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1. Introduction 

Logistic regression is used to model the probability of a 
positive outcome for a binary 0-1 outcome variable as a 
function of covariates. An example, described latter in 
more detail, is a logistic regression model predicting 
snuff use as a function of demographic variables--age, 
income, education, etc. After choosing a logistic 
regression model and estimating its parameters from the 
data, we are interested assessing how consistent the 
model is with the data. This is referred to as goodness- 
of-fit (Korn and Simon, 1991). An early qualitative 
approach for examining goodness-of-fit of logistic 
regression models was described by Truett, Cornfield 
and Kannel (1967). They divided the data into cells of 
deciles of risk and compared the expected cell counts of 
the outcome variable with the observed counts without a 
formal statistical test. Hosmer and Lemeshow (1980) 
proposed a Pearson chi-squared statistic to test globally 
whether the expected cell counts were different from the 
observed; which is referred to as the Hosmer-Lemeshow 
(HL) test. Simulations were used to show that the HL 
test appeared to have approximately correct type I error 
(Hosmer and Lemeshow, 1980). An important 
assumption when using the HL test is that the data come 
from a simple random sample. 

Data from sample surveys are typically not from 
simple random samples but are from complex samples 
with sample designs involving cluster sampling and 
differential probabilities of selection. The cluster 
sampling can induce correlation among observations 
from the same sampled cluster and the differential 
probabilities of selection can require sample weighting 
for unbiased estimators. Ignoring these aspects of 
complex samples can give invalid statistical tests 
(Skinner, Holt and Smith, 1989). In this paper, we 
examine the properties of goodness-of-fit tests for 
logistic regression in complex samples. Section 2 
describes procedures for testing for goodness-of-ft in 
simple random samples, and section 3 compares the 
type I errors of these procedures using simulations. 
Procedures for testing goodness-of-fit in complex 
samples are described in section 4, with simulations 
comparing the type I errors of these procedures given in 
section 5. In section 6, we give an example using data 
from the 1987 National Health Interview Survey 

(NHIS) of testing the goodness-of-fit for a logistic 
regression analysis predicting snuff use. A brief 
discussion is given in section 7. 

2. Testing Goodness-of-Fit for Logistic Regression in 
Simple Random Samples 

Let y be a binary outcome variable and x = ( x 1  . . . . .  Xp)' 
be a vector of covariates. Under the logistic regression 
model 

logit (70 -- ~o +/~1 x1 + ... +~pXp, (1) 

where 7r = Pr(y=ll x ) the p's can be estimated using 
maximum likelihood theory and substituted into (1) to 
obtain the predicted probability ~ for each observation. 
We focus on testing for goodness-of-fit when the 
number of different x configurations is approximately 
the sample size n. Other approaches such as likelihood 
ratio tests comparing (1) to a fully saturated model can 
be used when the number of different x's configurations 
is small compared to the sample size n (Bishop, 
Fienberg and Holland, 1975, pp 524-526). 

The approach used for testing good-of-fit is to 
compare the observed to expected (from the estimated 
model) number of outcomes for values of x. Since there 
are too few observations for each x configuration, 
Hosmer and Lemeshow (1980) followed Truett, 
Cornfield and Kannel (1967) and divided the data into 
g=10 deciles of risk groups to do the comparison. 
These groups are formed by dividing up the 
observations so that nl---n/10 observations with the 
smallest estimated probabilities are in the first group, 
n2 "" n/10 observations with next smallest estimated 
probabilities are in the second group and so forth until 
the last group is formed with nl0-~ n/10 observations 
with the largest estimated probabilities. The observed 

r~ 
number of outcomes in the kth decile is Ok = ~ Ykj and 

j=l 
Ilk 

the expected number of outcomes is ek = )-'~kj, where 
j=l 

Ykj and ~kj are the outcome and predicted probability 
for observation j in decile-of-risk group k. The HL test 

g (ok_ek)2 
uses a Pearson chi-square statistic C -  )-'~ekCl--ek/nk)' 

k=l 
where nk is the number of observations in the kth decile 
of risk group. The distribution of C was determined by 
simulation studies to be approximately a X 2 with 8 
degrees of freedom (Hosmer and Lemeshow, 1980). 
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The HL test rejects the fit of the logistic model at the c~ 
level when C > X2,1_~, where X 21-,~ is the 1 - c ~  

quantile of a x2distribution with t degrees of freedom. 
Another method to test for goodness-of-fit is based 

on the Wald statistic W = ( o - e ) ~ S ' l ( o - e ) ,  where 
0 = (01 .. . . .  010) t, e = (el .... .  elo) ~ and S is a consistent 
estimator of the covariance matrix of o - e ;  for 
example, one obtained using the Taylor series 
(linearization) approximation. The Wald test rejects the 
fit of the logistic model at the c~ level when 

10 10 
W > X2,1_,~. (Note that Y'~]ok- Y'~]ek.) 

k=l k=l 
We find in a simulation study presented in the next 

section that the Wald test has an inflated type I error 
even in the case of simple random sampling. This 
brings into question the accuracy of using the X 2 as a 
reference distribution for W for more complex 
sampling. 

A third approach is to use a simulation method to 
compute the p-value for W. The p-value for this 
simulated Wald test is computed as follows: (1) the 
dataset is fit to a logistic regression model and its W is 
computed; (2) under this logistic model using the 
observed covariates, n binary outcomes corresponding 
to the observations in the dataset are repeatedly 
generated to create 999 simulated datasets; (3) the p- 
value for the simulated Wald test is computed as one 
plus the number of W's for the simulated datasets that 
are greater than or equal to the W for the original 
dataset divided by 1000. 

3. Simulations for Simple Random Samples 

A limited simulation study was conducted to investigate 
the type I errors for the HL, Wald and simulated Wald 
tests for simple random samples. The simulation study 
consisted of 10,000 simulations where in each 
simulation n = 2,000 independent observations was 
generated as follows: Each observation consisted of a 
vector of three covariates x = (Xl, x2, x3) t that was 
generated from independent standard normal 
distributions; and an outcome y that was generated as a 
Bernoulli variable with logit [ Pr(y = 1 Ix ) ] = -1.4 + 
X l. The logistic regression model 

logit [Pr(y = 1 Ix ) ] =/30 +/31x1 +/~2X2 +/~3X3 (2) 
was used to fit each simulated dataset and the three tests 
were computed. The simulation results for the type I 
error of simulated Wald were computationally intensive 
because it involved doing 999 simulations within each 
of the 10,000 simulations. In this simulation study, we 
are under the null hypothesis for testing goodness-of-fit 
because the logistic regression model used to generate 
the data was contained in the model used to fit the data. 

Thus, we were able to estimate the type I errors for the 
three test procedures (Table 1). 

Table 1. Type I Error of Goodness-of-Fit Tests for 
Simple Random Samples 

Test Nominal Type I Error 
.05 .10 

Hosmer-Lemeshow .052 .10 
Wald .11 .17 
Simulated Wald .050 .10 

The Wald test has an inflated type I error while the type 
I error for the HL and simulated Wald tests are at the 
nominal level. 

4. Testing Goodness-of-Fit for Logistic Regression in 
Complex Samples 

Now we consider the logistic regression model (1) for 
complex samples. The complex sample can involve 
multistage stratified cluster sampling with differential 
sample weighting due to selection probabilities and 
adjustments from nonresponse or poststratification. 
Because of the complex sampling, maximum likelihood 
estimation would not, in general, be valid. Instead, we 
use pseudo-maximum likelihood estimation to estimate 
the ~'s (Skinner, Holt and Smith, 1989, pp 80-84). The 
pseudo-likelihood is given by 

n 
I ' I  71"wiYi[ 1 - -  71"i] wi(1-yi) 

i=l 
where the wi are the sample weights. The weighted 

A 
estimates ~'s are the fl's that maximize the pseudo- 

likelihood. Substituting these ) ' s  into (1), we obtain 
the weighted predicted probabilities ~i's. Consistent 

standard errors for the ) ' s  and ~i'S can be estimated 
using a linearization approximation (Binder, 1983). For 
sample designs where the all sample weights are the 

A 
same, the p's are exactly the maximum likelihood 
estimates. However, even in this case the standard error 
estimates would not be the same as those from 
maximum likelihood theory because they would have to 
reflect the variability of the estimator due to the 
complex sampling e.g., cluster sampling. 

To assess goodness-of-fit, the data are divided into 
weighted decile groups which have a weighted one- 
tenth of the n observations in the dataset in each group: 
nl observations with the smallest predicted probabilities 
are in the first group where n l is chosen so that 
nl / n 
Y~Wli/~-~Wi"' . l ;  n2 observations with the next 
i=l - - i = l  
smallest predicted probabilities are in the second group 

where n2 is chosen so that Y~]w2i wi "~ .1; and so 
i=l - - i= l  
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forth until the tenth group is formed with nlo 
observations with the largest predicted probabilities in 
the tenth group where nl0 is chosen so that 
nl0 / n 
~-~WlOi/~-~'~wi "~ .1. Here a wki is the sample weight for 
i=l - - i=l  
the ith observation in the kth (weighted) decile of risk. 
In the kth decile, the weighted number of observed 

nk 
outcomes is ok = ~'~wkiYki and the weighted number of 

i=l 
nk 

expected outcomes is ek = ~Wki~ki. 
i=l 

A Wald test statistic for complex samples is based 
on W d -  ( O -  e )'S~tl(o- e ) where o is vector of the 
weighted number of outcomes, e is the vector of the 
weighted number of expected outcomes and So is a 
(design) consistent estimator for the covariance matrix 
of o -  e; for example, one obtained by linearization. 
The Wald test rejects the fit of the logistic model when 
W d  > X2,1_a. 

For the moderately large samples sizes in our 
simulation study for simple random samples, the Wald 
test statistic did not appear to be close enough to its chi- 
squared asymptotic distribution to have nominal type I 
error. Since we expected to see a similar finding for 
complex samples, we considered a simulated Wald test 
for complex samples. The p-value for the simulated 
Wald test is computed using the following steps: (1) a 
logistic regression model is estimated for a dataset using 
the psuedo-likelihood and the Wd is computed for this 
estimated model; (2) 999 simulated datasets are created 
by repeatedly generating independent binary outcomes 
for each observed covariate vector according to the 
estimated model in step (1); (3) the logistic regression 
model used in step (1) was reestimated, using the 
psuedo-likelihood, and the Wd recomputed for each of 
the 999 simulated datasets; and (4) the p-value for the 
simulated Wald is computed as one plus the number of 
Wd's for the simulated datasets that were greater than or 
equal to the Wd for the original dataset divided by 
1000. The original sample design characteristics such 
as the clustering and sample weights are carried with the 
observations for the recomputations in step (3). 

5. Simulations for Complex Samples 

Two limited simulations studies were conducted to 
investigate the type I error of the goodness-of-fit tests 
for complex samples. In the first simulation study, the 
HL, Wald and simulated Wald tests were studied for 
cluster samples without sample weighting. This 
simulation study consisted of 10,000 simulations in 
which 2,000 observations were generated for each 
simulation as 100 clusters containing 20 observations. 
Each observation in a cluster consisted of a binary 

outcome variable y and a single covariate x. The y's 
within a cluster were generated as independent 
Bernoulli's with Pr(y= 1) = p where the p was generated 
once for each cluster from a uniform on [0, 1] The 
covariate xij, for observation j from cluster i, were 
generated as a sum of two independent normals zi + eij 
where the zi is distributed as a N(0,1) and eij is 
distributed as a N(0,2). According to this data 
generation scheme, the y's are not related to the x's and 
the y's and x's have an intracluster correlation of 1/2 
and 1/3, respectively. The logistic regression model 

logit [Pr(y = 1 Ix ) ] =/30 +/31x 
was used to fit the data from each simulation and the 
HL, Wald and simulated Wald test were computed for 
each simulation. In this simulation study, we are under 
the null hypothesis for testing goodness-of-fit because 
the logistic regression model used to generate the data 
was a model with only an intercept which is contained 
in the model used to fit the data. Thus, we were able to 
estimate the type I errors for the three test procedures 
(Table 2). 

Table 2. Type I Error of Goodness-of-Fit Tests for 
Cluster Samples 

Test Nominal Type I Error 
.05 .10 

Hosmer-Lemeshow .21 .30 
Wald .096 .17 
Simulated Wald .053 .10 

The HL and Wald tests have inflated type I errors while 
the type I error for the simulated Wald is close to 
nominal. 

The second simulation was used to study the effect of 
sample weighting on the Wald and simulated Wald 
tests. (The HL test was not considered because it could 
not be modified to incorporate the sample weights). 
The simulation study consisted of 10,000 simulations 
where in each simulation 2,000 independent 
observations was generated as follows: Each 
observation consisted of a vector of three covariates x = 
(Xl, x2, x3f, that were generated from independent 
N(0,1)'s, and a 0-1 binary outcome y that was generated 
as a Bernoulli variable with logit [ Pr(y = 1 Ix ) ] = -1.4 
+ Xl. A sample weight of either 1 or 10 was randomly 
generated for each observation. This sample weighting 
was non-informative because the sample weights were 
not related to either the y or x. The logistic regression 
model (2) was used to fit the simulated datasets and the 
Wald and simulated Wald tests were computed for the 
estimated models. In this simulation study, we are 
under the null hypothesis for testing goodness-of-fit 
because the logistic regression model used to generate 
the data was contained in the model used to fit the data 
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and that the sample weights are non-informative. Thus, 
we were able to estimate the type I errors for the Wald 
and simulated Wald tests (Table 3). 

Table 3. Type I Error of Goodness-of-Fit Tests for 
Samples with Unequal Sample Weights 

Test Nominal Type I Error 
.05 .10 

Wald .11 .18 
Simulated Wald .049 .095 

The Wald test has an inflated type I error while the 
type I error for the simulated Wald test is nearly 
nominal. 

6. Example from the National Health Interview 
Survey 

Data on 16,008 individuals with interviews from the 
Cancer Control and Epidemiology Supplements to the 
1987 National Health Interview Survey (NHIS) were 
used to fit a logistic regression model to predict snuff 
use from a set of demographic covariates. The NHIS is 
a multistage stratified cluster sample of the non 
institutionalized population of the US in which 198 
primary sampling units (PSU) were selected from 125 
strata at the first stage of sampling. Further stages of 
sampling within the PSU's were conducted until a 
sample of households was selected. One sampled adult 
per sample household was randomly given either the 
Cancer Control or Epidemiology Supplement. The 
sample weights, which reflected differential sampling 
rates and adjustments for nonresponse and 
postratification, ranged from 252 to 36841 with a cv of 
52.6. There were 495 snuff users reported in the 
survey. After stepwise logistic regression which 
utilized the sample design, we settled on a model with 
main effect terms for age, age 2, income, education, race, 
occupation, region, population size, and marital status, 
and interactions of age by education and region by 
population size. The observed and expected sample 
weighted counts (the sample weights were adjusted to 
add to the sample size) are given in the Table 4. 

The goodness-of-fit was tested using the simulated 
Wald test. The linearization method was used to 
estimate the covariance matrices Sd. The p-value for 
the simulated Wald was .30 suggesting that the 
goodness-of-fit of the logistic regression model was 
acceptable. As an indication of the power of the 
simulated Wald, we also fit a logistic regression model 
with only the main effects, and found a p-value of .074. 
This suggests that the fit of this logistic regression 
model may not be as good as the other one. 

Table 4. Weighted Counts of Observed and Expected 
Numbers of Snuff Users from a Logistic Regression 
Analysis of the 1987 NHIS 

Deciles of Risk Snuff Users 
Observed Expected 

1 1.7 2.3 
2 7.0 7.3 
3 13.8 12.5 
4 17.7 18.4 
5 20.0 25.7 
6 33.4 35.0 
7 40.9 48.2 
8 76.4 66.6 
9 100.1 96.1 
10 186.7 185.5 
Total 495 495 

7. Discussion 

In our simulation studies, we have shown that the 
Hosmer-Lemeshow test for goodness-of-fit for logistic 
regression models can be inappropriate in complex 
samples. It can have inflated type I error in cluster 
samples. The simulated Wald test was shown to be 
better than the Wald test at maintaining the nominal 
level for both simple random samples and complex 
samples. Further research is needed to study the 
simulated Wald test under other complex sampling 
designs such as when the sample weights are 
informative. Also, we would like to study the power of 
the simulated Wald procedure. 

Another way to use the Wald test and simulated 
Wald test to examine the goodness-of-fit when there are 
categorical covariates such as race. In this case, it is 
natural to group the observations within the levels of the 
categorical variable and compare the number of 
observed outcomes to the number expected within 
these levels. This may have more appeal than using 
deciles-of-risk because by using this approach we can 
identify meaningful groups of the population where the 
model might not fit well. 
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