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1. Introduction 
Imputation, a technique that fills in hypothetical 

values for missing data, is widely used to account for 
item nonresponse in surveys. Traditionally, the 
imputed values have been treated as if they had 
actually been observed or reported, and estimates and 
variance estimates have been computed using standard 
complete data methods. While the conditions under 
which estimators based on imputed survey data are 
unbiased or consistent are well-known, the problem of 
obtaining valid variance estimates for imputed data has 
long troubled survey practitioners. Treating imputed 
values as if they had actually been observed or reported 
leads to underestimation of the variance of the 
estimator. Even for items with relatively low 
nonresponse rates, this downward bias in the variance 
estimates may be substantial. 

Over the past two decades, several methods 
have been proposed to account for the additional 
variance due to imputation error. Rubin (1977, 1978) 
developed the method of multiple imputation. Rao and 
Shao (1992) proposed an adjusted jackknife variance 
estimation procedure. Rancourt et al. (1994) 
developed a model-assisted approach. Fay (1996b) 
presented a variation on the Rao-Shao jackknife called 
fractionally weighted imputation. Shao and Sitter 
(1996) proposed a bootstrap procedure to account for 
the imputation error variance. 

It was our goal to develop a procedure for 
variance estimation for imputed data that would yield 
valid variance estimates under different imputation 
schemes. Due to the proliferation of auxiliary data 
generally available, survey practitioners frequently use 
variations of nearest neighbor, ratio, or regression 
imputation methods. Occasionally, when little 
auxiliary information is available or the auxiliary data 
are not highly correlated with the characteristic of 
interest or with the response propensity, the random 
hot-deck procedure is used. 

We sought to develop a procedure that could be 
used regardless of the imputation method, and could be 
extended "naturally" to complex sample designs (By 
"naturally," we mean using the same types of 
derivations used to extend the variance of the mean 
under simple random sampling to the variance of the 
mean for stratified random sampling, for instance.). 

We have developed such an approach, which we will 
refer to as "all-cases imputation," or ACI. This 
approach imputes for all cases (including respondents), 
and then uses information about the relationship of 
imputed values to actual values for respondents to 
reflect uncertainty introduced by missing data and the 
imputation process. 

2. The All-Cases Imputation Variance 
Estimator: A New Approach to Variance 
Estimation for Imputed Data 
In this section, we present a new approach to 

variance estimation for imputed data. Section 2.1 
defines and describes the variance estimator under 
simple random sampling, and Section 2.2 extends the 
variance estimator to stratified random sampling. In 
Section 2.3, we describe the general approach for 
extending this variance estimator to other sample 
designs or estimators other than means. 

2.1 Simple Random Sampling 
For the sake of discussion, we will focus on 

estimates of population means. Let y be the 
characteristic of interest. We will partition the sample 
(S) into the set of respondents to y (R) and the set of 
nonrespondents to y (NR). Throughout the discussion 
of simple random sampling, we will assume the 
sampling fraction ( n / N )  is negligible, so that we can 

n 
ignore the finite population correction, fpc= 1 - ~ .  

N 
Later, during the discussion of stratified sampling, we 
will incorporate fpc, since sampling fractions within 
some strata may not be small. 

With imputed data, the standard estimate of the 
population mean is" 

_ 1{ y, y i+ Z Y t }  (1) 
YI = n i~R i~NR 

where Yi is the actual (observed or reported) value for 

respondent i, and Y i is the imputed value for 

nonrespondent i. 
Under the assumption of ignorable item 

nonresponse, the variance of the estimator Yl can be 

decomposed as follows: 
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+2 Z Z cov x. ,x .  
i ~ N R  j ~ N R  

where 

(2) 

_ 1 , 

Y S  = - Y~Yi , x )" = Yi  - Yi  = y k  - y i  
n ia_S 

is the imputation error incurred when respondent k is 

used as the donor for nonrespondent i, and cov(x,y) 

denotes the covariance between x and y. 
We will refer to the first term in expression (2), 

v ( f i s ) ,  as the sampling error variance component. We 

1 Zv  x , as the will refer to the second term, ~ i e N R "  

imputation error variance component, and will refer to 

2 y. Z cov x. ,x , as the the third term, ~ i ~NR j ~NR 

j>i  

imputation error covariance component. 
Since y is not observed for nonrespondents, the 

imputation error variance and covariance terms cannot 
be estimated directly based on the set of 
nonrespondents ( N R )  alone. Our proposed imputation 
procedure, the all-cases imputation (ACI) method, 
involves imputing y for respondents as well as 
nonrespondents and using the imputation error for 
respondents to estimate the imputation error variance 
and covariance for nonrespondents. 

The all-cases imputation variance estimator for 
the variance of the population mean is 

- -  Y i  - Y I  + Z Yi  - Y I  v A C I  ( f i I )  = n i i e N R  

m 2 ( m ( m -  1)~ 
+ n2(r - 1 ~ - - - - )  ~(xi  _{-)2 + 

(3) 
k eR i , j e R  " 

j>i  

where Ik, J is equal to 1 if respondent k is used as a 

donor for both i and j, and is equal to 0 otherwise. In 
Montaquila (1997), we have shown that under certain 

general conditions, V A c I ( Y I )  is an unbiased estimator 

of v ( Y i ) .  

2.2 Stratified R a n d o m  Sampl ing 
Here, we consider the sample design where the 

N units in the population are stratified into L strata 

indexed by h. There are N h units in stratum h, and we 

will select n h units, such that each unit in stratum h 

has an equal probability of selection (but the 
probabilities of selection may differ from stratum to 
stratum). That is, within each stratum, a simple 
random sample is drawn. The sampling is assumed to 
be independent from stratum to stratum. 

For a stratified random sample design, the 
complete-data estimator of the population mean per 
unit is 

L 
fist = Y'. WhYh (4) 

h=l 
_ 1 nh 

where W h = Nh  and Yh Z Yhi. 
N n h i=t 

In the presence of missing data, the imputed 
estimator of the population mean per unit is: 

Yst , I  = Z Wh Y'. Yhi + ~-, Yhi ( 5 )  
h= 1 i ~R h i eNR h 

where e h denotes the set of respondents to item y in 

stratum h, NR h is the set of nonrespondents to item y 

in stratum h, and Y hi is the imputed value for case i in 

stratum h. The imputation error is defined as" 

T. hi -- Yhi -- Yhi -- Y~ - Yhi ,  
where unit k in stratum h is used as a donor for unit i in 
stratum h. 

For stratified random sampling, we propose the 
same general approach as for simple random sampling, 
an all-cases imputation approach, to estimating the 
variance of the imputed estimator. Imputations will be 
obtained for all cases, both respondents and 
nonrespondents. Here, the imputations will be selected 
from among respondents in the same stratum; that is, 
stratum boundaries cannot be crossed when identifying 
donors. The imputation error for respondents will be 
used to estimate the variance components due to 
imputation error. 

The all-cases imputation variance estimator for 
the mean per unit in a stratified random sample design 
is 

1 L 2 2 
N h S h , I  (6) VACl(f ist , I)=--~h=12.,  
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where 

2 N h - n h  1 
Sh'l = -N h n h n h - 1 i eR h 

mh X (x hi-X-h) 2 + 
, , 2  - 1) 

2 mh (mh 1) 1 

X X Z Ik e (x hi - ~ h ) (  T' hj - ~ h )  + 
n 2 r h (r h - 1) k ~Rh i ~Rh j ~Rh 

j>i 

Within each stratum, the sample is a simple 
2 random sample. Furthermore, note that S h, I is simply 

the ACI variance estimator for simple random 
sampling (with the f'mite population correction factor), 
indexed by h. Thus, the result that 

E(s2,i)= V(~h , I )Vh= 1,2,...,L follows directly from 

the result that the ACI variance estimator for simple 
random sampling is unbiased. Therefore, this form of 
the ACI variance estimator for stratified random 
sampling is also unbiased (under the same general 
conditions). 

2.3 Extensions to Other Sample Designs or Other 
Estimators 
The ACI variance estimator can easily be 

extended to other sample designs and other estimators. 
Regardless of the sample design or the form of the 
estimator, the approach will be to impute for all cases. 
That is, any data item that requires imputation will be 
imputed for all cases, such that the imputations 
preserve features of the sample design (e.g., not 
crossing stratum boundaries to find donors). The 
standard complete-data variance estimate will be 
computed using the actual data whenever possible and 
the imputed data for cases with missing data. 
Imputation error variance and covariance components 
will be estimated using the imputation errors for 
respondents. For nonlinear estimators, one possible 
approach would be to first linearize the estimator, and 
then derive the imputation error variance components. 
Since the imputation errors would be linearized in the 
process of linearizing the estimator, these extensions 
are straightforward. 

3. Simulation Study 
To evaluate the ACI variance estimator and 

compare this procedure to the Rao-Shao jackknife and 
the Shao-Sitter bootstrap, we conducted a simulation 
study using simple random sampling. We generated 

samples of size n=300 from a prespecified distribution 

F. In each sample, we designated lO0*(m/n)percent 
of the cases as missing. We imputed for the m missing 
cases using the r respondents as the donor set, using 
the random hot-deck procedure. We also imputed 
values for each of the r respondents, using the other 

respondents as the donor set. We then computed .~/ 

and vACI (YI )  for each sample. 

The process described above was repeated for 
500 iterations. For each iteration, the normal 95% 
confidence intervals were computed. The coverage 
rates across the 500 iterations were then computed. 
For comparison purposes, variance estimates and 
coverage rates were also computed using the Rao-Shao 
jackknife and the Shao-Sitter bootstrap procedure. 

The variance in the 500 Monte Carlo estimates, 

1 ~ ( f i _ y I ) 2  was computed. Although v M ( Y I ) = - - ~ i = l  

this measure is subject to a small amount of sampling 
error, it was assumed to be the "truth." That is, 

V M ( ~ i  ) was assumed to be equal to V(~l).  
As we stated previously, treating imputed values 

as if they had actually been observed or reported leads 
to underestimation of the variance of the estimator. 
This may result in confidence interval coverage rates 
which are far below the nominal levels. In Table 1, the 
mean variance estimates and confidence interval 

coverage rates based on vACI (Y I )  are compared to 

those based on ~SAMP, the sampling error variance 

component of the ACI variance estimator. Note that 

~3SAXa, is the naive variance estimate which treats the 

imputed values as if they had actually been observed or 
reported. Table 1 shows that even with small 
proportions of missing data, the naive variance 
estimator leads to serious underestimation of the 
variance and poor confidence interval coverage. 

The distributions of variance estimates 
generated using each method were compared to the 

Monte Carlo variance V M ( ~ i  ) . Table 1 also presents 

a comparison of the Monte Carlo variance to the mean 
variance estimate obtained using each of the three 
approaches. The three variance estimates tend to be 
very similar, and there is no distinct pattern among the 
three. As the proportion of missing data increases, all 
three variance estimates increase, as does the Monte 
Carlo variance. 

Rubin (1996) emphasizes the fact that rarely is 
the variance of an estimator itself an estimand. That is, 
rarely is the sole purpose to estimate the variance of an 
estimator. Rather, the goal is to obtain valid 
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inferences. The variance estimator is merely a vehicle 
used en route to obtaining valid inferences. Thus, in 
comparing methods, it is important to assess the 
validity of inferences obtained using the methods. 

Table 1 also compares the coverage rates for the 
nominal 95% confidence intervals obtained using the 
variance estimate from each approach. The Shao-Sitter 
bootstrap procedure tends to yield confidence intervals 
with higher coverage rates than those obtained using 
the other two procedures. However, the coverage rates 
obtained using all three approaches are very good; that 
is, very close to the nominal 95% coverage rate. 
Although there is a slight drop in coverage rates for 
data sampled from skewed distributions, even with 
70% missing data, the drop is not substantial. 

Next, we examine the components of the ACI 
variance estimator. Recall that we refer to the first 

term in the ACI variance estimator, V(Ys) ,  as the 

sampling error variance component; we refer to the 

1 ( !k))  
second term, --~ieNR~ v x .  , as the imputation 

error variance component; and we refer to the third 

2 Z ~ cov x. ,x , as the imputation 
term, ~ i eNR j eNR 

j>i 
error covariance component. The mean estimates of 

each variance component of vACI(YI) are given in 

Table 2. The sampling error variance component, 

~3s~tp, remains essentially fixed as the proportion of 

missing data increases, while the imputation error 

variance component, ~3iue, and the imputation error 

covariance component, ~/Me, increase as the 

proportion of missing data increases. 

4. Summary and Conclusions 
We have presented a new approach to variance 

estimation for imputed data, the all-cases imputation 
variance estimator. In this paper, we have developed 
this approach for the special case where the sampled 
cases are chosen using simple random sampling and 
the imputation method is the random hot-deck, and 
have described the extensions of the variance estimator 
to stratified, multistage designs. The extensions from 
simple random sampling to more complex sample 
designs are straightforward, given the extensions of the 
complete-data variance estimator from simple random 
sampling to complex designs. 

Our approach, all-cases imputation, is a model- 
assisted method in which the variance of the estimator 
is decomposed into components which reflect the 

sampling error variance, the imputation error variance, 
and the imputation error covariance. Since imputation 
errors--the differences between the actual (but 
unobserved) value and the imputed value--are 
unknown for item nonrespondents, we use the 
imputation errors for the item respondents to estimate 
the variance components involving imputation errors. 

We have empirically compared our method to 
two other proposed methods--the Rao-Shao jackknife 
and the Shao-Sitter bootstrap--as well as the naive 
approach. We have demonstrated, both analytically 
and empirically, that the naive approach to variance 
estimation--treating the imputed values as if they had 
actually been observed or reported--underestimates the 
variance of the estimator. The downward bias is 
substantial, even with small proportions of missing 
data. The ACI variance estimator has been shown to 
yield unbiased variance estimates and randomization- 
valid confidence intervals for the problem of 
estimating the population mean. 

An advantage of the ACI variance estimator 
over the Rao-Shao variance estimator is that the ACI 
variance estimator may be directly extended to 
situations where imputation methods other than the 
random hot-deck are used. For example, the nearest 
neighbor and regression imputation methods are 
commonly used in practice, since sampling frames tend 
to have an abundancy of auxiliary data that may be 
correlated with the characteristic of interest or the 
response propensity. The ACI variance estimator, as 
presented here, can be directly applied to situations 
where nearest neighbor or regression imputation are 
used; the Rao-Shao jackknife cannot. 

The ACI variance estimator is not as 
computationally intensive as the bootstrap approach. 
With the ACI procedure, one imputation is generated 
for each case, and one variance calculation--with three 
components--is required. The bootstrap involves 
drawing numerous bootstrap samples, imputing 
independently within each bootstrap sample, and 
computing an estimate for each bootstrap sample. To 
properly implement this procedure and ensure its 
validity for a specific problem, the validity checks used 
in full-sample imputation must be used for each 
bootstrap sample. This can be quite time-consuming 
and labor-intensive. Complicated skip patterns which 
are sometimes present in survey instruments will 
further muddle this procedure. 

We believe the ACI variance estimator has more 
intuitive appeal than the model-assisted approach 
developed by Rancourt et al. Each component of the 
ACI variance estimator has a very clear interpretation. 
Furthermore, the extensions of the ACI variance 
estimator to complex sample designs, to other 
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estimators, and to other imputation methods are Kalton, G., and Kasprzyk, D. (1986), "The Treatment 
straightforward, of Missing Survey Data," Survey Methodology, 12, 

5. Directions for Future Research 
There are many extensions of the ACI variance 

estimator that we wish to pursue in the future. These 
include: 
• The extension to stratified, multistage sample 

designs. We have presented our proposed 
approach for stratified, multistage designs; an 
empirical study will enable us to evaluate the 
performance of the ACI variance estimator for 
such designs. 

• An empirical evaluation of the ACI variance 
estimator when imputation methods other than 
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Table 1. An empirical comparison of the ACI variance estimator to three altemative approaches 

F % IO0,vM(~I ) 

Normal(0,1) 0.1 0.39 
0.3 0.60 
0.5 0.83 
0.7 1.22 

Poisson(~=3) 0.1 1.12 
0.3 1.71 
0.5 2.41 
0.7 4.17 

Gamma(c~ = 1 ,D = 1) 0.1 1.32 
0.3 1.63 
0.5 2.26 
0.7 4.31 

Lognormal(0,1) 0.1 1.81 
0.3 2.73 
0.5 3.73 
0.7 6.05 

100,(Mean variance estimate) 

Naive ACI 

0.33 0.40 0.40 0.40 
0.33 0.57 0.58 0.57 
0.33 0.83 0.83 0.82 
0.33 1.32 1.35 1.33 
1.00 1.21 1.21 1.20 
1.00 1.73 1.73 1.72 
1.00 2.48 2.49 2.46 
1.00 4.01 4.09 4.01 
1.00 1.21 1.21 1.20 
1.01 1.74 1.74 1.71 
1.00 2.51 2.53 2.50 
0.99 3.99 4.04 3.95 
1.64 1.97 1.99 1.96 
1.52 2.61 2.64 2.58 
1.50 3.85 3.81 3.83 
1.52 5.95 6.36 6.24 

Conf. interval coverage rate (%) 
Naive ACI 

91.8 93.2 93.4 94.8 
86.0 94.0 94.4 95.4 
79.8 95.0 95.2 97.0 
70.6 95.0 95.8 96.2 
92.8 95.2 95.0 96.2 
85.4 96.2 96.4 97.8 
79.0 94.4 94.8 95.0 
66.2 93.8 93.8 95.4 
91.2 93.8 93.8 95.2 
87.6 94.6 95.2 96.2 
81.6 96.2 96.0 98.0 
63.2 92.6 94.0 94.4 
92.4 95.0 94.6 94.0 
82.4 90.4 90.8 92.8 
77.4 91.8 91.6 94.4 
60.8 89.8 92.0 93.6 

[1] Rao-Shao jackknife 
[21 Shao-Sitter bootstrap 

Table 2. Mean estimates of variance components in the ACI variance estimator 

Normal(0,1) 

Poisson(~,=3) 

Gamma(c~= 1,[3= 1) 

Lognormal(0,1) 

Variance component:l: [100,(mean estimate)] 

% 

0.1 
0.3 
0.5 
0.7 
0.1 
0.3 
0.5 
0.7 
0.1 
0.3 
0.5 
0.7 
0.1 
0.3 
0.5 
0.7 

VSAMP VlMP CiMP 

0.33 0.07 0.00 
0.33 0.20 0.04 
0.33 0.34 0.16 
0.33 0.47 0.53 
1.00 0.20 0.01 
1.00 0.60 0.12 
0.99 1.00 0.49 
1.00 1.41 1.60 
1.00 0.20 0.01 
1.01 0.60 0.12 
1.00 1.01 0.50 
0.99 1.41 1.59 
1.64 0.31 0.01 
1.52 0.91 0.18 
1.50 1.55 0.80 
1.52 2.21 2.22 

:l: For notational convenience, V SAMP, V1MP, and CiMP are used to denote the sampling error variance, imputation 

error variance, and imputation error covariance components of the ACI variance estimator. 
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