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1. Introduction 
1.1 Problem Statement 

The distinguishing feature of periodic surveys is 
that the same respondents are interviewed at several 
points in time. The sample for each period of data 
collection is divided into several panels or rotation 
groups. A major problem with most periodic surveys 
is the presence of time-in-sample effects. This 
problem arises when estimates of characteristics of 
interest from the different rotation groups relating to 
the same time period have different expected values, 
depending on the length of time they have been 
included in the sample. The effects of this 
phenomenon on the estimates of current level and 
change in level of characteristic of interest have been 
investigated and reported by many researchers and 
survey organizations. Bailar (1975) studied the effects 
of rotation group bias on both ratio estimates and 
composite estimates and compared the mean-squared 
errors of these estimates using data from the U.S. 
Current Population Survey (CPS). Breau and Ernst 
(1983) compared alternative estimators to the CPS 
ratio and composite estimators under the assumptions 
of time-in-sample effects and no time-in-sample effects 
on the basis of variance, bias, and mean-squared error. 
Ghangurde (1982) discussed the effects of rotation 
group bias on estimates of many characteristics in the 
Canadian Labor Force Survey. The effects of rotation 
group bias on the estimation and seasonal adjustment 
of population means was considered by Pfeffermann 
(1991). The present paper examines the impact of 
time-in-sample effects on the efficiency of the 
recursive regression estimator. 

1.2 The Proposed Estimation Procedure 
Yansaneh and Fuller (1997) proposed the 

recursive regression estimation procedure, which is a 
computationally efficient method of producing 
minimum variance estimators in repeated surveys. 
Using a linear model with no assumptions about time- 
in-sample effects, the recursive regression estimator 
(RRE) was shown to be uniformly more efficient than 
the present CPS method of composite estimation for all 
characteristics of interest. The focus of the present 
paper is to examine the impact of time-in-sample 

effects or rotation group bias on the RRE of current 
level and change in level of selected labor force 
characteristics in the CPS. The linear model used to 
produce optimal estimators with no assumptions on 
time-in-sample effects is modified to incorporate time- 
in-sample effects. Using CPS data, the resulting 
recursive regression estimator is compared with the 
estimator based on the linear model with no time-in- 
sample effects, in terms of the variances of the 
estimators. Even though the results of this paper are 
tailored to the CPS, they are applicable to a wide 
variety of rotation designs. Throughout our discussion, 
we shall consider the unknown true values to be fixed 
parameters. 

1.3 Outline of the Present Paper 
The paper is organized as follows: Section 2 

provides a brief description of the CPS design. In 
Section 3, we present the linear model under 
consideration in this paper, along with the assumptions 
governing both the model and the estimation 
procedure. A detailed description of the recursive 
regression estimation procedure is presented in Section 
4. Special attention is devoted to the extensions of the 
standard procedure in order to accommodate time-in- 
sample effects. In Section 5, we discuss an application 
of the proposed estimation procedure to CPS data. 
Numerical results are presented, comparing the 
variances of the RRE of current level and change in 
level of selected labor force characteristics under the 
assumption of time-in-sample effects, with those under 
the assumption of no time-in-sample effects. 

2. The CPS Design 
The CPS is a national household survey 

conducted by the U.S. Census Bureau in cooperation 
with the Bureau of Labor Statistics. It is designed to 
generate national and state-level estimates of labor 
force characteristics (such as employed, unemployed, 
and civilian labor force), demographic characteristics, 
and other characteristics of the non-institutionalized 
civilian population. The sample design of the CPS 
contains a rotation scheme that includes the 
replacement of a fraction of the households in the 
sample each month. For any given month, the sample 
consists of eight time-in-sample panels or rotation 
groups, of which one is being interviewed for the first 
time, one is being interviewed for the second time, ..., 
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one is being interviewed for the eighth time. In other 
words, the interview scheme is balanced on time-in- 
sample. Households in a rotation group are 
interviewed for four consecutive months, dropped for 
the next eight months, and then interviewed for another 
four consecutive months. They are then dropped form 
the sample entirely. This system of interviewing is 
called the 4-8-4 rotation design. See Ernst (1983), 
Fuller et al (1993) and references cited therein, for a 
more detailed description of the CPS. 

Table 1 provides an illustration of the 4-8-4 
rotation scheme used in the CPS. The data for p 
periods is arranged in a px8 data matrix in such a way 
that the observations on a rotation group appear in a 
single column. In each column, the rotation groups 
rotate in and out of the sample in accordance with the 
4-8-4 rotation scheme. The total number of  elementary 
estimators is n=8p, where n is the number of entries 
Table 1. We call the columns of Table 1 streams. The 
first entry for the first month is for individuals that are 

Table 1. Data arrangement for the 1987 CPS data 

being interviewed for the first time. That is, 

A1,1 denotes the set of individuals being interviewed 

for the first time in month one. In general, At, k 
represents a rotation group that is being interviewed for 
the k - t h  time in month t .  

The correlations between elementary estimates 
from the same rotation group several months apart 
have been computed by Adam and Fuller (1992), using 
a components of variance model for the covariance 
structure of the data from the CPS. See Fuller et al 
(1993) for a detailed description of the construction of 
the model, the estimation of its parameters, and the 
estimation of the covariance structure of observations 
within a given rotation group for various characteristics 
of interest. Because the rotation groups come from the 
same set of primary sampling units (PSUs), they are 
not independent. A component is included in the 
covariances to reflect the fact that the primary 
sampling units do not change. 
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3. The Model With Time-In-Sample Effects 

Let Yt,k denote the elementary estimate from a 

rotation group which is in its k-th time-in-sample at 

time t, 0 t is the true level of the characteristic at time 

t. Thus at time j, 0j. is the current level of the 

parameter of interest. For example, in the context of 

the CPS, 0 j  might represent the population mean or 

proportion of unemployed at time j. 
Suppose • tk is the rotation group effect for time 

t associated with the rotation group which is in its k-th 
time-in-sample. Then, for each time t, we may write 
the model 

Yt,k =0 t  +ttk +gtk (1) 

where gtk is the random error. To simplify our 
analysis, and to ensure the estimability of change in 
level of the characteristics of interest, we assume that 
the time-in-sample effects are constant over time. That 
is, 

T, kt  "-- T, k for all t. 

To ensure the unbiasedness of the basic estimator 
(defined as the simple mean of the 8 elementary 
estimators) at any given time, we generally assume that 
the sum of the time-in-sample effects is zero. That is, 

8 
Zx k =0  

k=l  

This second assumption guarantees the estimability of 
the current level of the parameter of interest. 

4. Recursive Regression Estimation 
4.1 The Best Linear Unbiased Estimator of 

Current Level 
The best linear unbiased estimator (BLUE) of 

the current level of a parameter of interest is defined to 
be the minimum-variance unbiased linear combination 
of the elementary estimators from the rotation groups 
available for estimation. It is possible in the process of 
computing the best linear unbiased estimator for the 
current level, to also compute the best linear unbiased 
estimators for all preceding periods using data 
available at the current time. 

Suppose that the CPS has been in operation for 
p periods and that 8 streams of data collected over p 
periods are available for estimation. Let 

Yi = (Yi,1, Yi,2, ..., Yi,p)' be the vector of p 

observations in the i - t h  stream at time t. Let Yp be 

the data vector formed by the streams or columns of 
the p x8 data matrix in Table 1 above, arranged 

? 

chronologically. Thus, ¥p = (yi, y~,..., y~) is an nxl 

vector of observations, where n=8xp. Let 
= )' ®p (01, 02, ..., 0p be the p x 1 vector of 

F 

parameters of interest, and let T 8 = (7; 1, 7; 2,.. . ,  7; 8) be 

the 8xl vector of time-in-sample effects. Then, the 

parameter vector is given by B = (T~, ®~,)'. Let 

X = ( J 8 x l ® I 8 x 8 , J 8 × l ® I p x p )  be the n x ( p + 8 )  

design matrix (which relates the observations in Yp to 

their expected values in B), where J8×l is the 8xl 

vector of ones, Idxd  is the identity matrix of order d 

for any d; and ® denotes the Kronecker product. Let 

Vp denote the covariance matrix of Yp. Note that 

since the matrix (X'Vp-IX) is singular, the 

components of the parameter vector B are 
nonestimable (Searle, 1971). The restriction that the 
sum of the time-in-sample effects is equal to zero 
permits the estimation of the parameter vector B. The 
linear model for Yp may then be explicitly written as 

Yp = XB + U p (2) 
I 

/ \ 

where B = (7; 1, 7; 2 , ' " ,  7; 7 , 0 1 , 0 2 , ' " , 0 p )  , X is the 

model matrix with the specified restriction on the 

time-in-sample effects, Up is the vector of error 

terms satisfying the assumptions E ( U p ) = 0  and 

E(UpU~v) = Vp. By the Gauss-Markov Theorem, the 

BLUE of B is 

= (x,v;lx) lx,v;l  p- 

The covariance matrix of 13is Z ( X ' v p l x )  -1 . 

4.2 The Recursive Regression Estimator 
The computation of the BLUE becomes 

progressively more complicated as the number of 
periods increases. Instead of using all the available 
information in a large least squares computation, the 
RRE uses a judiciously chosen set of initial estimates, 
new observations at the current level, and all previous 
observations on the rotation groups at the current level, 
to produce the BLUE of current level. In the case of 
the CPS, there will be some observations as far as 15 
months in the past that will appear in the estimator 
because, if a rotation group is being interviewed for the 
last time, then that is the sixteenth month that the 
rotation group has been associated with the CPS. The 
recursive regression estimator is constructed as 
follows: 
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At the current time, denoted by t ,  where t > 15, 

we desire an estimator of 0 t , the value of a particular 

characteristic. We assume that at time t, the following 
quantities are available: 
(i) a vector of 22 initial estimates 

f ( ,̂ ) 
~t-1(22) = Ti-l(7) ' ®t-1(15) , consisting of 

seven least squares estimators 
f 

'it-l('/) = (x l, " ' ,  x T) of the time-in-sample 
f 

effects Tt_l(7) = (x l, ..., ~ 7) , and fifteen least ,̂ 
squares estimators ~t-l(15) = t-15, ..., t-1 

of the parameters of interest 
f 

l~t_l(15) = (0 t-15, "", 0 t- l)  • We assume that 

these estimates are based on data through time 
t - l ;  

(ii) the covariance matrix of ~t-1(22), given by: 
A 

(if211,t-l(7) ~12,t-1 / 
Fll,t-l(22) = ~12,t-1 ~22,t-1(15) ' 

where ~ll , t-l(7) = Var{Tt-l(7)}, 

~"212,,_ l =Cov{'rt_l(7),~222,t_l(15)}, 

~22,t-1(15) =Var{~t- l (15)};and 

(iii) a vector of eight independent observations 

z t = (zlt , . . . ,  z s t ) ' ,  obtained by a suitable 

transformation of the elementary estimates from 
the rotation groups at time t. 

The transformed observations may be written as 
15 

zit = Yi,t - ~ bk(i,t),jYi,t-j' 
j=l 

i = 1, 2, ..., 8,  where Yi,t denotes the elementary 

estimator from the rotation group which is in stream i 

at time t. The coefficients b kj , k = l ,  ..., 8 and 

j = 1, ..., 15, are constructed so that for 

i = 1, 2, ..., 8,  the transformed observations zit are 

uneorrelated with Yi, t - j ,  for all j > 0. A linear model 

for the data available at the current time is 

Z t = W[3 t(23) + E t (3) 
r 

=([~' z ' )  ..., )' and where Z t t-1(22), t , zt = (Zlt, z8t , 
r 

[3 t(23) = (I: 1,1: 2,...,'i: 7,0 t_15,...,0 t_l ,Ot) .  The model 

matrix W is given by 

/I7o7 . 0/ 
W = Ip×p 0 , 

\W31 W32 J8×1 

where W31 and W32 are matrices of dimensions 8x7 
and 8x15, whose entries are functions of the 

coefficients bkj, which are in turn functions of the 

autocorrelations within rotation groups over time. Let 
2 

['233 be the diagonal matrix with ffi as the diagonal 

entries, where cr 2 = IIar{zit }, i = 1, 2, ..., 8.  It can 

be shown that the covariance matrix of Z t is 

(all/-l 7> a12,,-1 / 
= f222,t_105) v, L o,;:t, 

0' ~33 

,u/i 0 0/ 
+o" 0 J15xl~ 

wdl5×l WW' 

where W is an 8 x 1 vector whose entries are functions 

of the coefficients b/9, and or2 u is the PSU or replicate 

variance. See Yansaneh (1992) for details. The RRE 

of the parameter vector 13 t(23) is defined as the least 

squares estimator based on the model (3). 

Note that retaining 0t_15 in the parameter 

vector and 13 t-15 in the data vector does not affect the 

estimator at time t + 1. Thus, to update the RRE for 
@, 

the next period, we drop the initial estimator 0t_ls 

from the data vector, and drop 0¢_15 from the 

parameter vector. We then add the parameter 0 t+l to 

the parameter vector. This way, the dimension of the 
basic model and the estimation problem are kept 
constant over time. 

In the recursive regression estimation procedure, 
the current estimates of the time-in-sample effects are 
present in the data vector throughout the iteration 
process. Therefore, the variance of the estimators of 
each of the time-in-sample effects will converge to 
zero as the number of iterations increases indef'mitely. 

One may be unwilling to assume that the time- 
in-sample effects are constant over a long period. One 
way of permitting the estimates of the time-in-sample 
effects to change slowly over time is to perform some 
kind of exponential smoothing by adjusting the 
covariance matrix of the estimated effects used to 
construct the estimator at time t. One procedure is to 
multiply the covariance matrix of the initial estimates 
of the time-in-sample effects for time t-1 used in the 
construction of estimates for time t, by a constant 
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larger than one, so that the diagonal elements of the 
covariance matrix increase slightly as the number of 
iterations increases. The resulting estimator is similar 
to an exponentially smoothed estimator in the sense 
that the effect of the observations in the past dies out as 
the distance from the current period increases. Since, 
if no modification is introduced, the variance of each 
of the estimates of the time-in-sample effects decreases 

at the rate n -1 , the factor that is multiplied by the 

covariance matrix after, say, P periods (including the 
number of periods on which the initial estimates are 

based) is 1 + p-1.  In this particular case, we choose 
P = 36 = 15+ 21, so that the resulting estimator will 
correspond to the BLUE based on 36 periods of data, 
which is approximately as efficient as the RRE. 

In recursive regression estimation procedure, it 
is important to distinguish between the matrix used to 
define the estimator and the actual covariance matrix 
of the estimators. The covariance matrix of initial 
estimates used to construct the RRE will converge as 
the number of periods increases (Yansaneh and Fuller, 
1997). Therefore, the matrix of coefficients def'ming 

the RRE of [3 t(23)will also converge. In the limit, we 

can write the RRE of [3 t(23) as 

t(23) = PZt (4) 

where P is the limit of the matrix of coefficients. Since 
^ 

~,(23) is a function of preceding estimates, one can 

calculate the coefficients of the observations that 
define the estimator. 

5. Numerical  Results And Discussion 
We now present results illustrating the impact of 

time-in-sample effects on the RRE. We will compare 
the variances of the RRE of current level and change 
based on a model with time-in-sample effects, using 
the model with no time-in-sample effects as the 
benchmark. The basic procedure used to calculate the 
variance of the RRE is first, to express the estimator as 
a linear combination of the observations; second, to 
compute the covariance matrix of the observations; and 
then f'mally, to compute the variance of the estimator 
from the coefficients of the linear combination and the 
entries of the covariance matrix. Note that in keeping 
with the tradition of the CPS, previous estimates are 
not revised when more data become available. 

Variances of estimators are computed relative to 
the variance of the basic estimator of current level, for 
each of the characteristics of interest. Recall that the 

basic estimator of the current level (denoted by fit, 

where t is the current level or period) is the simple 

mean of the elementary estimators obtained from the 
eight rotation groups observed at the current period. 

8 
That is, .vt. = 8-1 Z Yt,k, and Var(~t. ) = 6 2 / 8, where 

k=l 

6 2 =  Var(Yt,k) for all t and k. We shall restrict 

attention to the estimation of current level and change 
in level for multiple time periods and for three 
characteristics: Employed, Unemployed, and Civilian 
Labor Force. The variances of the current level and 
change over several periods in the presence and 
absence of time-in-sample effects are presented in 
Table 2 for the characteristics of interest. 

In the presence of time-in-sample effects, the 
RRE of current level and change are biased relative to 
the expected value of the basic estimator. Under the 
added assumption that the sum of the time-in-sample 
effects is zero, the variances of the RRE of current 
level and change based on the model that incorporates 
time-in-sample affects are expected to be greater than 
those obtained under the assumption of no time-in- 
sample effects. However, the assumption that the sum 
of the time-in-sample effects is zero is not tenable in 
many practical situations. For example, in the CPS, it 
has been determined that of the eight rotation groups in 
the sample in any given month, the expected values of 
the estimates of employed based on the first and fifth 
time-in-sample households are greater than those based 
on the rest of the households (Bailar, 1975). 

In our variance calculations, the sum of the 
time-in-sample effects is restricted to be zero for all 
characteristics of interest. It can be seen from Table 2 
that in estimating current level, there is an increase in 
variance of about 6% for employed, 4% civilian labor 
force, and 1% unemployed as a result of restricting the 
estimator to have a mean equal to the mean of the eight 
rotation groups. For estimation of change in all 
characteristics, the increase in variance rises 
monotonically as the lag increases. For employed, the 
increase in variance is about 1% for one-period change, 
about 3% for six-period change and about 6% for 
twelve-period change. The results for civilian labor 
force are similar, but the increase in variance due to 
time-in-sample effects is modest. For unemployed, 
there is virtually no increase in the variance of the REE 
of change. 

In summary, the inclusion of time-in-sample 
effects in the model for the data vector generally has 
the effect of slightly increasing the variance of the 
estimators, while reducing the bias. The increase in 
variance is a function of the type of restriction imposed 
and the length of the period used to estimate the time- 
in-sample effects. 
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Table 2. Variance of the RRE for selected labor force characteristics relative to the variance of the basic estimator 
of current level (TIS = time-in-sample) 

Parameter 

Current Level 
1-period change 
2-period change 
3-period change 
4-period change 
5-period change 
6-period change 
7-period change 
8-period change 
9-period change 
10-period change 
11-period change 
12-period change 

Employed 
Without TIS 

effects 

0.650 
0.432 
0.604 
0.711 
0.784 
0.829 
0.855 
0.865 
0.860 
0.832 
0.806 
0.782 
0.761 

With TIS 
effects 

0.688 
0.438 
0.614 
0.725 
0.801 
0.849 
0.878 
0.891 
0.889 
0.864 
0.842 
0.822 
0.807 

Without TIS 
effects 

0.918 
1.073 
1.338 
1.473 
1.562 
1.606 
1.628 
1.636 
1.634 
1.614 
1.595 
1.578 
1.564 

Unemployed 
With TIS 

effects 

0.923 
1.075 
1.342 
1.479 
1.569 
1.613 
1.635 
1.644 
1.642 
1.622 
1.603 
1.587 
1.573 

Civilian Labor Force 
Without TIS 

effects 

0.704 
0.474 
0.652 
0.774 
0.859 
0.914 
0.946 
0.962 
0.963 
0.942 
0.921 
0.903 
0.887 

With TIS 
effects 

0.733 
0.480 
0.663 
0.789 
0.877 
0.934 
0.970 
0.987 
0.990 
0.972 
0.954 
0.939 
0.926 
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