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Abs trac t :  The National Resource Inventory 
(NRI) is a survey aimed at assessing conditions and 
trends at 5-year intervals for soil, water, and related 
resources on nonfederal rural lands of the United 
States. A two stage stratified sampling design is 
used for 1982, 1987 and 1992. For each primary 
sample unit (PSU) size data  of different landuses are 
collected. Within each PSU detailed data  are ob- 
tained from three randomly selected points (SSU). 
Pseudo points are created if PSU data  contains a 
pattern over the three years which is not reflected 
by the SSUs. The data for the pseudo points are 
imputed from real point data, usually within the 
vicinity of the PSU. While a previous procedure se- 
lects the donor randomly within a given region, a 
proposed improved procedure uses newly available 
spatial information to select donor point from the 
closest PSU. This article compares the pseudo point 
generation for both procedures by using a measure- 
ment error model. Points from four different states 
which reflect changes observed in PSUs were re- 
moved. The true coveruses of these points are com- 
pared with the coveruses of the generated pseudo 
points. The comparison indicates that  the new pro- 
cedure reduces significantly misclassification errors. 

1 I n t r o d u c t i o n  
The NRI is a longitudinal survey performed once 

every 5 years on nonfederal rural land of the United 
States. It has been designed and developed over 
a period of several decades with the specific goal 
to provide information in support of policy devel- 
opment and program implementation. Data  are col- 
lected on agricultural variables such as land use pat- 
terns, soil types, soil properties, soil erosion, range- 
land quality, and on ecological characteristics such 
as wetlands, habitat  diversity, and vegetative cover. 
This information allows the Congress, federal agen- 
cies, and others to evaluate existing programs, pro- 
pose new programs, and allocate financial and tech- 
nical assistance to address natural resource con- 
cerns. 
The sampling design for 1982, 1987, and 1992 NRI 
series was developed to meet several criteria, includ- 
ing broad geographic spread of the sample, the ca- 

pacity to vary sampling intensity over geographic 
areas and land use categories, and the ability to re- 
visit sample locations. The design is based on a 
stratified two-stage area sample, with counties as 
the basic design units. The most common PSU is a 
160-acre square area with 0.5 miles on each side. For 
each sample PSU, size data  were collected for five 
different coveruses, in particular, farmsteads, small 
water bodies, small and large streams and urban 
areas. In addition, data were collected on owner- 
ship categories, hydrologic units, acres in the PSU 
that  lie inside the county, and some climate fac- 
tors that  serve as input for erosion equations. Most 
PSU data  were collected using photointerpretation 
and auxiliary remote sensing materials. Within each 
PSU, detailed data were collected at usually 3 ran- 
domly selected points. Point variables include land 
use and land cover, soil type and properties, crop- 
ping history, vegetative cover, wetland classification 
and a number of conditions related to factors for 
rangeland. A point within the PSU is the second 
stage sample unit (SSU). Photointerpretation, re- 
mote sensing materials, and county office records 
were used to collect most of the NRI point data. 
The base sample of 1982 consists of 321,000 primary 
sample units with about one million point observa- 
tions. The sample for the 1987 survey contains only 
one third of the 1982 NRI PSU's. Imputat ion pro- 
cedures were developed to complete the 1987 data. 
The 1992 NRI sample size was about the same as 
that  of 1982 including 300,000 PSUs with 800,000 
points. 

The design of the sample is a form of a panel sur- 

vey in that  the 1987 sample is a subsample of the 
1982 sample and the 1992 sample is nearly the 1982 
sample. 

The sample was designed to produce reasonable 
estimates for the geographical units called Major 
Land Resource Areas (MLRAs). MLRAs are distin- 
guished by geography, soil, climate, water resource 
and land use considerations. Since the sample must 
provide consistent acreage estimates for both coun- 
ties and MLRAs, the basic tabulation unit is the 
portion of a MLRA within a county, which is called 
a MLRAC. 

2 I m p u t a t i o n  of  P S U  data  
One difficulty of this panel survey design is that  

PSU data  may contain a pattern of change over the 
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years 1982, 1987 and 1992 that is not reflected by the 
points. This is in particular a problem for estimation 
of changes in land use of small areas. To reduce 
variability in small area estimations, pseudo points 
are created if required so that changes PSU level 
data are reflected by the point level. The general 
procedure of pseudo point generation where point 
data reflect changes observed in PSUs is described 
in McVey, Breidt, and Fuller [5]. For example, we 
may have a PSU which shows an increase of the 
land use category 'large urban'  from 1982 to 1987 
and has a constant acreages size for 'large urban' 
from 1987 to 1992. Suppose that this PSU does not 
have a point with land coveruse 'large urban' for 
all three years. Hence the points do not reflect the 
change of 'large urban'. In order to reflect a change 
in large urban acres for that PSU , a pseudo point 
is generated with coveruse 'no large urban'  in 1982 
and 'large urban' in 1987 and 1992. 
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Figure 1" Pseudo point generation to reflect increase 
of large urban area. X denotes a real point, O de- 
notes a pseudo point 

The types of points required for a particular PSU 
is determined by the changes of the PSU data over 
the three years. Once the type of change has been 
identified for a land coveruse, the number and kinds 

of points can be determined for that PSU. Points 
are created based on the acreage size change for the 
five different coveruses for which PSU data are avail- 
able. These are respectively 'farmsteads',  'small wa- 
ter bodies', 'small streams', 'small built up areas' 
and 'large urban'. If a point within the PSU has 
been sampled which reflects the PSU data change 
in one of the five coveruses, no pseudo point is re- 
quired. If not, a pseudo point is required. Since 
each PSU has typically 3 points and PSU size data 
are available for five coveruses we may have a re- 
quired maximum of 15 pseudo points for each PSU. 
The data for the pseudo points are imputed from 
real point data. Basically there are two sources of 
'donor' data. The first source is used to impute 
the coveruse in the years for which coveruse is un- 
known from points within the same PSU. This im- 
putation is controlled by defining 'acceptable' donor 
points for each possible PSU land coveruse pattern, 
i.e., there are restrictions for the donor points. For 
example, if 'large urban'  coveruse is required, we 
may have a point that satisfies the required pattern 
but cannot be used, since it has an unreasonable 
coveruse as 'large water body'  for that situation. 
The coveruse and associated characteristics for the 
required pseudo point are imputed by selecting one 
of the points within the PSU randomly and assign- 
ing the characteristics of the selected point to the 
created pseudo point. However, there may not al- 
ways be an acceptable donor point within the PSU. 
In this case we are looking for a second source of 
donor points. The second source is an acceptable 
point selected from a PSU 'near' the PSU under 
consideration. The original procedure selects a suit- 
able point randomly from another PSU within the 
same MLRAC (see Figure 2). The new procedure 
imputes pseudo points from the closest acceptable 
donor point within the MLRAC (see Figure 3). 

PSU ~ . . . . ' " ' " " " - ~ 2 - "  

iiili ~ ]  PSU1 x 

x x x] PSU3 

ixxL 
selects donor point ~ I x I 

randomly within MLRAC, 

e.g. PSU2 

Figure 2" Donor point selection for the old proce- 
dure 
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Figure 3: Donor point selection for the new proce- 
dure 

3 C o m p a r i s o n  of  t h e  two  p r o c e d u r e s  by  us- 
ing a m e a s u r e m e n t  e r r o r  m o d e l  

Data for the years 1982, 1987 and 1992 from 4 
different states (Georgia, Kansas, New Mexico and 
Washington) are used to compare the pseudo point 
generation of the old procedure which picks a suit- 
able point randomly within a MLRAC with the new 
procedure which uses newly available PSU location 
information to pick the closest suitable point within 
the MLRAC. The coveruses of the generated points 
of both procedures are compared with the coveruses 
of real existing points. A total of 190 points which 
reflect changes observed in PSUs are chosen for the 
analysis. These points were removed from the data 
set and then compared with the generated pseudo 
points of both procedures. Since data are collected 
over three years we get 570 observations which will 
be considered as independent in the analysis. 

The land coveruses are divided into 3 major cat- 
egories. 

Category I : Cropland-  includes land used for 
production of adapted crops and harvest. 

Category II  : Urban and Buil t -up-  defined as 
land used for residences, industrial sites, 
commercial sites, etc. 

Category III: Other land coveruses- includes 
forestland, pastureland, water areas, etc. 

We obtain the following contingency tables for 
both procedures. 

3.1 M e a s u r e m e n t  E r r o r  M o d e l s  for  M u l t i -  
n o m i a l  R a n d o m  Var i ab le s  

We consider measurement error models for pop- 
ulations where the observation process consists of 

Table 1: Contingency table for old procedure 

P s e u d o  p o i n t  il Rea l  point 
Category I I I  I I I  total 

I 34 3 14 51 
II  1 288 8 297 
I I I  13 9 200 222 
total  48 300 222 570 

Table 2: Contingency table for new procedure 

P s e u d o  p o i n t  1[ Rea l  point 
Category I I I  I I I  total 

I 40 3 8 51 
I I  1 292 3 296 
I I I  7 5 211 223 
total 48 300 222 570 

assigning each member of a sample of n elements 
to one of r categories. We adopt the convention 
of writing the observation as an r vector. If the 
t th sample element is placed in the first category 
of the A classification we write At = (1,0, ..... ,0). 
If the t th element is placed in the second category, 
we write At = (0, 1,0, ...,0) and so on. The j th  

element of the At vector, denoted by A t j ,  is a bi- 
nomial random variable. There are alternative ways 
in which the measurement error process can be for- 
malized for such populations. The la tent  s t ruc ture  

model  assumes there exists a population response for 
each element of the population. The mean of the re- 
sponse for the A classification for the t th individual 
is denoted by 7rAt, where 

7rAt : E ( A i [ i  : t) (1) 

and the symbolism means that the average is for 
the population of possible responses for the t th indi- 
vidual. The j th  element of the vector 7rAt, denoted 
by 7CAtj, is the probability that the t th individual is 
placed in category j. The observation for the t th 

individual is 

A t  = 7rAt + eAt (2) 

where 6.At is the measurement error. By construc- 
tion, the mean of the error vector for the t th indi- 
vidual is the zero vector. The covariance matrix of 
the measurement error for the t th individual is 

(3) 
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where ~]AAtt -- diag(TrAt ) -  7rTAtTrat is the covari- 
ance matr ix  for the multinomial distribution with 
probability vector r a t  and diag(TrAt) is the diago- 
nal matr ix  with the elements of r a t  on the diag- 
onal. The latent structure model was developed 
by Lazarsfeld (1950) and is sometimes called the 
average-in-repeated-trials model. When the individ- 
ual falls into a fixed number of distinct classes, with 
response probability 7rA(j) for the individual in class 
j ,  the model is called the latent class model or right- 
wrong model (Fuller [2]). The right-wrong model as- 
sumes that  every element truly belongs to one of the 
r categories. The response error for the population 
is characterized by a set of response probabilities 
KAij where KAij i s  the probability that  an element 
whose true A category is j responds as category i. 
Because the categories are mutually exclusive and 
exhaustive, we have 

i K A i j  - l r .  ( 4 )  

i = 1  

That  is, every element in true category j is placed 
in one of the available categories. The observed dis- 
tribution of At obtained by making a single deter- 
mination on each element of a random sample of 
elements is multinomial. The mean vector for the 
observed proportion is 

~ZA "-- KATrA, (5) 

where rrA = (TrA1,7rA2, ..., rrAr) T is the vector of pro- 
portions for the true classification and KAij  is the 
i j  th element of the matr ix KA. 

3.2 M o d e l  

Let the response probability KAij (i,j = 1,2,3) 
denote the probability that  a point with true cate- 
gory j is selected as category i by the pseudo-point 
generating procedure A so that  

E(9old) -- KotdTrotd 

E ( ~ , ~ )  - K , ~ T r , ~ w .  

By construction, the model is called unbiased re- 
sponse error model if E(~A)  = 7rA (Chua and Fuller 
[1]). Under this model the matr ix KA has the fol- 
lowing properties 

(1) K T 1 3 -  13 

(2) KTTrA - -  7I" A .  

Hence, we can impose 6 restrictions on the matr ix  
KA. We suggest a parametrization for KA that  is 

a function of 6 parameters.  This parametrization is 
an extension of what is given by Chua and Fuller 
[1]. Let 7r denotes the vector of the true proportions 
for the three categories. 

Then we can parametrize KA as 

~'t  
I~Aij(O~)-- 1-- O ~ A t j ~  5i j  

t = l  71"t -~- 71"i 
"Jr- O~ A i j ~ 

7ri 

7rj + 7ri 

where i , j  = 1,2,3, 5ij denotes the Kronecker 5, 
aAii = 0, and the aAij  are constants in the interval 
[0,1]. 

Unbiased measurement error for the multinomial 
is analogous to zero mean measurement error for 
continuous random variables. For the following 
analysis we will assume that  the response error for 
the two procedures are independent and unbiased. 
Then we can reduce the number of parameters for 
the model to 3. We can set 

O~A1 - -  OCA12 --- O¢A21 

O~A2 - -  g e A 1 3  --- O~A31 

O¢A3 - -  O¢A2 3 - -  O~A32. 

Under this parametrization, the probability that  
a point with true coveruse from category j is placed 
in category i, where i is not equal to j, is propor- 
tional to the conditional probability of category i 
given that  a point has land coveruse of category i 
or j. Thus, the model is such that  the probability of 
classifying a point of type j into a cell i is balanced 
by the probability of classifying a point of type i into 
type j. The parameter  aAij  is an index of the proba- 
bility of making these types of errors. If aAij = O, a 
point with true coveruse j never receives a coveruse 
of type i . 

Note, that  Pr(procedure A assigns a point to cat- 
egory j I true category is i) can be considered as a 
mult inomial  distribution. Hence, each column of the 
matr ix  KA is a multinomially distributed random 
vector. We apply the vec operator to each column 
of KA in order to find an appropriate model. 
Let 

Y A  - -  A l l ,  I~A12 ,  . . . . . . .  , I~A32  

where I ~ A i j ,  denotes the sample proportion of points 
with true coveruse from category j that  is placed by 
procedure A in category i. 

We consider the following model 

Y A  = f ( C t A )  at" CA ( 6 )  
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with f ( a A ) -  E(yA) where f ( a A ) i s  the vector of 

the expected values of the sample proportion YA 
expressed as a function of the parameter vector a h ,  
and CA is the vector of deviations of the observed 
proportions from the expected proportions. 

A 

Sin¢  E(KA;j)  - KA,5 , mod l (6) is lin  r 
model which can be written as 

f YA1 
YA: 
YA3 
YA4 
YA5 
YA6 
YA7 

\ YA8 / 

where 

X 

1 
O~A 

O~ A 

O~A 

X aA -Jr- 6.A 

+ 

(' CAt '~ 
CA2 
CA3 
CA4 
CA5 
CA6 
CA7 

~-A8 / 

(7) 

(8) 

X 

1 __ ~2  - ~ 0 
71"1+71" 2 71"1+71" 3 

0 ~ 0 0 
71" 1 -]-71" 2 

0 0 ~1 0 
71" 1 --]-71" 3 

,r~ 0 0 0 ~1+~'2 

1 _ ~1 0 - ~ 
7I"1-}-71"2 7r 2 -I- 7r 3 

0 0 0 ~-2 
71"2--]-71" 3 

0 0 ~ 0 
7r I -]-71" 3 

0 0 0 ~ 

(9) 

Let ~A denote the covariance matrix of the re- 
sponse error gA. Then, under multinomialsampling, 
E A can be expressed as 

l { d i a g  ) [f(aA)] T } EA -- n [ f ( a A ) ] -  f ( aA  

where n=570 denotes the sample size. 

(10) 

The parameter vector aA can be estimated by 
using the generalized least square procedure which 
is described in detail in McCullagh [4]. The gen- 
eralized least square estimation procedure is nearly 
equivalent to the method of maximum likelihood for 
a multinomial sample. 

The GLS estimator for a h  is given by 

~A -- ( XT~A 1 X)  -1 X T ~A 1 YA (11) 

A 1 
where EA -- K { diag [YA] -- YA yT } 

Under regularity conditions, the MLE ~A has the 
following asymptotic distribution property 

Vf-~(~A - OIA) d'-d'x N(O, { x T Y ] A 1 X } - I ) .  (12) 

3.2 E s t i m a t i o n  

Under the unbiased model, the estimates of aA 
using generalized least square estimation procedure 
and its standard errors are summarized in the fol- 
lowing tables. 

Table 3: Estimates for old procedure 

Parameter ]] Estimate 

aotd~ 0.0306 
O~old2 0.3311 
aotd~ 0.0661 

Standard error 

0.0125 
0.0366 
0.0187 

Table 4" Estimates for new procedure 

Parameter ][ Estimate 

a , ~  0.0265 
a , ~  0.1805 
a , ~  0.0284 

Standard error 

0.0117 
0.0289 
0.0123 

The estimators aotd and a~ew show the same pat- 
tern. The estimates of O¢A2 are the largest of the a- 
estimates for both procedures and indicate that mis- 
takes in classification between category I and cate- 
gory III, i.e. misclassifications between coveruses 
'cropland' and 'forestland, pastureland, etc' have 
the highest probability. The misclassification prob- 
abilities between category I and II and category II 
and III, which are represented by aA1 and aA3, are 
in both cases much smaller. So it can be concluded 
that in general a serious misclassification, i.e. classi- 
fying 'cropland' or 'forestland, pastureland, etc.' as 
'urban-built up' is low for both procedures. How- 
ever, it seems that the misclassification error for the 
new procedure is uniformly smaller for all 3 cate- 
gories, in particular it is aotd2 ~ 2anew2 and aotd3 
,~ 2 ~ ~  3. 

By plugging in the estimates ~A in we get the 
following response error matrices. 

0.7013 
K(~otd) -- 0.0264 

0.2723* 

0.0042 0.0588* ) 
0.9677 0.0380* 
0.0281" 0.9032 

(13) 

196 



0.8287 
K ( ~ ~ )  - 0.0228 

0.1484" 

0.0036 
0.9843 
0.0121 

0.0321" ) 
0.0164 
0.9515 

(14) 

Let us check the hypothesis 

Ho " K(ao ld ) -  K ( a . ~ )  

To perform this test we consider the following 
model 

0 X O{ne w (new  

where X denotes the matrix defined before (9). 
Using the contrast matrix 

C n 

1 0 0 - 1  0 0 )  
0 1 0 0 - 1  0 
0 0 1 0 0 - 1  

we can express H0 as 

H0 " Ca  - (i) 
An asymptotic test statistic is given by 

-1 
xg 

where 

l((X  0 X ~--1 X 0 
0 X 

with 

--1 

(15) 

A E-1 - l { d i a g [ (  ~°'eK,~ ) ] - (  ~o,eK~ ) (  ~°'"K~ ) T }  

A p-value of < 0.001 indicates that the response 
error matrices of the old and new procedure are sig- 
nificantly different. 

Those entries of the response error matrices (13) 
and (14) which are not on the diagonal represent 
misclassification errors. The values marked with 
'*' indicate significant misclassification errors on a 

0.01 level. Basically it can be said that both pro- 
cedures tend to generate misclassifications between 
category I and III. This type of misclassification 
can be considered as a less serious misclassification 
since both categories include similar land coveruses. 
A more serious misclassification can be observed 
for the old procedure in 'place a point with true 
coveruse urban, built-up (II) in category III', de- 
noted by K(~old)32 -- 0.0281. Both procedures don't 
have a serious misplacing of the type 'classify urban 
as cropland' which is denoted by the small Kal2 en- 
tries 0.0042 (old) and 0.0036 (new). However, the 
old procedure has a significant misclassification er- 
ror of the type 'place a point with true coveruse 
from category III in category II'. Hence, it can be 
concluded that the new procedure is indeed an im- 
provement, in the sense that it doesn't generate a 
serious misclassification error between category II 
and category III. 
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