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I. Introduction 

Outliers in survey data are generally considered to be 
observations which are a long way from, or inconsistent 
with, the remainder of the data (Joliffe, 1986). They are 
often the result of response or capture errors during 
collection. Outlier detection in surveys is commonly used 
to macro edit respondent data. This relieves the burden of 
excessive micro editing by detecting errors in data 
through the analysis of aggregate data (Chinnappa and 
Outrata, 1989). 

This paper will begin with a general description of outlier 
detection, briefly describing the univariate methods most 
popularly used at Statistics Canada, and the multivariate 
method used by AWRTS (section 2). The principle 
behind robust M-estimators and the multivariate M- 
estimators of scale and location used by AWRTS are 
presented in sections 3 and 4. Section 5 is devoted to the 
application to AWRTS' outlier detection method, 
including practical considerations and findings. 

2. Outlier detection 

In the multivariate case, a classical way of identifying 
outliers is to calculate Mahalanobis' distance, using robust 
estimators of the covariance matrix and the mean vector. 
A popular class of robust estimators is M-estimators, first 
introduced by Huber (1964). To calculate M-estimators, 
the Reweighted Least Squares (RLS) algorithm has been 
widely used (Beaton and Tukey, 1974; Holland and 
Welsch, 1977; Hampel et al., 1986). 

For the past three years, the Annual Wholesale and Retail 
Trade Survey (AWRTS) at Statistics Canada has 
successfully employed a robust multivariate outlier 
detection method. Other than the simple two dimensional 
case, A WRTS is the only survey at Statistics Canada to 
use a formal multivariate method. 

AWRTS identifies outliers using Mahalanobis' distance. 
The covariance matrix and mean vector are robustly 
estimated using an RLS estimator proposed by Patak 
(1990), where the RLS weights are scaled residuals from 
principal component analysis. The resultant estimators are 
orthogonally equivariant with a breakdown point of one 
half for large samples. 

The benefits of this method are threefold: first, it is 
multivariate and therefore incorporates the correlation 
structure of the variables. Secondly, as configured for 
AWRTS, it is easily run by a subject matter expert since 
it requires only two input files, a parameter file and a data 
file. Thirdly, since the output indicates which variable is 
primarily causing the observation to be an outlier, the 
output is easily interpreted by subject matter experts. 

While most surveys collect multivariate data, few perform 
multivariate outlier detection: univariate methods are 
favoured for their simplicity. However, univariate 
methods cannot detect observations which violate the 
correlational structure of the dataset. This is the main 
reason for performing multivariate detection. Also, in 
AWRTS' case, we wish to automate a manual edit in 
which erroneous data are identified by cross-checking the 
reported values of other variables. 

Most outlier detection methods use some measure of 
distance to evaluate how far away an observation is from 
the centre of the data. To measure this distance, the 
sample mean and variance may be used but since they are 
not robust to outliers, they can mask the very 
observations we seek to detect. To avoid this masking 
effect, robust scale and location estimators, which are 
inherently resistant to outliers, may be used. This is why 
many outlier detection methods use order statistics, such 
as the median or quartile. 

2.1 Univariate outlier detection methods 

Perhaps the most popular univariate outlier detection 
technique for survey data is the quartile method. This 
method creates an allowable range for the data using 
lower and upper quartiles: data falling outside of the 
range are outliers. The method is not only robust, but 
simple and non-parametric. Hidiroglou and Berthelot 
(1986) proposed an adaptation of the quartile method for 
trend data where the trends are first transformed to 
dampen a size masking effect. 
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These two quartile techniques are the ones most 
commonly used at Statistics Canada. Many surveys also 
use less formal ones, for example graphical methods. Lee 
et al. (1992) provide a comprehensive review of outlier 
detection methods employed at Statistics Canada. 

2.2 Multivariate outlier detection methods 

Consider a multivariate p-dimensional data set with n 
observations, where the /th observation is xir=(xu, 
xiz,...,x~,). If x~ .... x, is a random sample from a 
multivariate normal distribution with mean vector u and 
covariance matrix V, a classical way of detecting outliers 
is to calculate Mahalanobis' distance for each observation 
as follows" 

D(x ,) =(x,-u)rV -I(xt-u) 

Mahalanobis' distance identifies observations which lie 
far away from the centre of the data cloud, giving less 
weight to variables with large variances or to groups of 
highly correlated variables (Joliffe, 1986). This distance 
is otten preferred to the Euclidean distance which ignores 
the covariance structure and thus treats all variables 
equally. 

A test statistic for D(x.,) can be created as follows 

F - ( n - p ) n  
i 

(n 2-1)p 
- - D  (x ~) 

which has an F distribution with p and n-p degrees of 
freedom (Afifi and Azin, 1972). 

Other currently popular multivariate outlier detection 
methods fall under projection pursuit techniques, 
originally proposed by Kruskal (1969). Projection pursuit 
searches for 'interesting' linear projections of multivariate 
data sets, where a projection is deemed interesting if it 
minimizes or maximizes a projection index (typically a 
variance). 

Huber (1985) cites two main reasons why principal 
components are interesting projections: first, in the case 
of clustered data, the leading principal axes pick 
projections with good separations; secondly, the leading 
principal components collect the systematic structure of 
the data. Thus, the first principal component reflects the 
first major linear trend, the second principal component, 
the second major linear trend, etc. So, if an observation is 
located far away from any of the major linear trends it 

might be considered an outlier. 

3. Robust estimation" M-estimators 

The purpose of robust estimation is to produce an 
efficient estimator in the presence of outliers, while 
minimizing bias. This is done by reducing the influence 
of the outliers on the estimator. 

To evaluate robust estimators, the usual properties such 
as bias and precision are of interest, as well as others: 
how contamination influences the estimator (the influence 
curve or function), how much contamination the 
estimator can tolerate before it breaks down (the 
breakdown point) and if the estimator is affected by 
location or scale transformations (equivariance concepts). 
If an estimator is unaffected by translations it is called 
translation or location equivariant. An estimator which is 
scale and location equivariant for orthogonal 
transformations is called orthogonally equivariant. 
Rousseeuw and Leroy (1987), amongst others, provide 
formal definitions of these concepts. 

Some of the most popular robust estimators are M- 
estimators (the M stands for maximum likelihood) first 
introduced by Huber (1964). 

In the univariate case, a robust M-estimator could be 
created as follows" for the observation, xi, location 
estimate, T, and scale estimate, S, define the residual, ri = 
(x~-T)/S. Next, define a function, p(x,T,S)=p[(x-F)/S]. 
Typically, the role of this function is to decrease the 
influence of observations with large residuals. Then 
perform minimization. 

For example, given the location estimate, T, a univariate 
M-estimate of scale, S, could be obtained by solving the 
equation: 

x - T  
i Minimizes ~ : 1  P( S ) 

Often, p(x,T,S) trims large residuals, resulting in a 
Winsorized estimator. Different p(x, T,S) yield different 
M-estimators, including the usual maximum likelihood 
estimators. 

3.1 Reweighted least squares 

In traditional least squares estimators, the squared 
residuals are not trimmed before minimization. Thus, for 
residuals as defined above, p(x, T, S) = (x i- T) 2 /S 2. Clearly, 
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this function it is not robust: one large residual can have 
unbounded influence on the estimator. One way to 
robustify least squares is to bound the influence of a 
single observation through an appropriate weight, w~, and 
then perform reweighted least squares (RLS). 

In the multivariate case, for data from a multivariate 
normal distribution, the RLS estimators of the location 
vector, u, and the scale covariance matrix, V, given 
weight, wi, can be expressed explicitly as follows: 

- r 2 2 (1) / w, 

This is the estimator employed by AWRTS. The quality 
of the estimator hinges on the definition of the weights, 
as detailed in the following section. 

4. Calculating the RLS weights 

The RLS weight used by AWRTS is a function of 
residuals from principal component analysis: observations 
with large residuals receive weights less than one. The 
idea here is to down weight observations which lie far 
away from any major trend in the dataset. 

4.1 Centring the data 

Before calculating any weights, the data are first robustly 
centred using an L,-estimator (the multivariate analogue 
of the median). For a p-dimensional data set with 
observations x~, the L, estimate of the location, T, is 
defined as the solution to the minimization problem: 

m inr~'~i_-, IIx,-TII 

Centring ensures that the final estimate of the covariance 
matrix is location invariant. Denote the centred data by z~ 
(z,=x~- r). 

4.2 Calculating the principal components  

Robust principal components can be generated from an 
initial robust estimate of the covariance matrix. Each 
eigenvector t~,,t~2,...,ttp is a column vector of dimension 
p. The projection of zir=(zu, zu, ..., zip) onto the jth 
principal component coordinate is ttjrz~. The first principal 
component is the linear function, t~rz, of zz,...,Zp which 
has maximum variance. The second principal component 

is a linear function, ctTz, uncorrelated to the first, with 
maximum variance, etc. 

4.3 Calculating the weights 

Patak (1990) proposed the following RLS weights, wi for 
each observation: 

=II p F / r (2) 
W t  j=l ij ij 

where the denominator, ru, is the residual for the /th 
observation and the jth principal component and the 
numerator is a trimmed residual. All weights range from 
zero to one. 

For the jth eigenvector, ttj, the residuals are calculated 
univariately by comparing the projection onto each 
principal component, t~Tz ~, with the median value, med, 
and scaling by the median absolute deviation, mad 
(divided by 0.674 to make it consistent with the normal 
distribution): 

Itxr. z.-med(~r, z)l 
j z r = (3/ 

ij mad(~;z)/0.674 

The residuals are trimmed as follows: 

< 1.75 rij if rq _ 

6j = 1.75 if 1.75 < r..u -< 3.5 

0 otherwise 
(4) 

The cut-off points of 1.75 and 3.5, were chosen based on 
the analysis of symmetrical data sets. These cut-offs trim 
extreme residuals, but leave most untouched. 

Patak (1990) shows that if the principal components are 
derived from the initial robust covariance matrix 
presented in section 4.4, this weight function results in an 
RLS estimator which is orthogonally equivariant with a 
breakdown point of (n/2- p)/n. Thus, in large samples, up 
to half of the data can be outliers before the estimator 
breaks down. 

4.4 Calculating an initial robust covariance matrix 

An initial robust estimate of the covariance matrix is used 
to derive the robust principal components. This initial 
covariance matrix is calculated using the RLS equation in 
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(1) and weights as in (2), but this time the residuals are 
calculated by projecting the data onto the 'best basis' 
vectors, as defined by Stahel (1981) and Donoho (1982). 

The best basis is the one which detects the most outliers 
when the data are projected onto each basis vector. It is 
found by randomly selecting basis vectors, and choosing 
the basis with the smallest weights. 

Specifically, using the centred data, find the best basis by 
repeatedly projecting the p-dimensional data set onto a 
randomly generated p-dimensional orthogonal subspace. 

The projection of zi onto the jth basis vector, vj, is vfzi. 
For each observation, zi, look for the one-dimensional 

projection which yields the largest residuals gij, defined 
by: 

gq= supremum i1~11= 1 
]vjrzr-med(vjrz)l 

mad(ritz) 

Note that these residuals are the same as those defined in 
(3), except here the eigenvector has been replaced with 
a basis vector. 

Once the best basis has been found, the residuals are 
trimmed using equation (4), and the initial weights are 
calculated as in (2). The initial covariance matrix is then 
calculated using the RLS equation (1). 

In theory, to identify the best orthogonal subspace, we 
would have to examine all possible subspaces, which is 
impractical. So instead, for AWRTS, we randomly 
sample only a subset. Patak found the minimum number 
of subspaces to be sampled to be ten per dimension. 

4.5 Calculating the final covariance matrix 

Use the robust principal components determined from the 
initial covariance matrix to calculate the final RLS 
weights (equations (2) to (4)). Calculate the final 
covariance matrix and mean vector using equation (1). 
Insert these location and scale estimates into 
Mahalanobis' distance and label as outliers observations 
with 'large' distances. This list of outliers is sent to 
subject matter experts for their review. 

5. Application to the AWRTS 

The purpose of the AWRTS is to collect principal 
statistics on Canadian Wholesalers and Retailers. The 

sample design is a stratified simple random sample of 
retail and wholesale companies. Preliminary validity edits 
are performed during collection, but due to the large 
sample size (26,943 companies), micro editing of all 
questionnaires is not possible, nor is it desirable. 

This multivariate outlier detection method was first 
implemented in 1993. Performed directly after collection, 
it serves two purposes: to provide subject matter analysts 
with a list of outliers for editing and to flag outliers to 
prevent them from being used by imputation. 

5 . 1 0 D R  input and output files 

The outlier detection routine (ODR) is programmed in C. 
The user must provide two input files: a parameter file 
and a data file. 

5.1.1 Input files 

The parameter file contains the following information: the 
number of survey variables used to detect outliers, cut- 
offs for the weight function used by the M-estimator, two 
parameters limiting the number of outliers to be output 
per domain, and a variable indicating whether or not the 
data are to be transformed. The user is provided with 
default parameters. 

The data file contains the following variables: the survey 
variables used to detect outliers, a unique record identifier 
and a domain variable. 

5.1.2 Output file 

The ODR output is a simple listing of outliers with the 
following information: unique identifier, domain, 
Mahalanobis' distance and which variable contributes the 
most to Mahalanobis' distance. 

5.2 Practical considerations 

Since parametric assumptions are required to create a test 
statistic for Mahalanobis' distance and because the cut- 
offs for the weights are based on symmetrical data, the 
original AWRTS data are first transformed to ensure 
symmetry by domain. The actual variables used are ratios 
and, where these are not symmetric, logarithms of ratios. 

Referring to them by their numerator (the denominator is 
total operating revenues), the five ratios are: opening 
inventories, closing inventories, cost of goods, employee 
benefits and wages, and total expenditures. For the first 
two ratios, we use logarithmic transformations. These 
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variables were chosen since they are the ones used by 
subject matter analysts to manually micro edit the data. 

Outliers are calculated separately by domain. These 
domains are imputation domains, defined by four 
variables: survey type (wholesale or retail), chain flag 
(indicating if the company is a retail chain, or not), 
company size (large, medium or small) and trade group 
(an aggregation of Standard Industrial Classifications, 
SIC). It should be noted here that these domains are very 
similar to the sampling strata, and consequently 
companies within the same domain have similar, if not 
identical, design weights. 

Along with symmetry, another practical consideration is 
high item non-response" if several of the ratios are zero or 
missing, the results will be spurious. Consequently, the 
ODR is run three times. The first run includes all 
companies with reported data for all five ratios. The 
second run drops the ratio with the highest non-response 
rate (opening inventories) and uses only those with non- 
zero reported values for the remaining four ratios. For the 
third and last run, the two ratios with the highest non- 
response rates are dropped. 

5.3 Results 

An observation is flagged as an outlier if Fi (defined in 
section 2.2) is greater than the corresponding F value for 
the 99.9th percentile. Since there are hundreds of 
domains, we further restrict that there be no more than ten 
outliers per domain. To identify influential observations, 
the list of outliers is prioritized with respect to 
Mahalanobis' distance and the sampling weight. 

For 1995 AWRTS data, 15,193 companies (56% of the 
sample) reported non-zero data for all five ratios. Of 
these, 650 (4%) were flagged as outliers. 

For most outliers, the aberrant data were the inventory 
ratios. This is not surprising since respondents are known 
to have difficulty providing the data. 

Subject matter experts corrected 80% of the outliers 
which were confirmed to be incorrect data, primarily due 
to reporting errors, followed by interviewer errors. The 
remaining 20% of outliers were confirmed to be unusual 
observations, but not in error and therefore not modified. 

Table 1 provides the distribution of the outliers, 
indicating which ratio predominantly caused a company 
to be flagged as an outlier. 

Table 1: Outliers and primary cause for outlier 

Variable contributing the most 
to Mahalanobis' distance 

Opening Inventories 

Closing Inventories 

Total Expenditures 

Cost of Goods 

Employee Benefits and Wages 

Total Outliers 

Percentage of 
companies (%) 

43% 

35% 

13% 

8% 

1% 

100% 

The outstanding 11 750 sampled companies (44%) which 
had zero or missing values and therefore could not be 
tested for outliers with respect to five ratios, were tested 
in subsequent runs of the ODR. These subsequent runs 
identified outliers with respect to only four or three ratios. 
For these runs, the ranking of the ratio primarily causing 
a company to be an outlier remained unchanged. 
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