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Abstract:  
Weighted linear regression models have been developed 
for use in the estimation of totals and variances for survey 
data. (Consider works by Brewer, and by Royall and 
Cumberland, et.al.) Weighted linear regression models 
have also been developed for prediction and variance 
studies in analyses of physical and biological data. 
(Consider works by Carroll and Ruppert, et.al.) There are 
similarities and differences between these approaches. 
This paper considers this and deduces further implications 
for survey methodology. 

Both real and artificial test data sets are used in the 
analyses. The artificial data are the result of a process that 
allows examination of error structures without 
randomization. This simplifies comparisons and reduces 
the number of observations needed for testing, thus 
making the testing process more efficient. 

Introduction" 
When dealing with highly skewed data, a cutoff, model- 
based sample may be used to avoid substantial 
nonsampling error which could have been generated by 
the smallest entities. Also, a model automatically 
provides an indication (variance) as to whether imputation 
may be allowed. 

A longer version of this paper is found in the Internet 
statistics journal, InterStat. To obtain that article, enter 
http:/ / interstat .stat .vt .edu and proceed as indicated. 
This article is found in the area for April 1997. Note that 
there is an "errata" file. 

Goals  of  this paper: 
The productive application of weighting in regression to 
survey methodology is considered here. Two parts to this 
goal are pursued: (1) an investigation of the accuracy of 
the estimated degree of heteroscedasticity, and (2) the 
establishment of guidelines for the practical 
implementation of weighted regression estimation to 
survey methodology. To meet the goals of this article, 
three cases will be described. The first two cases use 
artificial data, generated to exhibit specific properties 
relevant to the goals of this article. The third case uses 
real data. The accuracy with which we measure 

heteroscedasticity is an integral part of all three of the 
cases. 

Background:  
A) Method for Est imating ~,, W h e n  the N o n r a n d o m  

Factor  o f ' E r r o r '  is x r - 

Consider the model Yi-Dx; : e o x v 
i i " 

(Note that this methodology may be modified to 
accommodate other models, including other formats for 
tile nonrandom factor o f  the residual.) The method 
below is an altemative to the Iterated Reweighted Least 
Squares (IRLS) method. The IRLS method can be found 
in Carroll and Ruppert (1988). 

The comparative usefulness of the method below is 
discussed in Knaub(1993). One of the graphs generated 
will take on different appearances when some model 
failures such as nonlinearity are present. (See 
Knaub(1993) for details.) However, the first two 
examples in a following section of this paper show that 
even when this graph indicates no problem, there may still 
be important, hidden characteristics about the data. 

1) Each error is considered as a product of a random 

factor, e o, and a nonrandom factor, x ~. 

2) Assuming this linear, zero intercept, h~teroscedastic 

w = e0 are nearly model, find y : w  where (yi-bxi)/xi i 

homoscedastic. 

3) With the original regressor, x, still on the horizontal 
A 

axis and le0 ;I on the vertical axis, a fitted homoscedastic, 

linear regression should have a slope near zero, as there 
should be no growth trend as x increases. 

4) Next, in a new graph, if the absolute values of these 
slopes are plotted on the vertical axis against gamma 
values on the horizontal axis, points where the plotted 
line contacts the horizontal axis would correspond to 
values for ~, that make the model consistent with the data. 

B) A Method for Est imat ing the Standard Error of  
the Est imate of ~, - 

Methods employing the logarithm of absolute residuals 
are among those described in Carroll and Ruppert(1988). 
This was also one of the methods suggested to me by Ken 
Brewer. It seems aesthetically pleasing here: 
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x 7 Considerthe model y~-[Ax~ = eoi ~ . 

Taking the logarithm of the absolute values of the 
residuals, when x is always positive, and writing this as a 
regression equation, we obtain 

log[pi-~xi[  - log(Eleoil)  + 71ogxi + eo/i(logxi)T' 

which we will rewrite as 

y I - 51 + ~ I x  I + X I Y/ 
i i eol  i i 

If we plot logLv;-13x;I, or yi/, on the vertical axis, and 

logxi, or xJ, on the horizontal axis, then the slope is an 

estimate of 7. The advantage of obtaining this estimate 

of 7, is that it is then easy to obtain an estimate of the 

standard error for 7. A n y  est imated s tandard error f o r  

the estimate o f  [3 / now becomes  an est imated s tandard 

error for  tile est imate o f  7,  because ~ / :  7. 

C) Method Used to Construct Artificial Data: 
Points symmetric in the dimension of the y-axis about a 
straight line are used to represent the increase in variance 
associated with a given nonrandom factor of error (i.e., 

nonrandom factor of the residual), of the form x ¥ (or any 
other form chosen). This methodology functions as if one 
were to have drawn confidence interval contours about a 
line, considering a given degree of heteroscedasticity. 
(See Knaub(1995a).) 

D) Another Form for the Nonrandom Factor of the 
Residuals: 
Real establishment survey data investigated by this author 
have never been shown to support a more elaborate model 
of error than the standard one in which the nonrandom 

factor of the residuals is of the form x ~. Perhaps this is 

because the data sets used were generally not large. Note, 
however, that in Steel and Fay (1995), such a model was 
found for their data. To use the methodology of A) above, 
instead of looking for the one value w, three values would 
need to be found simultaneously for their model. The 
graphs described in A) above could be made by holding 
two values constant and searching for a better value for 
the third, given the other two, in an iterative process, 
looking for the 'best' set of values to use. 

Examples Illustrating Possible Usefulness of Proposing 
Guidelines: 
The following examples illustrate that although x ~ is a 
very useful form for the nonrandom factor of the 
residuals, and we may find a value for y that appears to 
perform very well, there may be some improvements one 

can make. In the first example, we see that in a case 
where we could have stratified had we known more about 
the data, there may be no indication of this when we treat 
the data as a homogeneous group with inflated 
heteroscedasticity. Resulting estimates of total and its 
variance may still be very good, but perhaps results would 
be better had we known how to stratify those data. In the 
second example, we see a case where the value of y is a 
step function of x. Perhaps this might perform well in the 
case of the data used in Steel and Fay(1995). Similarly, 
in Knaub(1995b): "Dr. Nancy Kirkendall, EIA/OSS, once 
noted an article by Karmel and Jain (1987), which 
suggests modeling strata delineated by size of the 
regressor values." 

The first two examples used artificial data to isolate 
specific phenomena. In example 3, real data are used. 
These data constitute a strata of data found in 
Knaub(1996). Stratification criteria were thus employed, 
and the estimated value of 7 for this more homogeneous 

set of data was found to be smaller, as example 1 would 
indicate. With such 'real' data, however, other factors 
could be present. 

Example 1: 
This example uses artificial data with a single regressor, 
and zero-intercept. The data set actually consists of three 
sets of data, each having y = 0, but each with a different 

value for [3. These values for 13 are 0.8, 0.85 and 0.9. 
See Figure 1.1. This represents a case where stratification 
should have been used, but perhaps there was too little 
information to do so. 

Figure 1.1 

Example Using Artificial 'Test' Data 
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Figure 1.2 shows an approximation for 7. Here, 

y = 0.67. (See "Background," section A) 4) above.) 
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Figure 1.2 
Heterogeneous 'Test' Population 

Gamma Estimation 

200 Remaining Nonrandomness 

150 

100 

50 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

Proposed 'Apparent' Gamma 

The y-axis shows a measure of nonrandomness 
remaining for a proposed gamma value on the x-axis. 

Figure 1.4 
Heterogeneous Test Population 

Cont inuat ion of Method Involving Log of Absolute 
Residuals 
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This is to investigate heteroscedasticity in the model 
used to study variance of the 'original' gamma. 

Figures 1.3 and 1.4 illustrate the method for estimating the 
standard error of an estimate of y by first (Figure 1.3) 

plotting logLv;-[3x;Ion the vertical axis and log x; on the 

horizontal axis. 

Figure 1.3 
Heterogeneous Test Population 

Method Involving Logarithm of Absolute Residuals 
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The slope here corresponds to gamma 
in Figure 1.2. 

Example 2: 
This example also uses artificial data with a single 
regressor and zero-intercept. The data set actually 
consists of two sets of data, each with the same value for 
[3. One data subset was designed with y = 1, and the 

other with y=  0.5. (This is shown in Knaub(1997), 
Figure 2.0 and Figure 2.1 .) This represents a case where 
the nonrandom factor of"error" is not represented best by 

xiV, using only one value of y .  However, we can 

estimate a value for y that appears to be indicated by the 

data, overall. Figure 2.2 in Knaub(1997) shows an 
approximation for ,(to be 0.85. Figures 2.3 and 2.4 in 
that article illustrate the method for estimating the 
standard error of an estimate of y.  First, a plot of 

logLvi-13x;I (vertical axis) and logx;(horizontal axis) is 

made. The slope is an estimate of y. Estimates of y and 
its standard error follow as 0.88 and 0.01, respectively. 
One might then be quite convinced of  the correctness o f  
the estimate of  gamma, not suspecting the true nature of  
the data. 

The slope in Figure 1.3 is an estimate of y. In this case, 
the estimate of y and its standard error are 0.62 and 0.10, 
respectively. 

Notice from Figure 1.4 that we have a nearly 
homoscedastic situation in this instance. 

A cursory look at a few examples seems to indicate that 

y / i s  often near zero or negative. However, results may 

not be highly dependent upon choice of y/, at any rate. 

Example 3: 
The final example employs naturally occurring data with 

two regressors. The model, y; = Dlxi + [32c; + e o c v 
i i ' 

was used. (For graphs, again see Knaub(1997).) The size 
of the data set is n = 642. (This is unusually large in this 
author's experience.) An approximate value for y was 

:¢ 

found to be y = 0.82. This value for y is indicated for 

heteroscedasticity with respect to x. 
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For heteroscedasticity with respect to any regressor, first 
estimate the values for the proposed random factor of the 
residuals by dividing the residuals by the proposed 
nonrandom factor. Next check whether the resulting 
estimated e 0 values actually are nearly random, with 

i 

respect to that regressor. This would be covered in A) 3) 
under "Background" earlier in this paper. In this example, 

for heteroscedasticity with respect to x, 3( = 0.82. For 

heteroscedasticity with respect to the other regressor, c, 

y = 0.96. Here, x is the more influential regressor with 

regard to estimating population totals, as, in general, 
[31xi > [~2 el. With respect to x, estimates of 3(and its 

standard error are 0.82 and 0.03, respectively. 

Concluding remarks for this example: 
Consider: "Are there enough data to decide we should use 
y= 0.82, or should we use something more robust?" 

For highly skewed, stratified, establishment surveys, the 
least aggregate numbers estimated may be represented by 

a few of the largest entities. If so, using xi 1/z as the 

nonrandom factor of the residuals may often perform well. 
This is often the case when the regressor is the same 
variate that is represented by y in the sample, but from a 
previous census. In example 3, however, there is a second 
regressor, and this may change the situation appreciably. 
Using y= 0.5 yields a larger effective sample size than 
does using y= 0.82. (Only in the case where y= 0 
(ordinary least squares) are all data points weighted 
equally.) 

In this two-regressor example there appear to be enough 
'well-behaved' data (n = 642) that we may use the 
estimated value, y= 0.82. Consider the following: The 
estimated standard error for the estimate of y is small. 
The estimation of ,/based on the methodology found in 
"A)" under "Background" indicates no problem, and 
stratification has been applied to some extent, the data 
consisting of one of those strata. Thus the value for 
y estimated from these data may be useful. 

To review: 
Examples 1 and 2, illustrate that there may be 
considerations other than the standard error of the 
estimate of ,/, and the graphical analysis of Knaub(1993) 
as explained under "Background" above, when 
contemplating regression weights for use in survey 
methodology. It may well be that such stratification and 
model failure considerations as were shown in examples 

1 and 2 may not greatly impact on the estimation of totals 
and their variances if we were to remain ignorant of these 
phenomena. For example, using y = 0.5 may be very 
robust for estimating totals; using the estimated y may be 
excellent for imputation in general; but for a better 
localized imputation, and for data analyses as in Carroll 
and Ruppert(1988), the more detailed examination may be 
imperative. 

In example 3, perhaps further stratification would be 
desirable, but the mechanism for doing this may be 
unknown. Perhaps y could vary as x and/or c increase(s). 
In the case of cutoff model-based sampling, for possibly 
combined strata which we do not kno~w how to separate, 
perhaps ~,= 1 is a better default value than y=  0.5. 
That would, for instance, prevent one strata with the 
largest few data points from unduly influencing the 
estimation of a large number of smaller data points. If 
several strata have been combined, then perhaps there 
would be enough data points to allow the use of the larger 
value of y, which affectively reduces the sample size. 
Because example 3 actually represents a case where some 
stratification had already been accomplished, one may 
decide to use y = 0.8. 

Survey Methodology vs. Analytical Use of Weighting 
in Regression: 
The use of weighted linear regression models in survey 
methodology may generally, to date, have been more 
conservative than in data analyses, such as those found in 
Carroll and Ruppert(1988). In survey methodology, 
models have often been used less for exploring survey 
data and more for summarizing. However, model use in 
imputation helps 'bridge that gap,' and there is some 
history of exploratory use, as may be seen in 
Cochran(1977). Sarndal, Swensson and Wretman (1992) 
exemplifies some more recent analytical use of models in 
survey methodology as does Sweet and Sigman (1995). 
Steel and Fay (1995), in their survey methodology, use a 
relatively elaborate model, which may be more consistent 
with Carroll and Ruppert (1988) than with Brewer (1963), 
Royall (1970), Royall and Cumberland (1981), or even 
more recent survey methodology works by these and/or 
other authors either. Still, as indicated above, more 
attention seems to be paid to models in survey 
methodology in recent years. Note, for example, that 
Chaudhuri and Stenger (1992) gives a fairly balanced 
view of survey sampling (ie, design-based and model- 
based survey sampling), and Brewer (1995) provides 
more insight. 

Although the goals of survey work and analytical work 
may keep the methods somewhat distinct, more seems to 
be borrowed from analytical work as the field progresses. 
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Still, cutoff, model-based sampling for relatively small 
establishment surveys would seem to generally require 
less elaborate models than perhaps some imputations 
would, and analytical work may make use of even more 
elaborate models. 

Some Guidelines/Considerations: 
In light of the examples given, when applying weighted 
regression estimation for survey sampling, consider the 
following: 

1) Could stratification be needed? 

2) Could gamma vary, or is x ~ even a useful format to 
apply as the nonrandom factor of the residuals? 
3) Are there enough data to estimate the nonrandom factor 

of 'error,' or should we use a robust default such as x °"s7 
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