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A b s t r a c t :  Stability of a variance estimator is an 
important practical consideration in the analysis 
of sample survey data. For example, for a given 
point estimator 0 and design-based variance esti- 
mator iY(0), the stability of V(0) is often quantified 
through a degrees-of-freedom term which is subse- 
quently used in formal inference for the parameter 0. 
In addition, degrees-of-freedom terms are sometimes 
used as qualitative diagnostics for the amount of in- 
formation conveyed by the variance estimator I?(0). 
In analyses of stratified multistage sample data, 
degrees-of-freedom terms generally are calculated 
from the difference (number of primary sample units 
- number of strata), or from a standard Satterth- 
white approximation. For surveys with large num- 
bers of strata and small numbers of primary units 
per stratum, these approximations can be problem- 
atic under some conditions, especially in the analy- 
ses of subpopulations that are concentrated within 
a relatively small number of primary sample units. 
This paper examines the use of within-primary- 
sample unit variances and errors-in-variables regres- 
sion to develop a modified degrees-of-freedom esti- 
mator. The proposed method is potentially appli- 
cable to cases for which there is a strong linear rela- 
tionship between the overall stratum-level variances 
and within-primary-sample-unit variances. 

1. I n t r o d u c t i o n  

1 .1  L a r g e - s a m p l e  d e s i g n - b a s e d  s u r v e y  infer-  
e n c e  

Large-sample inference from sample survey data 
generally involves the following strategy. A fixed 
finite population U contains M elements with asso- 
ciated characteristics Irk, k = 1, . . . , M .  Principal 
attention focuses on a parameter 0 that is a func- 
tion of {Yk,  k E U};  customary examples include 
a population mean, total, ratio or regression coeffi- 
cient. A sample design (possibly complex) is used 
to select a sample s of m out of the M elements in 
U. The sample observations {Yk,  k E s}  are used 
to compute an estimator 0 of 0. Under relatively 

mild conditions (e.g., Cochran, 1977, Section 2.15), 
ml/2 (~ _ 0) is distributed approximately as a nor- 
mal random variable with mean zero and variance 
m V ( O ) ,  say. (We note in passing that with the ex- 
ception of one condition considered in Section 2.2, 
all of the distributional work in this paper is evalu- 
ated with respect to the sample design; related ideas 
can be developed under a superpopulation model, 
but are beyond the scope of the present work.) The 
sample data {Yj,j e s} are also used to compute 
an estimator V(0), say, of V(tT). See, e.g., Krewski 
and Rao (1981) for a detailed discussion of some 
specific design-based variance estimators and their 
asymptotic properties. 

Under additional conditions, there exists a pos- 
itive real number d such that {Y(0)}-ldV(0) is 
approximately distributed as a chi-square random 
variable on d degrees of freedom, and is approxi- 
mately independent of 0. This suggests that 

{17(i0) } -1/2 (0 - 0) (1.1) 

is approximately distributed as a t random variable 
on d degrees of freedom. Then standard reasoning 
for parametric inference (e.g., Bickel and Doksum, 
1977, Section 5.1) implies that t tests can be car- 
ried out using an approximate pivotal quantity of 
the form (1.1); and that approximate (1 - ~ ) 1 0 0 %  
confidence intervals for O can be computed as, 

+ ta, l_~12{fr(~)}l l2. (1.2) 

where td, l _ a / 2  is the 1 - c~/2 quantile of a t distri- 
bution on d degrees of freedom. 

Within this inferential context, note that the 
degrees-of-freedom term d has two useful functions. 
First, given the choice of a given point estimator 
and variance estimator IY(0), the'term d helps to en- 
sure adequate performance of customary inferential 
methods, e.g., to ensure that the confidence interval 
(1.2) has a true coverage rate approximately equal 
to its nominal rate 1 -  c~. Second, assessment of 
d can help to identify cases in which a proposed 
variance estimator 1?(~}) has unsatisfactory stability 
properties. For example, in some statistical agen- 
cies, it is customary to use a given general variance 
estimator V(tg) for a wide variety of full-population 
and subpopulation-level analyse s of a given survey 
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dataset. However, as one works through a sequence 
of subpopulations that  are progressively more con- 
centrated in a small number of primary sample 
units, at some point the customary variance esti- 
mator may begin to display marked instability. An 
appropriate estimator of d can provide a diagnos- 
tic that  helps to identify the point at which this 
instability problem becomes severe enough to war- 
rant consideration of alternative variance estima- 
tors, e.g., based on auxiliary information, or on gen- 
eralized variance functions or average-design-effect 
approaches. 

1.2 D e g r e e s - o f - f r e e d o m  m e a s u r e s  of  t h e  sta- 
bility of  a d e s i g n - b a s e d  va r i ance  e s t i m a t o r  

Now consider estimation of the degrees-of-freedom 
term d. To simplify notation, the remainder of the 
paper will restrict attention to the case in which 
O is a population total estimated from data col- 
lected through a stratified multistage sample de- 
sign. Specifically, consider a population partitioned 
into L strata, with Nh primary sample units (PSUs) 
in s t ra tum h. In addition, assume that in the 
first stage of sample selection, nh primary units 
are selected with replacement from stratum h us- 
ing per-draw selection probabilities Phi, say, where 

L ~-]N~lPh i - -  1 and n = ~ h = l  nh. Also, within 
a selected PSU (h,i),  nhi secondary sample units 
(SSUs) are selected with per-draw selection prob- 

Nhi abilities Phij, say, where ~-]j=l Phij -- 1 and Nhi 
is the number of secondary units in primary unit 
(h, i). Finally, let Nhij be the number of population 
elements in secondary unit (h, i, j). 

For a given element k in secondary unit (h, i, j) ,  
let Yhijk be the survey item of interest; and de- 

_ ~"~ghij Yhijk ,  Yhi fine population totals Yhij A . ~ k = l  

~Nh~ Yhij Yh = Y']ighl Yhij and Y = ~L=I  Yh. j = l  ' 

In addition, let ]Yhij be a design-unbiased estima- 
tor of Yhij based on observed elements within sec- 
ondary unit (h, i, j); and define the related design- 
unbiased point e s t i m a t o r s  ]'Zhi -~- nh-i 1 Z...,j=v"nhil Phij-1 ~,rhi j , 

gh = nh 1 nh }--]i=l Ph llyh/ and ]Y -- }-]h=l l)h. Under 
this design, a customary design-unbiased estimator 
of the design variance of Y is V(Y)  L - 

where Vh -- n h l ( n h -  1)-1 } - ] ~ l ( p h l l ) h i -  ])h) 2 
(Wolter, 1985, p.44). 

To evaluate the variance of l)(])), note that  
due to independence of sampling across strata, 

= L Y]h=l V(V'h). In addition, we will use 
the following commonly employed assumption re- 
garding the distribution of the stratum-level vari- 
ance estimators Vh. 

(C.1) For h = 1, 2 , . . . , L ,  assume that  nh >_ 2, 
and that the terms V h l  (n h - 1) ~rh are 
distributed as independent chi-square ran- 
dom variables on n h -  1 degrees of freedom, 
respectively, h = 1 , . . .  ,L. 

Note that under condition (C.1), V{lY(lz)} = 

l ( n h -  1)-12V~ In addition, {Y(l~)}-ldIz(l))  
has the same first and second moments as a chi- 
square random variable oil d degrees of freedom, 
where d is the solution to the equation, 

2{V(I?)} 2 - V{ lY( l ) )}d -  0 (1.3) 

Thus, under condition (C.1), 

L 

- ( 1 . 4 )  

h = l  

The sampling literature has proposed several 
estimators for d. The performance of these estima- 
tors tends to depend heavily on the degree of hete- 
orgeneity of the stratum-level variances Vh, and on 
the relative magnitudes of L and nh. For cases in 
which the Vh are all equal, routine arguments show 
that  d = n -  L. Consequently, many applications 
use n -  L as the degrees-of-freedom term in the con- 
fidence interval (1.2) and related analyses. However, 
if the Vh terms are not equal, expression (1.4) can be 
substantially less than n -  L, and it can be impor- 
tant to account explicitly for the heterogeneity of 
the Vh in estimation of d. If the Vh are moderately 
heterogeneous, this can be accomplished through di- 

^ 

rect use of the variance estimators Vh. For example, 
for cases in which L is small and nh is moderate or 
large for all h, it is customary to use the Satterth- 
waite (1946)-type estimator of d, (see, e.g., Cochran, 
1977, p. 96; or Kendall et al., 1983, pp. 91-92), 

L 

d s  = - ( 1 . 5 )  

h = l  

Also, for cases in which L is moderate or large, the 
nh values are small and the Vh are moderately het- 
erogeneous, Jang and Eltinge (1995) discussed pos- 
sible modifications of the Satterthwaite estimator 
ds. For example, under the commonly encountered 
design in which nh -- 2 for all h, they considered 
the estimator, 

dins = (3L + 14)-1(9L)ds. (1.6) 
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1.3 Use  of  s t r a t u m - l e v e l  a u x i l i a r y  i n f o r m a -  
t i o n  in a s s e s s m e n t  of  v a r i a n c e  e s t i m a t o r  s ta -  
b i l i t y  

For cases in which the Vh terms are expected to be 
relatively heterogeneous, it can be useful to supple- 
ment the Vh estimates with additional information 
regarding the relative magnitudes of the Vh terms. 
Depending on the application, one could consider 
several possible sources of such auxiliary informa- 
tion. 

The remainder of this paper focuses on the 
use of within-PSU variances Vwh, say, for this pur- 
pose. Section 2 reviews a detailed definition of Vwh, 
discusses estimation of Vwh and presents a sim- 
ple errors-in-variables model for the relationship be- 
tween Vh and Vwh. Section 3 considers the use of 
this model to produce alternative estimators of d. 
Section 3.1 uses a model with an error in the equa- 
tion, and Section 3.2 uses a related model with no 
equation error. Section 3.3 discusses the use of plots 
and other diagnostics in conjunction with the esti- 
mators in Sections 3.1 and 3.2. Finally, the use of 
auxiliary information to produce an improved esti- 
mator  of d is somewhat analogous to previous sam- 
ple survey work with the use of auxiliary data to 
produce improved point estimators and variance es- 
timators.  Section 4 explores this idea in concluding 
remarks. 

2. W i t h i n - P S U  V a r i a n c e s  

2.1 E s t i m a t i o n  of  w i t h i n - P S U  v a r i a n c e s  

Recall from Wolter (1985, p.41) that  one may de- 
compose Yh = V (Yh ) as, 

Vh -- VBh + Vwh, (2.1) 

where Vsh = V {~-~h=l(nhPhi)-lyhi } is a between- 
Nh -- 1 PSU variance term, Vwh -- ~-]i=1 (nhPhi) a2hi is a 

within-PSU variance term, and 

a2hi = Var(]YhilPSU i, s t ra tum h) 

reflects sampling variability within a specific pri- 
mary unit (h, i). 

Under the conditions stated in Section 1.2, rou- 
tine arguments (e.g., Eltinge and Jang, 1996, Sec- 
tion 2.2) show that  for any given (h, i), 

nhi 

a~hi -- nh-~l (nhi - 1) -1 E(Ph-il yhiJ -- ]Yhi) 2 
j = l  

is design unbiased f o r  0"2hi; and that  

n h  

Vwh -- nh2 E -2^2 Phi  0"2hi, 
i--1 

(2.2) 

is design unbiased for V W h .  In addition, a design 
unbiased estimator of the design variance of Vwh is 

n h  

~ / ( ~ ' r W h )  - -  n h l ( T t h  --  1) - 1 E ( V w h i -  Vwh) 2. (2.3) 
i--1 

Note that  the variates Vh are functions of the sam- 
- - 1  ^ ple means of the random variables PhijYhij, taken 

over the selected primary units in s t ra tum h. Con- 
versely, the estimators Vwh are functions of sample 
variances of the Phij-1 Yhij terms. Thus, if within each 

- 1  ^ s t ra tum h the t e r m s  PhijYhij are approximately dis- 

tributed as normal random variables, then Vh and 
~/Wh are approximately independent. 

2.2 R e l a t i o n s h i p s  b e t w e e n  Vh and Vwh 

This work was motivated by some empirical cases 
in which the relationship between Vh and Vwh ap- 
pears to be well approximated by the linear regres- 
sion equation, 

Y h  - -  /~ 0 ' 1 - / ~ 1 V w h  + q h , (2.4) 

where fl0 and 1~1 a r e  fixed regression coefficients and 
the equation error terms qh are small relative to 
the overall variability of the Vh terms across h = 
1 , . . . , L .  

In addition, note that  we may v i e w  Yh a n d  ~'rWh 
as sums 

Vh -- Vh + eh and Vwh = Vwh + Uh (2.5) 

of true values (Vh, Vwh) and errors (eh, Uh). 
Taken together, expressions (2.4) and (2.5) 

define an simple linear errors-in-variables model. 
In keeping with other errors-in-variables literature 
(e.g., Fuller, 1987, Chapter 1), we will assume that  
the errors (qh, eh, Uh) satisfy the following condition. 

(C.2) Assume that  qh, eh and Uh defined in ex- 
pressions (2.4) and (2.5) are mutually in- 
dependent random variables with common 
mean zero and variances aqqh, V(Vh) and 

V(Vwh), respectively, h = 1 , . . .  ,L. 

Note that  the distributional assumptions on eh and 
Uh are consistent with the general randomization- 
based ideas in Section 2.1. However, the assump- 
tion of randomness of qh goes somewhat beyond tra- 
ditional randomization approaches, which generally 
view Vh and VWh as fixed quantities. If one prefers 
to consider a pure randomization approach to sur- 
vey inference, one could instead define (/~0,/~1) to be 
the coefficients from the least-squares regression of 
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the fixed true Vh on the fixed true Vwh and an in- 
tercept term; define qh = Yh -- ~o -- ~1Vwh ; and then 
assume that  the finite-population mean of qh, and 
related covariances of qh with other stratum-level 
quantities, are all negligible. In an infomal sense, 
these finite-population assumptions amount to as- 
suming that  the equation errors qh are not strongly 
associated with the other essential features of ex- 
pressions (2.4) and (2.5). See Eltinge (1994) for 
related comments, and for formal details of an as- 
sociated asymptotic framework. To simplify nota- 
tion, the remainder of the paper will not consider 
further this finite-population approach, and will in- 
stead make direct use of condition (C.2). 

3. E r r o r s - i n - V a r i a b l e s  E s t i m a t i o n  of d 

Under conditions (C.1) and (C.2) and additional 
asymptotic regularity conditions, the limiting first 
and second moments of L-1V,  conditional on the 
true (Vw 1 , . . . ,  VWL)', are 

L 

limL--*°°L- 1 E (/30 +/31Vwh) and 
h = l  

L 

l imL-12 E ( n h  -- 1)-1{(/3o + ~l  Vwh)  2 + grqqh}. 
h = l  

Application of these results to expression (1.4) sug- 
gests the definition, 

L - l d E i v  = D-1N,  (:3.1) 

where 

N -- /32 + 2~OfllVw -k-/312(yw) 2, 

L 

D - ~ 2 L - 1 E ( n h  -- 1) -1 + 2/~o~lYw(nh) 
h = l  

+ + 

L 

~.r W = L -1 E Vw h , 
h=l 

L 

Vw(nh)  - L -1 ~--~(nh-  1 ) - l V w h ,  

h = l  

L 

~ , r w 2 ( n h ) -  L - 1  E ( n h -  l ) - l V l ~ h  

h--1 

L 

O'qq. L -1 E ( n h  11-1 --- ~ O'qq h . 
h = l  

and 

Note that  the limit of L - l d E i v  is a function of the 
limit of 

o - (f w) 

Vw2(nh ), Oqq. )', 

say. Consequently, one can construct an estima- 
tor of dEiv  by substituting consistent estimates of 
the components of 0 into expression (3.1). Under 
moderate regularity conditions that  are not speci- 
fied here for reasons of space, 

L 

= L - 1  z 

h = l  

h = l  h = l  

L 

Vw(nh)  =L - 1 E ( n h -  1 ) - l V w h  and 
h = l  

L 

Vw"-'-2(nh) =L -1 E ( n h -  1)- l [V2h -- V(~rWh)]. 
h = l  

are consistent estimators of the limits of lYw, (Vw)2, 
Vw(nh)  and Vw2(nh), respectively, where V(Vwh 
is defined in expression (2.3). Thus, it remains to 
construct consistent estimators of/30, /~1 and the 
limiting value of Oqq..2 In developing such estima- 
tors, the errors-in-variables literature generally gives 
separate consideration to the cases in which Crqq.2 is 
greater to zero and equal to zero. These cases are 
addressed in Sections 3.1 and 3.2, respectively. 

3.1  A m o d e l  w i t h  e q u a t i o n  e r r o r s  

Consider first the case in which &qq. > 0. Then 
following Fuller (1987, pp. 187-189), define the es- 
timators, 

and 

L 

h = l  

L 

h = l  

L 

_ L - 1 E ( n h  - 1 ) - I { ( L -  2)-IL(Vh O'qq. 

h--1 

- A - - 

where o'eeh -- 2(nh -4- 1)-IV~ from condition (C.1). 
Naturally, the estimator of #qq. is taken to be 
the maximum of (3) and zero. Then an estima- 
tor L - l d E i v ,  say, follows from substitution of the 
abovementioned estimators into expression (3.1). 
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3.2 A m o d e l  w i t h o u t  e q u a t i o n  e r r o r s  

In some cases, empirical evidence suggests that  
aqq. - O. For such a case, called an errors-in- 
variables model with no equation error, one gener- 
ally uses alternative point estimators (/~0,/~1), say. 
See Fuller (1987, pp. 190-191) for details. Substi- 
tution of (/~0,/~1) and aqq. " 0 into the previous 

expression for L - l d E I y  l eads  to an alternative esti- 
mator d E I v ,  say. 

3.3 R e l a t e d  d i agnos t i c s  

In general, the performance of dEiy or d-Exy will de- 
pend heavily on the extent to which the within-PSU 
variance e s t i m a t o r s  ~/rWh provide useful supplemen- 
tary information regarding the relative magnitudes 
of the true overall stratum-level variances Vh. To 
assess this, the following diagnostics are potentially 
useful. First, a scatterplot of Vh against Vwh pro- 
vides some qualitative information regarding the ad- 
equacy of the linear approximation (2.4). Of special 
interest are the general dispersion of the scatterplot 
around a straight-line errors-in-variables fit and the 
possible presence of nontrivial curvature, a nonzero 
intercept/~0, or outliers. 

Second, to some degree, interpretation of such 
scatterplots can be complicated by the presence of 
error in the Vwh. Consequently, it is useful to con- 
sider some other diagnostics that  account explicitly 
for these errors. For a detailed discussion of errors- 
in-variables diagnostics, see, e.g., Fuller (1987), Car- 
roll, Ruppert  and Stefanski (1995) and references 
cited therein. Here, we will restrict attention to 
some simple moment-based tools. For example, con- 
sider/~0 +/~1VWh as an estimator of Vh, and note 
that  under the linear approximation (2.4), 

(~0 + ~1 ? W h )  - Vh -- /~1 (~ffWh -- Y w h )  - qh 

+ ( 3 0  - + -  l)ywh ( 3 . 2 )  

+ (~rWh -- Y w h ) ( f l l  -- i l l )  

Under regularity conditions, expression (3.2) is 
dominated by its leading term, fiX ( ' ~ rWh-  VWh)--qh, 
which has a variance estimated by ~2V(Vwh)+~'qq. 
under the assumption of homogeneous O'qqh. Also, 

iY(I?h) reflects the precision of Vh as an estimator of 
Vh. Consequently, define the ratio, 

L L 

r -- { E  ~r (~ rh )} - i  E {/~127(~ffWh) + ~qq '}  

h= l  h=l  

One generally would consider use of dEiu or dEIy 
only if r is substantially less than unity. 

Another quantity that  assesses the magnitude 
of errors in predictor variables is the reliability ra- 
tio, ~ ,  defined to be the ratio of the population 
variances of true values, divided by the population 
variance of observed values; see, e.g., Fuller (1987, 
p. 3). For the present case, an estimator of ~ is, 

= h - 2 

[.h=l 

] × ^ _ _ O'uu" , 
[.h=l 

Given independence of the errors from the true val- 
ues, t~xx falls between 0 and 1, with ~x~ close to 
1 indicating that measurement error makes a rela- 
tively small contribution to the overall variability of 
the observed values. In application and simulation 
work not detailed here, we used &zx as a prelimi- 
nary diagnostic to identify cases for which the Vwh 
could potentially provide useful supplementary^ in- 
formation. In particular, we found that  use of dEIY 
or dEIv was problematic for applications involving 
kzz less than 0.7 or 0.8. 

Finally, the estimator Sqq. gives a pooled indi- 
cation of the amount of dispersion in the approxi- 
mate linear relationship (2.4). For cases in which r 
is not small, the two component ratios 

L L 

h=l  h--1 

and { L ^ ~-]h=l ~/(Vh)}-lSqq. gives some indication of 
whether the limitations of the errors-in-variables ap- 
proach are attributable to a large estimation error 
variance V(Vwh), a large average equation error 
variance aqq., or both. Also, for cases in which an 
errors-in-variables approach may be appropriate, a 

L formal test of the null hypothesis H0 : ~-~h=l O'qqh - 
0 is useful in deciding whether to use dEIy or dEIy; 
see, e.g., Fuller (1987) for examples of formal tests 
for equation error. 

4. D i scus s ion  

Recall from Section 1.1 that  customary design-based 
large-sample inference with survey data involves a 
point estimator 0, a variance estimator V(0) and 
a degrees-of-freedom term d. In parallel with this, 
one may consider use of auxiliary data to develop 
improved estimators for one or more of these three 
parts of an analysis. For point estimation, use of 
auxiliary data has received extensive attention. See, 
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e.g, the classical discussion of ratio- and regression- 
based point estimators in Cochran (1977, Chapters 
6 and 7); and other work with regression estimators 
and related approaches in Fuller (1975), Isaki and 
Fuller (1982), S/irndal et al. (1992) and references 
cited therein. In that work, a common theme is that 
efficiency improvements, if any, obtained through 
the use of auxiliary data will depend on the ad- 
equacy of approximations (generally involving re- 
gression equations) for the relationship between the 
auxiliary data and the principal variables of interest. 
Also, to reflect these potential efficiency gains, the 
use of auxiliary data for point estimation generally 
also leads to modified variance estimators and may 
also require modified degrees-of-freedom terms. 

Also, in some cases auxiliary data is used to 
produce a variance estimator V(0), say, that is ex- 
pected to be more stable than the customary design- 
based variance estimator; see, e.g., Isaki (1983). 
Again here, the magnitude of improvements in vari- 
ance estimator stability will depend on the strength 
of the relationship between the available auxiliary 
data and the variables of principal interest. 

In this paper, we have considered the use of 
auxiliary data to produce a degrees-of-freedom es- 
timator that may be more stable than customary 
Satterthwaite-type estimators such as ds and dins. 
The resulting errors-in-variables estimators are in- 
tended primarily for cases in which L is relatively 
large, nh values are small and the true stratum vari- 
ances Vh are heterogeneous. Also, as emphasized in 
Sections 2.2 and 3.3, performance of the proposed 
estimator will depend heavily on the adequacy of 
the approximation (2.4) for the relationship of Vh 
with Vwh across h = 1 , . . . ,  L. 
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