirical Bayes estimates by expanding 
their dispersion. Although Lahiri calls these 
estimates, "adjusted empirical Bayes estimates," the 
label of Ghosh seems more appropriate. Hence, we 
call them "constrained empirical Bayes (CEB) 

estimates Lahiri defines 1:2 ." as the expected 
variance given a single observation. Thus, 

2 2 
q)i = x / n i . 

He then estimates 

^2 1 
x - Z n i Y i ( 1 - Y i )  

n - L i  

E n  (y - ; ) 2  1)n 
^2 i i ^2 ( L -  

ff = max 0, - x 
L - 3 n 2 _ ~ n 2 

l 

with, 

7i  = ~ 2 / ( ~  / ni +(~2 

and 

and 

F ~.  

= f i f i i  + (1 - f i  ) g  ' (~ E B  _ 1 2 ( ~ i E B  ' 
• L 

^2 ¢i  
x (L - 1)Y. - -  

n i 
1 + 2 if Z ( 0  E B  _ ~ E B ) 2  

L Z ( 6  E B  _ 6  E B  ) .  

1 otherwise. 

The constrained empirical Bayes estimates are then 
given by 

(~CEB = (~.EB + ( (~EB _ (~.EB ) F . 

Note that since the factor F is greater than one, the 
constrained empirical Bayes estimate for a particular 
state will be further distant from the average of the 
empirical Bayes estimates than the empirical Bayes 
estimate for that same state. 

It may be demonstrated that for equal sample sizes in 

the states, F ~ ~/?/-1 for all i and from this that 
/ 

Lahiri's and Spjotvoll and Thomsen's estimators are 
very similar for this special case. 

Simulation Studies 

Although our interest focused on the bias in the range 
estimator, our discussions above mainly rely on the 
results on the dispersion estimators. We also pointed 
out that it is not very clear how Lahiri's "posterior 
linearity" assumption can be verified in practical 
situations. To gather some empirical experience 
about the performance of the estimators we have 
discussed, a simulation study was carried out to 
• Examine the "Posterior linearity" assumption; 
• Verify conclusions on the Range estimator; 
• Compare performance of competing estimators• 

We used a truncated-normal model to generate true 
state means for our simulation. We knew that the 
performance of the range estimators would depend 
upon the state sample sizes and on the intrastate 
correlation. In order to simplify the presentation of 
the results, we restricted our attention to a scenario 
where every state has the same sample size. Across 
the two-dimensional space defined by sample size 

> 0  

321 



and intrastate correlation, we reduced the size of the 
simulation study by examining behavior of the 
estimators on two lines, the first defined by a fixed 
sample size of 30 observations per state, the second 
by a fixed intrastate correlation of 0.005. These 
values were chosen as reasonable and instructive. A 
total of 500 superpopulations were examined along 
each line. 

For each superpopulation model, we generated 100 
populations and then drew 200 samples from each 
population for a total of 20,000 samples per 
superpopulation. 

The results of holding the state sample size fixed and 
varying the intrastate correlation are shown on the 
left-hand side of Exhibit 1. As one can see from the 
relative bias in the estimated range, the design based 
estimator of the range was always biased upward, 
and the standard empirical Bayes estimator (EB) 
estimator of the range was always biased downward. 
The constrained empirical Bayes estimator (CEB) of 
Lahiri and the Spjotvoll-Thomsen estimator (ST) 
did well until 9 was very small. When 9 was very 

small, the relative biases and the relative root mean 
squared errors of all estimators under consideration 
became unacceptably large. This suggests that a state 
sample size of 30 is too small unless there is good 
prior evidence that the intrastate correlation is at least 
0.015, a fairly large value. Another interesting 
observation is that CEB and ST were almost 
indistinguishable for most of the range of p ,  

although ST was much simpler and easier to 
compute. When 9 was small, ST, which became 

more heavily influenced by the overall mean 
m 

estimator y in its formula, behaved more like the 

design based estimator DB. 

The results of holding the intrastate correlation fixed 
at 0.005 and varying the state sample size are shown 
on the right-hand side of Exhibit 1. As expected, the 
bias of the estimators became larger as the sample 
size shrank. CEB and ST were clearly less biased 
than the design-based and empirical Bayes 
estimators. 

Conclusions 

The range across the states of design-based estimates 
can be seriously positively biased when either the 
state sample sizes are small or the intrastate 
correlation is small. Such biases can affect policy 

discussions. Constrained empirical Bayes estimators 
have been proposed that can substantially reduce the 
bias. In the case of the original CPS problem 
described in the introduction, application of the CEB 
method reduced the range in the state response biases 
from 41 points to 21 points, clearly a critical 
adjustment for discussion of state allocations based 
on CPS statistics. Incorporating Ghosh's (1992) 
adjustments to PQL estimators (Breslow and Clayton, 
1993) and to Gibbs sampling (Zeger and Karim, 
1991) looks like a promising avenue for further 
research. 
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Exhibi t  1. Relat ive  Bias and Relat ive  Root  M S E  of  Range  Est imators  as Funct ions  of  Intrastate  Corre lat ion  p and State Sample  Size r/i 

(Range of the 50 state estimates of a binary outcome. Bias are truncated at -60% and root MSEs are truncated at 100%) 
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