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Abstract: Generalized variance functions (GVFs) 
provide a simple way to predict standard errors. For large 
multi-flame surveys, agencies usually estimate 
characteristics of interest for the individual surveys as 
well as for the combined survey. In this paper, we 
describe an investigation of GVF methods for such a 
multi-frame survey. The Scientist and Engineers 
Statistical Data System (SESTAT) combines information 
from three survey components. We begin by developing 
GVFs for each domain of interest for SESTAT as a 
whole. This global approach provides a simple and quick 
implementation of GVF methodology and produced 
relatively well predicted variance estimates. However, 
the global approach only gives standard errors for the 
combined SESTAT data set. Next, we pursued another 
approach to improve the GVF methodology. Each survey 
is conducted with different sampling designs, and has its 
own objectives. We combined the three survey-specific 
GVFs to create an integrated GVF, which can also be 
used to predict standard errors for the component surveys. 
The integrated GVF approach gave better results than the 
global approach, in the sense that it improved standard 
error prediction for most SESTAT domains. Moreover, 
given survey-specific GVFs for common domains of 
interest, standard errors for the combined data set can be 
predicted without any further statistical effort. However, 
the global model produced GVFs of acceptable quality 
and is simpler to use, leading to its adoption for SESTAT 
variance approximation. 

1. Background 

The Scientists and Engineers Statistical Data System 
(SESTAT) derives information on the labor force and 
education characteristics of U.S. scientists and engineers 
(S&E) from three component surveys: the National 
Survey of College Graduates (NSCG), the National 
Survey of Recent College Graduates (NSRCG), and the 
Survey of Doctorate Recipients (SDR). Each component 
survey is independently executed with its own sampling 
and analysis plan. SESTAT is a multi-frame survey in 
that it represents the entire S&E universe by merging 
these component surveys while properly accounting for 
multiple selection opportunities across surveys. For more 

details about multi-frame survey analysis, see Lessler and 
Kalsbeek 1992, Chapter 5. 

The large number of data items in the SESTAT 
questionnaire makes it cumbersome to report standard 
errors for all statistics in survey reports. Instead of 
reporting individual standard errors for each estimate, 
SESTAT provides generalized variance functions (GVFs) 
so that users have a quick and simple way to calculate 
standard errors for survey estimates. GVFs predict the 
standard error based upon the relationship between a 
survey characteristic and its estimator's variance; the user 
inserts the estimated value of the characteristic of interest 
into the fitted GVF model to generate a model-based 
prediction of the variance. 

In this paper, we discuss the methodology used to 
create GVFs for the 1993 SESTAT. We first review the 
customary GVF procedure and then describe how we 
developed GVFs following conventional methodology for 
SESTAT domains of special interest. This approach, 
which we refer to as the global model, provided a simple 
and quick implementation of GVF methodology. Next, 
we describe an approach to improve the GVF 
methodology for this multi-frame survey. The integrated 
model obtains the three survey-specific GVFs using the 
same general procedure used for the global model, and 
then integrates the survey-specific GVFs to create a GVF 
prediction model for the entire SESTAT. To assess the 
variance prediction ability of the global model versus the 
integrated model, we developed various diagnostic 
statistics. Our results indicate that the integrated GVFs 
are superior to the global GVFs, in that they provide more 
accurate standard error predictions for most SESTAT 
domains. 

Some individuals in SESTAT's target population 
belong to the surveyed population of more than one 
component survey. For example, a bachelor at the time of 
the 1990 Census that went on to complete a master's 
degree in 1991 had opportunities for selection in the 
NSCG and the NSRCG. For both GVF models, we used 
a unique-linkage rule to remove multiple selection 
opportunities. Each member of SESTAT's target 
population was uniquely linked to one and only one 
component survey and then the individual was included 
in SESTAT only when selected for the linked survey. 

158 



Using the unique linkage rule, each person had only one 
chance of being included in the combined SESTAT 
database (see Carlson 1995). 

2. The Global GVF Model  

In this section, we describe how we developed 
GVFs for the combined SESTAT database by following 
the usual procedure for population totals (see, for 
instance, Wolter, 1985, pp.205-206). 

2.1. Choosing the Set of Survey Variables to Use in 
Fitting the Model 

The GVF approach begins with directly calculated 
variance estimates for a subset of all possible variables. 
Specification of appropriate variables to use in estimating 
the GVF model, then, is an important component of GVF 
procedures. A set of variables should be chosen that 
represents all variables of interest in the variance 
estimation sense. We chose 60 variables to use in fitting 
GVF models for 260 SESTAT domains of special 
interest. 

2.2 Direct Variance Estimation Methods 

Estimated totals and their design-based variance 
estimates are needed to fit the GVF model for each 
domain. Which variance estimation method is best for 
creating the design-based variance estimates depends on 
the specific sample design. Ultimately, the better direct 
variance estimators produce the better GVF models. 

For the sake of simplicity, we assumed in this study 
that GVF model fit was not sensitive to the direct 
variance estimation method. Replicated variance 
estimation methods are needed for the SESTAT due to its 
complex sampling structure which makes deriving the 
usual design-based estimation formula difficult if not 
impossible. To compute variance estimators directly, we 
choose the random group method with 20 replications. 
The method of random groups draws multiple samples 
from a target population (or subpopulation) of interest 
and then constructs separate estimates for each replicate 
(e.g., Chapter 2, Wolter, 1985). The dispersion of the 
estimates across replicates provides the basis for the 
standard error measure. 

2.3. Choosing the G VF Model Form 

Many different forms of GVFs have been developed 
for use in approximating the variance of survey estimates. 
For population totals, GVF models are usually created for 
the relative variance of the estimated total ]), or 

R e l V a r ( ~  = Var(Y) , (21) 
y2 

where Var(Y)  is the variance of 17. The modeling 
typically begins by assuming that the relative variance of 
the estimated total Y is a linear function of the inverse of 

the total Y being estimated, or 

RelVar(Y) - [30 + [31. (2.2) 
Y 

The parameters of the GVF model, Do and ~1, are 
unknown and estimated from a subset of all survey- 
derived totals and their variances by some form of 
regression estimation. Wolter (1985) provides the 
rationale for using model (2.2) but notes that there is little 
theoretical justification for any model. By simple linear 
transformation of (2.2), we obtain the GVF function used 
for the global model: 

Var( I? )  = p0 Y2 + [31Y (2.3) 

That is, it models the variance of the total estimates as a 
quadratic function of the totals. 

2.4. Fitting Methodology 

For simplicity and easy implementation, we 
employed the ordinary least squares method to fit the 
model in this exploratory investigation. (For production 
of actual GVF models, we recommend use of weighted 
least squares.) An estimator of the variance of an 

estimated total I 7 can be obtained by evaluating the GVF 

model at I# and at [30 a n d  [31' which are the estimates of 
the GVF model parameters 130 and [31. Thus, using the 
GVF model, the standard error of a specific estimated 
total can be predicted by inserting the value of the 
estimated total into the following computational 
equivalent: 

S E ( Y )  - ([30I '~2+ [31 l))½ (2.4) 

where S E ( Y )  is the predicted standard error of the 
estimated total Y. 

2.5. Report Model Parameter Estimates and Model R 2 

After fitting the model, it is customary to report the 
model coefficient estimates and the values of R 2 (the 
percent of variation explained by the model). The model R 2 

is a quick measure to judge the effectiveness of the GVF 
model for prediction of standard errors. The R 2 values 
can range from 0 to 1. If R 2 is close to unity, then the 
model is generally acceptable; values closer to 0 indicate 
that the model may be inaccurate. For the global model, 
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the R2values were mostly larger than 0.9. However, 
caution is needed in interpreting these values as a direct 
indication of good model fit because we used unscaled 
values for independent variables that have a large range, 
which could yield misleadingly large R 2 values. 

3. The Integrated GVF Model 

The integrated GVF model recognizes that a 
SESTAT estimated total is the simple sum of the three 
survey-estimated totals and (due to the use of unique 
linkage) the variance of the SESTAT total estimate is the 
simple sum of the associated survey-specific variances. 

3.1. Survey-Specific G VFs with the Unique Linkage 
Cases 

To produce the integrated GVF models, we first 
developed survey-specific GVFs for the three surveys by 
following the procedure described in Section 2, but with 
each SESTAT domain first partitioned into three survey- 
specific domains. Using unique-linkage, a SESTAT total 
is estimated by the sum of the survey-specific total 
estimates, or 

~3"SESTAT = ~3"NSCG+ YNSRCG+ YSD R. 
(3.~) 

The R 2 values were quite high for most domains. 

Table 1 presents the resulting coefficient estimates for 
some survey-specific GVFs. 

3.2. Integration of the Survey-Specific GVFs 

The integrated model creates SESTAT standard 
error estimates based upon the three surveys' GVFs by 
recognizing that each survey uniquely describes one 
segment of target population with no overlap when the 
unique linkage approach is used. Assuming each survey 
produces good GVF models, the standard error estimates 
for SESTAT variables can be obtained from the 
integration of the three survey-specific GVFs using the 
following formula: 

"2 " 
Vlntegrated [30,1YNSCG [31,1 YNSCG ~0,2 "2 Y" = + + ~DR 

+ [~I,2]TSDR [~0,3 "2 ]7 

(3.3) 

Here, 130,1 and [31,1 are the estimated parameters for the 

NSCG subdomain of the particular domain of interest for 
SESTAT, and similarly for the other surveys. To obtain 
an approximate variance estimate of an estimated total 
using the integration of the three survey-specific GVFs, 
one uses the following procedures: 

Due to the independence of three component surveys, the 
variance can also be estimated as the sum of the survey- 
specific variance estimates: 

VarSESTAT = VarSD R + VarNSCG + VarNSRC G . (3.2) 

As before, we used model (2.3) for all three survey- 
specific GVFs. Each of the 260 SESTAT domains then 
consists of three nonoverlapping survey-specific domains. 
It is thus possible to prepare GVFs for each survey for 
these 260 SESTAT domains. 

For the 60 chosen variables, we calculated three 
survey-specific totals and their variances directly with the 
appropriate unique-linkage weight, using the same 
random group methodology as the global method. Instead 
of estimating an overall estimator Y and the 
corresponding varianceof Y, we produced estimates of 
survey-specific totals, Y~o G' YSDR 'and YNSRCG' and 
their variances, VNSCG, ffSDR' and VNSRC G. For each 
domain, these survey-specific estimated totals and their 
variance estimates were used to fit survey-specific GVF 
models using an ordinary least squares method. 

The estimated totals for each of the three 
survey components using unique linkage 
cases are computed. 

The most appropriate SESTAT domain 
for the estimate is determined. 

Three sets of estimates of survey-specific 
parameters are obtained for this 
domain--one for each survey. 

The generalized variance is computed 
using equation (3.3). 

For example, the estimate of the total number of scientists 
and engineers in 1993 is 11,615,174 with 

YNSCC - 10,129,126 ; YSDR - 514,364 ; and 

ITNSRC G To predict the variance, we get 972,585.  the 
three sets of survey-specific parameter estimates from the 
domain labeled "Total" in Table 1. Using the integrated 
GVF, an approximate standard error for the estimate of 
total scientists and engineers is: 
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" 2  ^ 

(-0.000002 YNSCG +277.3 YNSCG +(-0.000027) )TS2DR + 

  SR o l,2 18.7 YSDR +0.003124 YNSRCG +234.6 = 76,088. 

The survey-specific GVFs can be used for the individual 
surveys as well as for integration. 

4. Assess Global Vs. Integrated Models 

To evaluate the global and integrated models, we 
used scatter plots and two numerical measures described 
below to evaluate the predictive abilities of the global and 
integrated models. These measures assess how successful 
each model is at describing the variation in the data. Note 
that there is no thorough theoretical criterion for the 
following methods due to lack of theoretical background 
for the GVF model. Instead, they give somewhat intuitive 
interpretations. 

4.1. Scatter Plots 

To get a feel for the performance of each model, it 
is useful to view, for each domain, graphs for the 
estimated and predicted variance of estimated totals 
versus the estimated total itself. We overlaid the plot of 
the fired GVF curve onto the scatter plot of direct 
variance estimates, after a log-transformation to make the 
graphical presentation clearer. How well the fitted curve 
explains the observed variance estimates provided a 
visual demonstration of the goodness of fit. The scarer 
plots showed the GVF curves close to the actual standard 
errors for most domains, which indicates that both the 
global and integrated models give an intuitively 
reasonable approximation. We found the numerical 
measures easier to interpret and compare, however. 

4.2. Absolute Relative Error 

The first numeric measure looks at the error in the 
variance approximation. For this measure, we first 
calculated differences between the directly calculated 
standard error and the GVF-predicted standard error, 

- - SEp d E R R O R  SEActual re icted (4.1) 

where SEActual is the directly calculated standard error 
and SEpredicte d is the predicted standard error from the 
GVF model. Next, we develop a scale-free measure of 
ERROR (expressed as a percentage), 

E R R O R  
R E L - E R R  = 100 (4.2) 

SEActual 

REL-ERR is a popular measure to check the adequacy of 
GVF standard errors, for example, it was used in the 
1990-1991 School and Staffing Survey and the 1985 
Young Adult Literacy Survey (Johnson and King, 1987). 
REL-ERR allows detection of patterns of underestimation 
or overestimation for GVF-based variance predictions. 
Moreover, the median of REL-ERR gives an indication of 
loss of accuracy when using GVF-derived standard 
errors. 

The absolute value of REL-ERR, 

A R E L  - E R R  = I R E L  - E R R  I , (4.3) 

can be used to evaluate standard error predictions from 
the GVF models by counting the number of domains 
having AREL-ERR values greater than 20% (or some 
other set value). That is, AREL-ERR measures the 
relative loss of accuracy due to using GVF 
approximations. Because the standard errors computed 
by GVFs give an indication of the order of magnitude of 
the standard error of an estimate rather than the precise 
standard error, AREL-ERR can be a good measure to 
assess the adequacy of GVF approximations. AREL-ERR 
was used in developing the GVF models for the 1988 

National Household Survey on Drug Abuse (Bieler and 
Williams, 1990). The average AREL-ERR for the set of 
estimates used to fit the GVF model measures the average 
distance between the actual versus predicted standard 
error, which we express as a percentage of the actual 
standard error. Small values for the average AREL-ERR 
indicate that the corresponding GVF fits well. Table 1 
shows that the integrated approach yields improved 
predictability over the global approach for the 260 
domains we used. 

4.3. Absolute Error o f  the Coefficient o f  Variation 

We also propose two other numerical measures, 

and 

E R R O R  
C V - D I F  = 100 (4.4) 

Y 

A C V - D I F  = I C V - D I F  I. (4.5) 

To see if a large deviation of a GVF predicted standard 
error from the actual standard error matters in a practical 
sense, ACV-DIF values should be evaluated. For 
example, the GVF model for a specific domain having an 
average AREL-ERR greater than 20% will lead to a 
different width for the confidence interval from that of 
the direct variance estimator. However, if the 
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corresponding ACV-DIF is less than 5%, then the 
resulting interval estimation in a practical sense might not 
be sensitive to the difference of confidence interval 
width, because the difference is relatively small in 
comparison to the total being estimated. In summary, the 
measure ACV-DIF indicates whether in a practical sense 
the GVF model for a specific domain having an average 
AREL-ERR greater than 20% can lead to significantly 
different interval estimation from that using a direct 
variance estimator. Roughly, we might say that if the 
ACV-DIF values are all less than 5%, then AREL-ERRs 
larger than 20% may be tolerable. The comparison 
between the global and integrated models using the ACV- 
DIF measure produced similar results to those for AREL- 
ERR. The ACV-DIF values for the global and integrated 
models indicate that the integrated model offers enhanced 
prediction capabilities. 

5. Summary 

Table 1 shows the results of the generalized 
variance procedure and the performance of the global and 
integrated models, respectively. The first column 
identifies the domain of interest. The third and fourth 
columns contain the parameter estimates for the intercept 
and the slope. The next two columns list the diagnostic 
measures for checking the GVFs--AREL-ERR and ACV- 
DIF, respectively. The integrated model is more suitable 
than the global model when these numerical measures are 
compared. Moreover, using the three survey-specific 
GVFs, users can produce standard errors for SESTAT as 
a whole as well as for the three individual surveys. 
However, the integrated model is more complex and 
requires that the user know the values of the three survey- 
specific estimates as well as that of the combined total, 
making it impractical for use with project reports. On the 
other hand, the global approach produces variance 
estimates of acceptable quality (though not as good as the 
integrated approach) and is much simpler to use and 
explain. For these reasons, SESTAT has adopted the 
global approach for use in variance approximation. Full 
documentation for approximating SESTAT standard error 
and results of the investigation are found in its own home 
page (http://srsstats.sbe.nsf.gov/stderr00.html). 
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TABLE 1 

RESULTS OF THE GENERALIZED VARIANCE MODELING FOR THE 1993 SESTAT 

Domain 

Total S&Es 

Male S&Es 

Female S&Es 

White S&Es 

Nonwhite S&Es 

Bachelor S&Es 

Masters S&Es 

Doctorate S&Es 

GVF 

Model 1 

Model 2 

Model 1 

NSCG 

SDR 

NSRCG 

Model 2 

Model 1 

NSCG 

SDR 

NSRCG 

Model 2 

Model 1 

NSCG 

SDR 

NSRCG 

Model 2 

Model 1 

NSCG 

SDR 

NSRCG 

Model 2 

Model 1 

NSCG 

Intercept 

0.000029 

Model 2 

Model 1 

-0.000002 

Slope 

Model 2 

Model 1 

176.70 

277.33 

Model 2 

-0.000027 18.71 

0.003124 

0.000031 

-0.000004 

234.56 

166.31 

257.37 

-0.000033 19.49 

0.002513 

-0.000008 

0.000018 

-0.000085 

0.004559 

0.000029 

-0.000005 

195.90 

270.33 

234.31 

11.66 

147.63 

201.00 

317.79 

-0.000031 20.11 

0.003977 

0.000185 

0.000004 

136.21 

83.19 

114.79 

SDR 0.000094 15.04 

0.011837 

0.000088 

0.000011 

0.004198 

295.17 

118.86 

253.52 

NSRCG 

NSCG 

NSRCG 

NSCG 

NSRCG 

NSCG 

SDR 

NSRCG 

198.80 

AREL-ERR 
(%) 
16 

16 

14 

15 

15 

15 

17 

18 

12 

15 

21 

13 

-0.000042 210.07 15 

-0.000043 

0.001538 

-0.000028 

208.35 

139.09 

66.04 

172.36 -0.000197 

-0.000027 18.71 

30.27 0.004268 

15 

18 

16 

ACV-DIF 
(%) 
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