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1. I n t r o d u c t i o n  

1.1 M o m e n t s  of  p o i n t  e s t i m a t o r s  a n d  v a r i a n c e  
e s t i m a t o r s  

This paper examines the use of some simulation 
methods to evaluate the properties of variance esti- 
mators intended for use with complex survey data. 
Although these methods apply to a wide class of 
variance estimators, principal attention is devoted 
to design-based estimators. 

Consider a finite population of N elements i 
with characteristics Yi that  are independently and 
identically distributed according to some superpop- 
ulation model ~. Define the finite population total 
0 = )--~g= 1 Yi; the main ideas considered below apply 
to other finite population parameters (e.g., a popu- 
lation mean, ratio or regression coefficient) but will 
not be considered further here. A sample s of n 
elements is selected according to a complex design 
p, and we use the sample observations Yi, i E s, to 
compute an estimator 0 = )-'~ies wiYi of 0. Here, 
the weight wi is defined to equal the inverse of the 
first-order selection probability for unit i. 

Now consider estimation of the design variance 
of t~. To simplify notation, we restrict attention to 
the commonly encountered case of stratified multi- 
stage sampling with L s t rata  and two primary sam- 
ple units selected with replacement from each stra- 
tum. Standard arguments indicate that  one may 
rewrite our point estimator 0 L -- E h - - 1  ~h where 
0h = 0hl + 0h2, 0hi = )-~ies~ wiYi and Shj is the 
set of selected sample elements contained in selected 
primary unit j in s t ra tum h. Then a commonly used 
design unbiased estimator of the design variance of 
0 is 

L 

I? = E l)'h (1.1 / 
h= l  

where ~h = ( ~  - ~)~. 
Moments of/} and 17 can be evaluated with re- 

spect to the random variability generated by the de- 
sign, the superpopulation model, or both. Specifi- 
cally, consider a given finite population of size N and 

a proposed design selecting n units. For each unit 
i in the finite population, consider the pair (Yi, Ri), 
where Yi is the unit characteristic of principal inter- 
est and Ri is a selection indicator, equal to one if 
unit i is selected by the design, and equal to zero 
otherwise. For a given selected sample s, let E¢(-[s) 
and V~(.[s) denote moments evaluated with respect 
to the model, conditional on the specific selected 
sample s. In addition, let Ep(-]U) and Vp(.[U) de- 
note moments evaluated with respect to the sample 
design, conditional on a given realization U of the 
finite population; let Ep(.) and Vp(.) denote mo- 
ments evaluated with respect to the unconditional 
distribution of the Ri, and let Ep~ (.) and Vp~ (.) de- 
note the expectation and variance evaluated with 
respect both the model and the design. Then stan- 
dard double-expectation and variance results (e.g., 
Woodroofe, 1975, pp. 281-282) show that  

E,~(~) = Ee{E,(~J~)} = E,{Ze(01~)}; 

y,~(~) = E~{V,(~IU)} + V~{E,(~IU)}; 

and 

(1.2) 

(1.3) 

y~(~)  = E,{Yc(~Is)} + Y,{E~(~is)). 

Similarly, for the variance estimator V, 

E,~(~)  = E~{E,(~I~)}  = E,{E~(~I~)};  

y;e(V) = Ee{V,(VlU)} + Vc(E,(VlU));  

and 

(1.4) 

(1.5) 

(1.6) 

v;e(V) = E,{V~(VI~)} + V,{Ee(Vls)}. (1.7) 

1.2  Three types of s i m u l a t i o n  b a s e d  perfor- 
mance e v a l u a t i o n  criteria for complex  sample 
a n a l y s i s  methods  

The sample survey literature often uses simulation 
methods to evaluate some components of expres- 
sions (1.2) through (1.7). This simulation work 
tends to use one of the following approaches. 

1.2.1 Design-based assessment with a known fixed 
finite population 

One option is to restrict attention to a fixed finite 
population for which the Y~ values are known for all 

261 



population units. In some cases (e.g., Rao and Bay- 
less, 1969), the randomization moments can be eval- 
uated directly from known population parameters. 
In other, more complicated cases, randomization 
moments (especially for small or moderate sample 
sizes) are less tractable, and generally are evaluated 
through simulated repeated sampling according to 
the specified design. 

In some simulation work, the known finite pop- 
ulation has been obtained from census data or is 
constructed by concatenation of several large sam- 
ple datasets. In other cases (e.g., Hansen, Madow 
and Tepping, 1983, Section 2.2), the known finite 
population is generated as one set of N realizations 
of a specific superpopulation model ~. 

Under this option, the simulation work involves 
repeated sampling from the fixed finite popula- 
tion and thus leads to estimates of the design mo- 
ments Ep(/~IU), Vp(0lU), Ep(I)IU ) and Vp(VIU ). 
These moments are all conditional on U. In that  
sense, they can be viewed as ~-unbiased estimators 
of, respectively, Ep~(/}), E~{Vp(OIU)} , Ep~(I ?) and 

E {Vp(91U) } 
1.2.2 Design-related assessment assuming distribu- 
tional characteristics for lower-level estimators 

A second option, which can be closely related to 
the first, is to assume that  lower-level estimators 
follow a specified distribution. For example, due 
to central limit theorem arguments, in some cases 
it is plausible to assume that  the primary sample 
unit es t imators  Ohi are approximately distributed 
as normal random variables with specified means 
and variances that  may differ across h or i. Similar 
assumptions are sometimes used for the distribution 
of primary-unit-level variance estimators, or point 
estimators at a secondary-unit or finer level; see, 
e.g., Eltinge and Jang (1996, Section 5.2). 

Under this approach, simulation work involves 
generating variates from the specified normal dis- 
tributions and then assessing the resulting distribu- 
tional characteristics of higher-level estimators like 
0. This can be a tractable approach to evaluation of 
some properties of estimators 0 that  are complicated 
nonlinear functions of the lower-level estimators. In 
a formal sense, if one considers the specified normal 
distribution of the primary-unit or secondary-unit 
level estimators to be induced solely by the sam- 
pling design, conditional on a given realization U of 
the superpopulation model ~, then the simulation 
output  is intended to describe the properties of the 
resulting distribution of 0, conditional on the real- 
ization U, e.g., Ep(t)lU ) or Vp(0IU). On the other 
hand, if the specified normal distributions of the 

primary-unit level estimators are considered to be 
induced by random variability associated with both 
the sample design and the superpopulation model, 
then the simulation output  is intended to describe 
properties of the unconditional distribution of 0, 
e.g., Ep~(O) or Vp~(O). 

1.2.3 Explicit use of a model for element-level char- 
acteristics 

A third option is to restrict attention to one par- 
ticular selected sample s and then generate simu- 
lated observations {Yi, i C s} according to a condi- 
tional superpopulation model ~ls. This leads to esti- 
mates of the moments E~(01s), V~(01s), E~(VIs ) and 
V~(iYls), which in turn can be viewed as p-unbiased 

estimators of, respectively, Ep~(0), Ep{t~(01s)} , 

Ep~(V) and Ep{V~(VIs)}. This third type of simula- 
tion work appears to be carried out fairly commonly 
in published studies of estimator performance, and 
in related work in statistical agencies. 

1.3 O u t l i n e  of  main ideas 

The remainder of this paper explores the frame- 
work of Section 1.2.3 in additional depth. Sec- 
tion 2 briefly reviews some ideas of design-based 
and model-based evaluation of complex survey data 
analysis methods. In this, we take a relatively de- 
tached approach to the "design based vs. model 
based" controversy, and view design-based, model- 
based and combined evaluation approaches as all of- 
fering potentially useful insights into the operating 
characteristics of a given analysis method. 

Section 3 considers the assessment of variance 
estimator stability through estimation of the com- 
ponents of expressions (1.6) and (1.7). These com- 
ponents are estimated using data from one realiza- 
tion of the sample design (i.e., the one set of sam- 
ple units actually selected for our survey); and from 
a large number of realizations of the model ~ for 
our set of selected sample units. Section 4 dis- 
cusses some possible extensions and applications of 
the main ideas considered in this paper. 

2. Operat ing  Character is t ic  Surfaces Im- 
plied by Pure  Randomiza t ion ,  Superpopula-  
t ion and Mixed  Approaches  

2.1 Three  classes of evaluat ion criteria 

Evaluation of estimator performance with re- 
spect to distributions induced the randomized sam- 
ple design p, the model ~, or both, can be motivated 
in several related ways. First, in some cases an an- 
alyst has a high level of certainty that  the observed 
data are consistent with a certain model or class of 
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models ~. For example, this prior modeling infor- 
mation may arise from previous studies, combined 
with careful model checking for the current data. 
For such cases, some statisticians prefer to evaluate 
estimator performance with respect to the model 
alone. See, e.g., Royall and Herson (1973a, b), Roy- 
all and Cumberland (1978), and Scott et al. (1978) 
for discussion of these and related ideas. As is noted 
in some of this literature, a potential fundamental 
limitation of a purely model-based approach is that  
it may not provide information regarding the oper- 
ating characteristics of a proposed estimation and 
inference method for cases in which the specified 
model ( is not satisfied. 

Second, at the other extreme an analyst may 
have little or no information about a plausible un- 
derlying model. In that  case, a pure randomization 
approach provides a certain basic level of  assurance 
regarding estimator properties (e.g., approximate p- 
unbiasedness of a point estimator), conditional only 
on the assumption that  the randomization design 
was carried out as specified. See, e.g., Cochran 
(1953, Chapters 2 through 7) for a classical devel- 
opment of this idea. Also, some authors advocate 
careful examination of the randomization properties 
of estimation and inference methods, even if these 
methods were originally motivated by, or derived 
under, a specific model. See, e.g., Rubin (1987, pp. 
117-118; 1996, p. 474); and related comments in 
Box (1980, Section 1.1). 

In a sense, a pure randomization approach can 
generally be viewed as conservative, and this conser- 
vative characteristic can naturally be somewhat lim- 
iting. For example, randomization results may indi- 
cate that  two point estimators or two variance esti- 
mators are each approximately unbiased; but with 
some exceptions, comparisons of their small-sample 
variances or general small-sample distributions re- 
quire additional information. In particular, the rel- 
ative magnitudes of two randomization-based vari- 
ances may, in principle, depend heavily on special 
characteristics of the finite population in question. 

Due to these limitations, some authors have 
chosen to evaluate estimator performance simulta- 
neously with respect to both the randomization and 
the model ~. For example, one may evaluate an ex- 
pectation Ep~(.), integrating with respect to both 
the randomization distibution and the ~ distribu- 
tion. Similarly, one may evaluate the combined 
variance Vp~ (.), with the associated components dis- 
cussed in Section 1.1. For some general background 
on these and related ideas, see, e.g., Fuller (1975), 
Cassel et al. (1977), S/irndal et al. (1992) and ref- 
erences cited therein. 

2.2 A d d i t i o n a l  m o t i v a t i o n  for e v a l u a t i o n  of  p~ 
m o m e n t s  

In addition to the abovementioned formal mathe- 
matical motivation, the p~ approach is supported 
by the following informal arguments. First, viewed 
broadly, one may consider estimator operating char- 
acteristics (e.g., bias or variance) across a multidi- 
mensional space, with some dimensions determined 
by different realizations of different possible models 
~, and other dimensions determined by the partic- 
ular set of sample units selected by the sample de- 
sign. In essence, if we focus exclusively on design- 
based properties, we are conditioning on a specific 
realization of a given ~ model, and our evaluation 
focuses on "averages" evaluated across different pos- 
sible sets of selected sample units. Similarly, evalu- 
ation of model-based properties amounts to condi- 
tioning on a given selected set of sample units, and 
examining "averages" evaluated over different pos- 
sible realizations of the model ~. In a sense, eval- 
uation of Ep~(-), Vp~(-) and related p~-properties 
amounts to an attempt to obtain a somewhat less 
conditional characterization of estimator properties. 
In an informal sense, one might say that p~- evalu- 
ation allows one to "average out" the "rough edges" 
(i.e., idiosyncratic characteristics) that can in prin- 
ciple arise in a given realization of the sample design 
and model ~. However, this naturally entails some 
loss of information, e.g., problems with performance 
of a given estimator under extreme realizations of 
either the design p or of the model ~. Similar con- 
cepts apply to performance characteristics of formal 
inference procedures, e.g., the size and power of hy- 
pothesis tests, or the mean width or coverage rate 
of confidence intervals. 

Second, in practical applications (e.g. the 
health examination survey work that motivated 
this paper), one often collects a large number of 
variables (e.g., demographic characteristics; health 
knowledge, attitude and behavior; and anatomical 
and physiological measurements) for the persons se- 
lected through a single realization of a given com- 
plex sample design. Due to potentially large mis- 
specification effects (e.g., Skinner, 1989), it is con- 
sidered important to account for the design in the 
analysis of the data. However, due to the large num- 
ber of analyses to be carried out, it is sometimes con- 
sidered appropriate to, in essence, discuss estimator 
performance "averaged" over the large set of vari- 
ables (or associated residual-type terms) of interest. 
If a given set of variables (e.g., several continuous 
anatomical and physiological measurements) are all 
believed to satisfy a given class of models ~, then un- 
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der mild conditions, "averaging over the variables" 
is closely related to integrating with respect to the 
distribution. See, e.g., Cochran (1953, p. 169), and 
Des Raj (1958) for some related discussion. Also, 
similar ideas can be used to some degree to moti- 
vate the use of generalized variance functions (e.g., 
Wolter, 1985, Chapter 5) or "average design effects." 

2.3 A n  ana logy  w i t h  t i m e  series s ignal  pro-  
cess ing 

A review of the above-cited literature suggests that 
the simulation work described in Section 1.2.3 is 
loosely analogous to some time series analyses of 
complex signal-processing systems. Specifically, 
some signal-processing work introduces a "shock," 
with known characteristics, or a sequence of shocks, 
into the system. The subsequent system output is 
then used to make inferences regarding certain prop- 
erties of the system itself. 

A complex survey procedure (i.e., a sample de- 
sign, along with associated point estimation, vari- 
ance estimation and inference methods) can be anal- 
ogous to a signal processing system in the follow- 
ing sense. First, conditional on s (and thus on the 
wi and the specific forms of 0 and V(.) viewed as 
functions of {Y/, i C s}), sample observations Y/are 
generated according to the model ~[s; the resulting 
observations Yi, i C s are analogous to a specific sys- 
tem input signal. Second, the analysis results (e.g., 
realized values of the point estimators, variance es- 
timators and confidence bounds) are analogous to 
signal-processing output. Third, consider the link- 
age of the conditional input distribution ~ls with 
the output distribution of analysis results (e.g., the 
distributions of 0, V or t statistics). For a given 
sample s, this linkage offers insight into one spe- 
cific dimension of the operating characteristic sur- 
face of this survey procedure. This dimension is 
conceptually distinct from randomization (i.e., plU) 
dimension of operating characteristics generally em- 
phasized in design-based literature. Finally, under 
this loose analogy, one can view the sample design 
as generating a distribution of signal processing sys- 
tems. Thus, p~ distributional characteristics (e.g., 
the Ep~(.) and Vp~(.) moments) can be interpreted 
as descriptions of this distribution of processing sys- 
tems, now averaged with respect to the sample de- 
sign. 

2.4 B a l a n c e d  i n t e r p r e t a t i o n  of eva lua t ion  cri- 
t e r i a  

The remainder of the paper will take the relatively 
broad view that for both design- and model-derived 
analysis methods, it can be of serious interest to 

evaluate performance with respect to either the p or 
or p~ distribution. In essence, one may consider 

these evaluation approaches to be largely comple- 
mentary, with each offering insight into different di- 
mensions of the overall operating characteristic sur- 
face for a proposed analysis method. One generally 
may seek to use methods that perform reasonably 
well under each criterion. 

However, this view is often complicated by the 
fact that these evaluation criteria (especially when 
focused on variances and other efficiency measures) 
depend on the numerical values of assumed con- 
ditions, e.g., relevant superpopulation parameters 
or design features. This in turn highlights the im- 
portance of explicitly linking qualitative evaluation 
conclusions with assumed conditions. The practical 
information conveyed by this linkage naturally de- 
pends heavily on the size of the "neighborhood" of 
conditions relevant to a given survey analysis; and 
on the amount of curvature in these evaluation cri- 
teria within that neighborhood. 

To interpret the resulting linkage, consider 
again the loose analogy to time series signal pro- 
cessing introduced in Section 2.3. In signal process- 
ing "high pass" and "low pass" filters are labeled 
and broadly understood to perform well on funda- 
mentally different types of signal; and practical de- 
cisions regarding the choice of filtering method in 
a given application are accordingly conditional on 
the type of signal anticipated to be present. The 
present sample survey case is arguably more com- 
plicated due to qualitative differences between the 
p and ~ approaches. However, the signal-processing 
analogy may nonetheless be somewhat instructive, 
e.g., in its emphasis on conditioning ideas. 

3. P r o p e r t i e s  of a S t a n d a r d  Var iance  Est i -  
m a t o r  

3.1 A d d i t i o n a l  n o t a t i o n  and  cond i t i ons  

Note first that under mild regularity conditions, 
routine arguments show that the second component 
of expression (1.3) is negligible for large N. Conse- 
quently, if V'(01U) is a design unbiased estimator of 
the design variance Vp(~IU), then V(01U)is approx- 
imately p~ unbiased for Vp~(0). Thus, the estimator 

V(01U) continues to be of intrinsic interest when we 
move attention from evaluation of design variances 
to evaluation of p~ variances. 

Now consider the stability of the variance es- 
timator V(01U). Note that for a given realization 
s of the sample design, one may use the model 
~[s to generate R simulated sets {Yi(r),i E s} of 
sample observations. These observations in turn 

264 



lead to R simulated point estimators/}(r) and vari- 

ance estimators I?(r), say. Then the simulation 

mean ER~(V(,.)Is) - R -1 ~_,,.R=I V(,.) and variance 

VR~(V(~)Is) - ( R -  1) -~ E~R=I{V(~) --/~R~ (V(~) Is)} 2, 

say, converge with probability one to E~(VIs ) and 

V~(VIs), respectively, as R increases. 

Section 3.2 discusses ways to use /~R~(V(r)[s}, 

I}'R~(V(r) Is} and related quantities to construct esti- 
mators of the components of the variance decompo- 
sition (1.7). To simplify notation, we will restrict 
attention to the stratified two-per-stratum with- 
replacement design discussed in Section 1.1. In ad- 
dition, we will assume that  the sample design and 
superpopulation mechanism are independent, and 
that  the survey items Yi are independent and iden- 
tically distributed with mean zero and constant vari- 
a n c e  0.2. 

3.2 S t a b i l i t y  of  a va r i ance  e s t i m a t o r  

Now consider the two components of the variance 
decomposition (1.7), and note that  the simulation 
variance 

is p~ unbiased for the first component, Ep{V~(VIs)}. 
In addition, conditional on s, note that  the differ- 
ences  Yhl -- ]~rh2, h = 1 , . . . ,  L, are distributed inde- 
pendently with common mean zero and variances 

2 2 Thus, ~2 F_,j=I E ~  wi. 

L 2 

h=l  j = l  iEshj 

Routine arguments then indicate that  under the de- 
sign assumed in Section 1.1, a design unbiased esti- 
mator of Vp{E~(?ls)} is 

L 
0 .4 E ( ~ r h l  -- ~/rh2) 2 (3.2) 

h=l  

2 Consequently, given where l~hj = ~_,ieshhwi. 
known 0.2, R simulation replications of ~ and one 
realization of the sample design s, the sum of expres- 
sions (3; 1) and (3.2) is a design unbiased estimator 
of Vp~(V). Thus, for cases in which the abovemen- 
tioned assumptions are reasonable, relatively simple 
simulation methods allow assessment of the stability 
of the variance estimator V. In addition, separate 
computation of the two terms (3.1) and (3.2) pro- 
vides an indication of the relative contributions of 
the design and model to the overall variability of V. 

Finally, consider the components of expression 
(1.6). Arguments similar to those at the start  of Sec- 
tion 3.1 indicate that under the assumptions stated 
above and additional mild regularity conditions, 
the second term of expression (1.6), V~{Ep(~Z]U)} 
is negligible relative to the magnitude of the first 
term. To evaluate that  first term, assume that  
conditional on U, the difference ( ~ h l -  0h2 is dis- 
tributed as a normal random variable with mean 
zero and variance Vh - V p ( ~ h l -  0h2lU); cf. Sec- 
tion 1.2.2 above. Then routine arguments show that  

L Vp(VIU ) = 2 ~-~h=l V~; and that  a p-unbiased esti- 
^ 

mator of Vp(VIU) is 

L 

3--12 E ?/~ , (3.3) 
h--1 

where Vh -- ( 0 h l -  0h2) 2 as in Section 1.1. This 
leads to two results. First, given a single realization 
of the superpopulation model ~ls, expression (3.3) 
gives a p~ unbiased estimator of the dominant term 
in the p~ variance of V. Note especially that  this 
can be computed directly from the true observations 
actually collected in an actual survey, without use 
of simulations. Second, suppose that  for each of R 
simulation realizations of the model ~ls, we compute 
the value V(~)(VI•U), say, of expression (3.3). Then 

R 
the average R - 1  E r = l  * ^ V(r)(VIU ) of these variance 
estimates gives a more stable estimate of the dom- 
inant term of expression (1.6). Thus, provided one 
is interested in evaluation of the dominant term in 
expression (1.6) rather than the conditional vari- 

^ 

ance Vp(VIU), use of ~[s simulation work can help 
to improve the stability of the stability measure it- 
self. This can be of serious interest because stabil- 
ity measures such as expression (3.3) are functions 
of fourth moments, and thus are themselves sub- 
ject to stability problems, especially in applications 
involving a relatively small number L of strata, or 
involving severe heterogeneity of the stratum-level 
variances Vh. 

4. D i scus s ion  

In closing, we note several possible extensions of the 
ideas considered here. First, the current paper has 
restricted attention to the simple case in which the 
element-level Yi are independent and identically dis- 
tributed random variables, independent of the de- 
sign selection indicators Ri. However, extensions 
of Section 3 to cases involving dependence between 
the selection indicators Ri and the observations Yi 
can offer insight into the links between the p~ prop- 
erties of a variance estimator and the informative- 
hess of a sample design. This is of special interest 
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because nontrivial relationships between the design 
and the superpopulation model can have an impor- 
tant practical impact on the properties of variance 
estimators; see, e.g., Korn and Graubard (1997) and 
references cited therein. 

Second, the present work has focused primarily 
on variance estimator performance. In many appli- 
cations, variance estimation is of interest primar- 
ily as as intermediate step in construction of t-type 
test statistics or confidence intervals for 0. Conse- 
quently, in keeping with simulation work carried out 
by several previous authors, it is useful to extend 
Sections 3 through 5 to evaluate the approximate 
distribution of t statistics under the p, ~ and p~ ap- 
proaches. 

Third, in work not detailed here for reasons of 
space, we have applied some of the proposed meth- 
ods to interview and examination data from the U.S. 
Third National Health and Nutrition Examination 
Survey (NHANES III). In particular, empirical re- 
sults of this application work offered some useful 
insights into the relative performance of competing 
NHANES III variance estimators. 
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