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1. INTRODUCTION 
The Personal Responsibility and Work Opportunity 

Reconciliation Act of 1996 (PRWORA) made sweeping 
changes to our welfare system, including giving states 
great flexibility to design their own programs. States 
have begun to exercise this new authority in order to 
satisfy broad requirements of PRWORA and qualify for 
funding under the Temporary Assistance to Needy 
Families (TANF) block grant established by the act. 
However, even several months after the July 1, 1997 
deadline for submitting TANF plans to the federal 
government, some states are operating essentially 
placeholder programs that they expect to change 
substantially during the next year. Nearly all states will 
continue to refine their programs for years to come. As 
state policymakers consider both large and small program 
reforms, they will need reliable estimates of the cost and 
distributional effects of alternative policies. 

Microsimulation has been used extensively to obtain 
national estimates for understanding the effects of 
proposed reforms to federal programs. However, the 
current microsimulation models that use data from 
national surveys can produce only highly imprecise 
estimates for states because sample sizes are small. 

This paper describes a method for reweighting a 
microsimulation database to "borrow strength" and obtain 
more precise state estimates. A Poisson regression model 
is fitted to obtain an estimated prevalence in each state of 
every household in the database. This model is specified 
to control important aggregates at the state level, and the 
prevalences are expressed as a matrix of weights, with 
each household having a weight for every state. 
Estimates for a state are obtained by passing through the 
microsimulation model all households in the database, not 
just the households actually observed in that state. By 
applying the appropriate weight for each household, the 
database is weighted to look like the state, rather than the 
whole country. We describe this approach and a 
preliminary evaluation of it in this paper after briefly 
reviewing how microsimulation methods are used for 
policy analysis. 

2. WHAT IS MICROSIMULATION? 
A microsimulation model simulates how proposed 

changes to a government program affect the program and 
program participants. The model has two elements: (1) a 
micro database and (2) a computer program. The 

database is constructed from administrative or survey data 
with information on households in the population targeted 
by the government program. The model's computer 
program codes the rules of the government program 
under both the "baseline" policy, which is typically the 
current policy, and a "reform" policy, which is an 
alternative under consideration. The computer program 
also simulates what a caseworker does--that is, it 
determines whether a household is eligible for the 
government program and the benefits for which the 
household would qualify. In addition, the computer 
program simulates a household's behavioral response, 
determining whether the household will participate in the 
program. Processing all the households in the database, 
the model counts participants to estimate the caseload of 
the government program and adds up their benefits to 
estimate costs. By performing these operations under 
both baseline and reform policies and comparing the 
results, the model estimates the cost and caseload effects 
of the proposed reform. The model can also estimate the 
distributional effects of the reform, identifying the 
population subgroups that gain and lose benefits. 

From among the microsimulation models currently 
in use, we focus in this paper on the MATH SIPP model, 
the Micro Analysis of Transfers to Households (MATH ® ) 
model that uses data from the Survey of Income and 
Program Participation (SIPP). The MATH family of 
models, developed by Mathematica Policy Research 
beginning in 1974, has been used extensively to simulate 
reforms to the Food Stamp Program (FSP), the Aid to 
Families with Dependent Children (AFDC) and TANF 
programs, and the Supplemental Security Income (SSI) 
program. The database for the current MATH SIPP 
model was constructed by combining data for January 
1994 from Waves 7 and 4 of the 1992 and 1993 Panels. 

3. MICROSIMULATION FOR STATES 
Although the MATH SIPP model has been used in 

recent years to estimate the national effects of hundreds 
of potential reforms to national programs (mainly the 
FSP), welfare devolution and the resulting need for state 
analyses and estimates create a new challenge. Our main 
statistical problem is that because a database developed 
from a national survey like the SIPP or even a national 
administrative database will have small sample sizes for 
most states, direct microsimulation estimates will be 
imprecise. Thus, there will be substantial uncertainty 
about the likely impacts of a proposed program reform. 

Borrowing strength with an indirect estimator is a 
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general solution to the problem of imprecise direct 
estimates, and has been used successfully in many 
applications. For example, an indirect estimator has been 
used for several years to obtain state estimates for 
allocating federal funds under the Special Supplemental 
Nutrition Program for Women, Infants, and Children 
(WIC). Estimates of the numbers of infants (under age 1) 
and children (ages 1 to 4) below 185 percent of poverty 
are derived in three steps: (1) calculate direct sample 
estimates from the Current Population Survey (CPS); 
(2) calculate regression estimates, that is, predictions 
based on census and administrative data (measuring, for 
example, food stamp and unemployment insurance 
program participation); and (3) calculate "shrinkage" 
estimates by averaging the sample and regression 
estimates using empirical Bayes methods. The shrinkage 
estimates are substantially more precise than the direct 
sample estimates. 

In the microsimulation context, the problem with 
using an empirical Bayes estimator like the WIC eligibles 
estimator or a similar estimator that smooths noisy sample 
estimates is that such methods are not "off-the-shelf' 
approaches for a microsimulation model's many 
estimands, which include baseline and reform caseload 
and cost figures as well as numerous measures of 
distributional effects. Instead, these "standard" indirect 
estimators are best for deriving a single estimate or a few 
closely related estimates for each state. A different 
approach to indirect estimation is needed for 
microsimulation. We propose to borrow strength and 
improve precision by reweighting sample observations in 
the microsimulation database. 

4. REWEIGHTING TO BORROW STRENGTH 
AND IMPROVE PRECISION 

How reweighting can be used to borrow strength is 
illustrated by comparing (1) the direct estimator that uses 
the original sample weights and does not borrow strength 
with (2) the indirect estimator that uses reweighted data 
and does borrow strength. To calculate an estimate for 
Virginia, for example, the direct estimator uses only the 
sample households for Virginia and their original sample 
weights. Observations for other states are ignored. This 
is equivalent to using all the observations in the database 
weighted by "Virginia weights" that equal the original 
sample weights for households in Virginia but are zero 
for households in all other states. In contrast, for indirect 
estimation, nonzero Virginia weights would be assigned 
to households in not only Virginia but also other states. 
Thus, the indirect estimator uses households outside 
Virginia to derive estimates for Virginia, thereby 
borrowing strength. 

We propose to assign weights for indirect estimation 
using a method developed by Zaslavsky (1990). With 

this method, we derive a matrix of weights. Every 
household in the database gets as many new weights as 
there are states. For every state, there is a weight for each 
household in the database, although some weights may 
turn out to be zero or nearly zero. Virginia weights are 
used to derive estimates for Virginia, North Carolina 
weights are used to derive estimates for North Carolina, 
and so forth. 

A household is assigned weights depending on its 
"type," which is defined by all the characteristics in the 
database, some of which are measured directly in the 
survey while others are calculated or simulated. Each 
sample household is regarded as representative of 
households of the same (or similar) type in its home state 
and all other states. 

Using a Poisson regression model described later, 
our reweighting method assigns a Virginia weight to a 
household according to how prevalent that type of 
household is in Virginia. The more prevalent it is, the 
more Virginia weight it gets. Prevalence is determined, 
under the model, by a set of household characteristics that 
(1) capture the key dimensions along which households 
in different states are different and (2) are policy-relevant 
(e.g., characteristics determining program eligibility and 
benefits). 

As will become clearer later when we present the 
formal reweighting model, these characteristics variables 
serve as control variables, and households are reweighted 
so that weighted sums (indirect estimates) equal specified 
control totals. These totals can be direct sample 
estimates, indirect estimates smoothed using empirical 
Bayes or other methods, or administrative totals. For 
example, if the number of people in the household is a 
control variable, the total state population is a control 
total. If household income is a control variable, total 
personal income in the state is a control total. 

Before reweighting, the database is weighted to look 
like the entire United States. After reweighting and, 
specifically, after the derivation of Virginia weights, the 
database is weighted to look like Virginia in terms of 
some key aggregates (the control totals). Then, we hope 
that the reweighted database resembles Virginia in terms 
of many other relevant aggregates for which we cannot 
control, including, especially, the main estimands of the 
microsimulation model. The extent to which this is 
accomplished is an important criterion for assessing the 
method's success. 

Our reweighting method redistributes weight from 
Virginia households to households in other states, which 
may not seem like a sensible strategy. However, we have 
to take some weight away from Virginia households so 
that we do not change Virginia's population, that is, the 
weighted number of Virginians calculated across all 
observations in the database. Although redistributing 
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weight from Virginia to non-Virginia households may 
introduce some bias because the non-Virginia households 
are not exactly like Virginia households, the redistribution 
should substantially improve precision by allowing us to 
use many more observations to obtain estimates for 
Virginia. This will be especially important for policy- 
relevant subgroups that have only a few observations in 
the Virginia sample. The redistribution of weight, 
moreover, is systematic because households are weighted 
according to how prevalent they would be if they were in 
Virginia. Giving some weight to non-Virginia 
households that are similar to Virginia households except 
for state of residence should improve precision without 
introducing substantial bias. The objective of reweighting 
and, more generally, indirect estimation is to enhance the 
accuracy of estimates as measured by a standard like 
mean squared error (MSE) that reflects the tradeoff 
between bias and variance. 

As noted earlier, the control totals used in 
reweighting households can be obtained from different 
sources and chosen to satisfy different objectives. For 
example, weight can be redistributed to replicate features 
of the Virginia population estimated using the original 
sample weights. If the direct sample estimate of the 
number of household members receiving Medicaid is a 
control variable, we will reweight observations so that the 
direct and indirect estimators give the same number of 
Medicaid recipients in Virginia, even though the indirect 
estimator gives positive weight to households outside 
Virginia. Alternatively, we may choose to reweight 
observations to adjust population quantities estimated 
from the sample so that indirect estimates agree with 
administrative totals, rather than direct estimates. (Such 
adjustment, when it is not also used to borrow strength, is 
called "calibration.") To correct for undercoverage of 
Medicaid recipients and underreporting of Medicaid 
recipiency, we could reweight observations so that the 
indirect estimate of Medicaid recipients in Virginia equals 
the total number of recipients in Virginia's Medicaid case 
records. We note in this regard that if the database has 
been calibrated prior to reweighting for indirect 
estimation, the reweighting can be done so as to preserve 
the calibration. 

5. A PRELIMINARY REWEIGHTING 
We have completed a preliminary reweighting of the 

MATH SIPP database according to the first three steps of 
the following procedure: 

Identify control variables. The variables should 
capture important differences among households in 
different states and be relevant to current programs 
or program reforms that may be proposed. All 
control variables have to be directly measured in or 

calculable (perhaps simulated) from the 
microsimulation database. The same set of control 
variables is used for each state. 

. Obtain control totals. These can be (i) direct 
sample estimates, (ii) indirect (e.g., shrinkage) 
estimates, or (iii) administrative totals. 

. Fit Poisson regression model and calculate weights. 
The model is estimated so that (i) the total weight 
given to a household (in constructing a national 
estimate) is not changed and (ii) all control totals are 
satisfied for every state. 

o Assess model fit, iterating back to (1) as necessary 
to improve fit. 

5. Produce final weights. 

After completing our preliminary reweighting of the 
MATH SIPP database, we have begun assessing model 
fit. Before discussing our early findings, we will 
elaborate on our implementation of the first three steps. 

For the preliminary reweighting, we divided 
households in the database into three income groups: low 
(at or below 130 percent of poverty), medium (130 to 300 
percent of poverty), and high (above 300 percent of 
poverty). We chose these groupings because the FSP 
gross income threshold is set at 130 percent of poverty, 
and very few households above 300 percent of poverty 
are eligible for any means-tested transfer program. We fit 
a model for each group with the following control 
variables (all measured at the household level): an 
intercept, number of persons, number of Hispanics, 
number of blacks, number of Asians, presence of 
members unrelated to the head (0/1), presence of kids 
under age 5 (0/1), presence of an elderly member (0/1), 
shelter expenses, utility expenses, home ownership (0/1), 
receipt of interest income (0/1), receipt of earned income 
(0/1), receipt of SSI income (0/1), number of working age 
adults (ages 18 to 59), number of working age adults with 
less than a high school education, and number of working 
age adults with no job. These variables, which measure 
household composition, income, and expenses, were 
selected based on their policy relevance and analysis of 
variance results showing that their distributions varied 
across states. In all instances, the control totals used for 
the preliminary reweighting are direct sample estimates. 

The Poisson regression model used for reweighting 
is: / 

In wh~ = 13~x h + 6 h, 

where Whs is the expected number of households of type 
h in (the population of) state s. A type is a complete 
household record and is, practically speaking, unique on 
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the database because no two households are exactly alike. 
Therefore, each household in our database represents its 
own type, and Whs is the weight that will be given to 
household h when deriving estimates for state s. Xh is a 
column vector of I control variables: Xh = (Xh~ Xh2 ... X h I ) ' .  

It gives the values of those variables for household h. 13, 
is a column vector of I unknown parameters--the 
regression coefficients for the control variables--to be 
estimated for each state. 6h is an unknown parameter to 
be estimated for each household. The first term on the 

/ 
right side of the Poisson regression model ([3sxh) reflects 
the "general" prevalence in state s of households like 
household h, that is, households with similar 
characteristics. The second term (6h) reflects the 
"specific" prevalence of household h. 

The 13s and 6h parameters are estimated by maximum 
likelihood and satisfy two constraints: 

Constraint 1" ~ Whs = W h for each h, 
s 

where W~ is the control weight, that is, the original sample 
weight of household h, and 

Constraint 2" ~ WhsXhi = X i for each s and i, 
h 

where Xsi is the control total for control variable i in state 
s. According to the first constraint, reweighting does not 
change the total weight given to a household across all 
states, that is, at the national level. This constraint 
ensures that a household contributes the same to a 
national estimate after reweighting as before. 
Reweighting does change a household's contributions to 
estimates for individual states, enabling strength to be 
borrowed and precision to be improved. According to the 
second constraint, all control totals are satisfied for every 
state. That is, the weighted sum of a control variable after 
reweighting equals the specified control total. 

We estimated the Poisson regression model using an 
iterative two-step procedure. If ~3s(k) and 6hCk) a r e  the 
values for the unknown parameters in iteration k, the two 
steps are: 

and 

Step 1 0h k in / / 
~_, e ~(k-',x~ 

s 

Step 2" 13s(k) = ~,(k-l~ + D s  1 ds for each s, 

where 
/ 

D s = ~_, WhsXhXh , 
h 

d s = X s - ~_~ W h s X h ,  
h 

and wh, is obtained by substituting 13,(k-U and 6h(k) into the 
expression for the Poisson model. X, is a column vector 
of control totals for state s, with one control total for each 

of the I control variables: X, - (X,I Xs2 ... X , I ) ' .  d, is a 
column vector (with I elements) giving the differences 
between weighted sums and control totals at the 
beginning of the second step of iteration k. When each 
element of ds is sufficiently small according to a 
prespecified convergence criterion (e.g., d,; < 0.01), the 
weights from the Poisson model approximately satisfy the 
second constraint. If the second constraint is satisfied 
before the second step, that step need not be completed, 
and because the first constraint was satisfied at the end of 
the first step, no further iterations are required. 

As this description suggests, each of the two steps of 
the proposed estimation procedure is designed to satisfy 
one of the two constraints. The first step of the estimation 
procedure is obtained by substituting the expression for 
Wh~ implied by the Poisson model into the first constraint 
and solving for 6h. Thus, carrying out the first step 
satisfies the first constraint. The second step of the 
estimation procedure is a single Newton-Raphson step 
toward satisfying the second constraint. At this time, we 
do not recommend performing additional Newton- 
Raphson steps until convergence is achieved, that is, until 
the second constraint is fully satisfied in iteration k. The 
estimation procedure should be more efficient if just a 
single Newton-Raphson step is performed in each 
iteration because the convergence of the Newton-Raphson 
step is quadratic and, therefore, faster (when near 
convergence) than the convergence of the overall 
algorithm, which is linear. After "enough" iterations of 
the two-step procedure (the number of iterations 
depending on the convergence criterion), both constraints 
will be satisfied. 

6. PRELIMINARY EVALUATION RESULTS 
We have begun our evaluation of the preliminary 

reweighting of the MATH SIPP database by comparing 
indirect (model-based) estimates derived using the 
preliminary state weights to direct sample estimates 
derived using the original sample weights. In this paper, 
we report comparisons for two key estimands from our 
microsimulation model. The first is total food stamp 
benefits under baseline (current) policy. Because total 
benefits vary widely by state size, we have divided total 
benefits by the total number of persons, one of our control 
variables, to obtain per capita total benefits. The second 
estimand is the impact on total benefits of a fairly generic 
program reform, which raises the food stamp eamings 
deduction from 20 to 30 percent. Comparisons of model 
and sample estimates for these two estimands should be 
a good first test of our approach because although we 
have controlled for the total population size of each state, 
the number of households with earnings in each state, and 
other aggregates, we have not controlled directly for total 
food stamp benefits. 
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In Figures l a and lb, we have graphed the model 
estimate against the sample estimate for each of the 42 
states uniquely identified in SIPP public use files. As 
expected, model and sample estimates are different. 
However, there does not seem to be a systematic pattern 
to the differences except for some regression to the mean, 
which has two indistinguishable sources--one "good" and 
one "bad." The bad one is model error, that is, the failure 
to capture true differences among states, and, specifically, 
the tendency for a model to overpredict at the low end 
and underpredict at the high end. The good one is the 
smoothing away of noise in the sample estimates. This 
corrects for the tendency of some high sample estimates 
to be high because of large positive sampling errors and 
some low sample estimates to be low because of large 
negative sampling errors. The pulling in of extreme 
values is most apparent for reform impact estimates 
(Figure 1 b). 

Although some differences between model and 
sample point estimates are expected and, as suggested, 
desired, the foremost purpose of reweighting is to 
improve precision. By that standard, the preliminary 
reweighting has succeeded according to Figures 2a and 
2b, where we have plotted estimated standard errors for 
model estimates against estimated standard errors for 
sample estimates. To estimate standard errors, we split 
the database into 40 random groups (after sorting by state 
and SIPP pseudo-sampling stratum within state) and used 
a grouped jackknife estimator, treating weights as fixed. 

Two findings from our comparison of standard 
errors are most striking. First, the variability of sample 
estimates is unacceptably large. Second, the variability of 
model estimates is substantially less and at a level at 
which the estimates can provide useful guidance to 
policymakers. The median coefficient of variation (CV)-- 
the ratio of the standard error to the point estimate--is 34 
percent for sample reform impact estimates, whereas the 
median CV is just 6 percent for model estimates. 
Although the CVs of sample estimates exceed 20 percent 
for all but 6 states, the CVs of model estimates are under 
10 percent for all but 4 states. We find broadly similar 
patterns and gains from modeling for per capita benefits. 
That variances of model estimates are at least 90 percent 
smaller than variances of sample estimates for all but a 
few states (and for both estimands) suggests that unless 
the biases of the model estimates are enormous, the model 
estimates will have smaller MSEs than the sample 
estimates. 

As a first step in evaluating the preliminary 
reweighting of the MATH SIPP database, we have 
compared in Figures 1 a and 1 b our model estimates with 
sample estimates, using the sample estimates as a measure 
of truth. However, the reason for reweighting the 
database is that the sample estimates are a very noisy 

measure of truth, as confirmed in Figures 2a and 2b. A 
natural question is whether the differences between model 
and sample estimates observed in Figures 1 a and 1 b are 
consistent with the sampling variability depicted in 
Figures 2a and 2b. 

In Figures 3a and 3b, we have plotted differences 
between model and sample estimates (measured along the 
vertical axis), and displayed estimated two standard error 
bars, which give 95 percent confidence intervals for the 
differences. States are ranked (1 to 42) along the 
horizontal axis by their sample estimates. According to 
these two graphs, the estimated bars cross the horizontal 
line at zero for all but a small number of states, 
suggesting that the differences between model and sample 
estimates can generally be attributed to noise--mainly 
noise in the sample estimates. We should note that four 
of the seemingly significant differences pertain to states 
with sample reform impact estimates equal to zero 
because no sample household was affected by the reform. 
For these states, our naive jackknife estimator estimates 
that the standard error of the sample estimate is zero 
because there is no variability among sample households. 
That, of course, is not a sensible estimate. 

Taken together, the graphs presented in this paper 
show that our reweighting approach succeeds in pulling 
in from either extreme the most extreme sample 
estimates, a typical phenomenon associated with indirect 
estimation and a desirable one. Even with this systematic 
pattern of smoothing, the estimated confidence intervals 
reveal that the "revised," that is, model estimates are 
(usually) fully consistent with what the sample estimates 
say, but are substantially more precise. 

We are encouraged by these results, and will 
continue the evaluation by examining additional 
estimands of the microsimulation model. Recognizing 
the usual limitations of evaluating a model against the 
data used to fit the model, we will also apply cross- 
validation methods to assess predictive accuracy (as 
opposed to predictive fit). If we identify deficiencies of 
our reweighting models at any point in our evaluation, we 
will respecify the models. We also anticipate using 
administrative or indirect estimates as control totals rather 
than relying exclusively on direct estimates. We expect 
that would even further improve the accuracy of state 
microsimulation estimates. 
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Figure la. Model and Sample Estimates of Per Capita Food Stamp 
Benefits [Total Benefits/Total Population] 
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Figure lb. Model and Sample Estimates of Reform Impact on 
Total Benefits [Percentage Change in Total Benefits] 
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Figure 2a. Estimated Standard Errors of Model and Sample 
Per Capita Benefits Estimates 
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Figure 2b. Estimated Standard Errors of Model and Sample 
Reform Impact Estimates 
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Figure 3a. Estimated Conf~ence Intervals for Differences Between 
Model and Sample Per Capita Benefits Estimates 
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Figure 3b. Estimated Confidence Intervals for Differences Between 
Model and Sample Reform Impact Estimates 
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