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1. I n t r o d u c t i o n  

Denote by {f(x; 0), 0 E O} some parametric 
model of X with parameter 0, both may possibly 
be vector-valued. It is said to have a latent struc- 
ture if the complete data x can only be observed 
through a statistic of it, i.e. y = Y(x), in which 
case x is said to be latent and y its manifestation. 
(Notice that  the term "latent" refers here to the 
entire complete data  set instead of merely its un- 
observed part.) In particular, {fl (Y; 0), 0 e O} 
denotes the model marginalized towards y, with 
the the marginal model function fl (y; 0). A la- 
tent structure is ignorable if Y is sufficient for 0 
under the complete model, i.e. f(x; 0{y) = f(x{y), 
where f (x; tgly ) is the conditional probability mass 
(or density) function of x given Y = y. Non- 
ignorable latent structures arise from all genuine 
incomplete-data situations, of which sample sur- 
vey with nonresponse and/or  measurement errors 
constitutes one of the many familiar as well as 
important  instances. 

Given the data y under the latent structure 
model, an imputation is any latent x* satisfying 
y = Y(x*). Notice that  the superscript has been 
used to underline that  x* is not truly observed. 
Moreover, denote by ft* the set of all possible im- 
putations given y. Now imputations may be de- 
sirable due to the general interest in fixing up the 
data  base for public uses, or because one wishes 
to study the systematic difference between the ob- 
served marginal model and the latent complete 
model as well as the sensitivity of the model to- 
wards the latent structure, etc.. 

From a parametric inference point of view, an 
imputation is said to be likelihood consistent with 
its manifestation only if the latent structure is 
ignorable, in which case x* yields the identical 
inference as y. Otherwise, and more generally, 
they lead to different inferences. We propose to 
choose the imputation such that this difference is 

minimized. To be explicit, denote by T1 (Y) some 
summary statistics of inference based on the ob- 
servation, and T(X*) the corresponding statistics 
had X* been available. Suppose the difference 
in T1 and T can in some well defined sense be 
measured by D(T1,T). The x* which minimizes 
D(tl ,T)  conditional to Y - y can then be con- 
sidered optimal for that  inferential purpose. For 
instance, suppose T1 (y) - 0 is the maximum like- 
lihood estimate (m.l.e.) based on y and f l(y;  0), 
and T(x*) the m.l.e. 0* based on x* and f(x; 0). 
Suppose their difference is measured by a distance 
function, say, D(0, 0") - II0 - 0"1}2. The optimal 
imputation is then x* which yields the closest 0* 
to 0. For f(x; O) from the exponential families of 
distributions, this x* can be generated by the fi- 
nal E-step of the EM algorithm, based on which 
0* coincides with 0. 

Such optimality of the imputation rests clearly 
on the inferential purpose; and an imputation 
which is optimal in one sense can be poor in oth- 
ers. However, since all the information contained 
in y and x* are summarized in their respective 
likelihoods, denoted by L1 (0; y) and L(O; x*), we 
are prompted to consider the case where (T1, T) 
are simply set to be these likelihoods themselves. 
Now the difference between the information con- 
tents of L1 and L is, above all, reflected in the 
variation of the residual likelihood in/9, i.e. 

(X 

L,,(O;x*ly) = y) 

f(x*; Oly) =/(x*;o)/f l  (y; o), 

since Lr contains all the information which lies in 
x* yet outside of y. Notice that  in case x* is like- 
lihood consistent with y, Lr becomes a constant 
of 0. The likelihood imputation developed below 
aims therefore at making the residual likelihood 
as flat as possible, in which sense inference based 
on the imputed data is made as close as possi- 
ble to that  based on the observed data. Clearly, 
though, variants of the likelihood imputation can 
be derived in the similar spirit should one choose 
to focus on other summary statistics of inference. 
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In contrast, standard model-assistant sin- 
gle imputation method opt for the conditional 
mean of X averaged over its estimated condi- 
tional distribution f(x;~ly ) (Greenlees, Reece, 
and Zieschang, 1982; Bj0rnstad and Wals0e, 1991) 
which, however, does not directly address the dif- 
ference in information contents between an impu- 
tation and its manifestation. For instance, in case 
the conditional-mean imputation coincides with 
the final E-step of the EM algorithm, it carries no 
other information than what 0 does, which is why 
the E-step remains only the auxiliary part of the 
algorithm and is largely forgotten afterwards. 

Moreover, although we shall be focusing on the 
single imputation here, our approach does also 
have implications for multiple imputation (Ru- 
bin, 1976, 1987; Schenker and Welsh, 1988), un- 
der which inferences based on m imputations (for 
not too large m) can be combined in such ways 
that the results are consistent to the various or- 
ders with those directly based on the observations. 
Compared to single imputation, this method is 
particularly successful in assessing the accuracy of 
parameter estimation - -  see however Efron (1994) 
for a nonparametric Bootstrap approach and our 
discussion of the concept of effective sample size 
below. In any case, since each randomization al- 
most surely generates different set of multiple im- 
putations, it is still legitimate to ask which one of 
them we should choose. 

Section 2 defines the likelihood imputation. 
We explain its properties and implementations. 
Section 3 uses two examples for illustration, some- 
times in comparison with the conditional-mean 
single imputation. Section 4 draws attention to 
several potential subjects for future study. Fi- 
nally, we refer more details and cases to a fuller 
version of the current presentation (Zhang, 1997). 

2. Likelihood imputat ion 

2.1 The  def in i t ion  

We measure the variation of the residual log- 
likelihood over some parameter region Oh by the 
(uniform) (~-value of x*, i.e. 

5(x*) - /Oh 12/ch dO-(/o, ,  lr/Ch dO) 2, 

where lr - log Lr and Ch -- fob dO the Lebesgue 
measure of Oh chosen. Notice that the ~-value 
is thus invariant towards proportional observed 
likelihoods provided so is Oh; and it vanishes in 
case x* is likelihood consistent with y. Notice also 
that the idea of assessing the proportionality be- 
tween two functions through the variation in their 
log-difference has otherwise been adopted for the 
Gibbs stopper (Tanner and Wong, 1987; Wei and 
Tanner, 1990; Ritter and Tanner, 1992). Usually, 
we form Oh in the same way as we draw confi- 
dence regions for 0, i.e. 

Oh(fl) -- {0" ll (0; y) -- 11(0; y) < x~(do)/2} 

where do denotes the number of free parameters 
and X~ the fl-quantile of the x2-distribution. Ap- 
pealing to the asymptotic x2-distribution of the 
log-likelihood ratio statistic, Oh(fl) is an approx- 
imate 100/3% confidence region of the parameter 
and will often be shorthanded as O z . 

Given observation Y = y, gt* becomes a lin- 
early ordered set induced by the 5-value; and the 
likelihood imputation is such that no other impu- 
tation has a smaller (f-value. What is essential 
here, however, is the idea of minimizing the dif- 
ference in information contents between an im- 
putation and its manifestation, regardless of the 
actual quantification of this difference. 

Suppose it is legitimate to exchange the in- 
tegrations and the differentiations involved, the 
likelihood imputation satisfies the (uniform) ~- 
equation, i.e. 

- o 

for x* e fi* and l~ - Olr/Ox, w.r.t, the uniform 
distribution Ch 1 over Oh(~), i.e. the inverse of the 
Lebesgue measure of Oh(/~). Observe that lr on 
the likelihood imputation has the geometric inter- 
pretation of being orthogonal to its derivatives in 
the corresponding L2-space. 

Unlike the conditional-mean imputation, de- 
noted by 2" = E[X; ~IY], the likelihood impu- 
tation depends on an entire high-likelihood re- 
gion instead of one of its interior points. It nev- 
ertheless results into consistent parameter esti- 
mator with considerable generality. We outline 
briefly the basic arguments. Denote by Qj(O) the 
quadratic form of 0 at some square matrix j ,  i.e. 
Qj(O) = oTjo. Heuristically, suppose that the 
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following quadrat ic  log-likelihoods apply to some 
neighbourhood of 0, i.e. 

1 
l(0; x*)  - -  Q)(O - ) 

1 (0 O) ll (0; y) -- ll (0; y) - -  ~ Q g . ~  - , 

where ) - j(0) a n d  )1 - j l  (0) are the respective 
observed information matrices derived from 1 and 
ll both, however, evaluated at 0. The symmetry 
of Oh(/3) around 0 - 0 would imply that  the 5- 
equation is solved at the x* which yields 0* - 0, 
i.e. the center of Oh(/3). (One needs only to re- 
flect over the scalar 0 and realize that  the general 
case is essentially the same.) Asymptotically, the 
error terms of these quadratic expansions are ar- 
bitrarily small with a probability tending to unity 
(e.g. when 0 attains asymptotic normality), in 
which case the probability that  the di-equation is 
solved at some 0* arbitrarily close to 0 also tends 
to unity, so that  0* based on the likelihood impu- 
tation is a consistent estimator of 0. 

2.2 The implementation 

The integrals involved in the &value and 5- 
equation may well turn out to be difficult to han- 
dle analytically, in which case they can be eval- 
uated by the Monte Carlo method (Hammersley 
and Handscomb, 1964; Rubenstein, 1981) under 
which it is not necessary to calculate the constant 
Ch. More explicitly, let a grid be a set of ran- 
domly generated parameter  values {01,..., Od} E 
Oh, the simplest unbiased Monte Carlo estimate 

d of 5 (x*) i s  given by ~i=l[ l~ (Oi ) - /~]2 / (d -  1), 

where [~ - y'~id=l l~(Oi)/d. The other integrals 
involved can similarly be approximated by their 
Monte Carlo estimates evaluated at the same grid 
points. The resultant solution of the &equation 
is called the Monte Carlo likelihood imputation 
w.r.t. {01,..., Od}. 

There is consequently a question on the size 
of the grid, especially with high dimensional pa- 
rameter. Practically, one could run the algorithm 
repeatedly for grids with increasing sizes till the 
equilibrium is r e a c h e d -  the assessment of which 
can be based on a test on the equal 'variance' of 
the residual log-likelihoods from different runs. To 
reduce the dimension of the &equation, one may 
apply the method to the sufficient statistics of x* 
instead, provided the post randomization is fea- 

sible. In particular, when f(x;O) belongs to the 
exponential families of distributions, the Monte 
Carlo likelihood imputations obtained from dif- 
ferent runs can be pooled to form a new impu- 
tation with reduced &value. Due to the linear- 
ity of l(O; x*) in the sufficient statistics of x*, the 
residual log-likelihood on the pooled imputation 
coincides with the pooled residual log-likelihood, 
whose &value is smaller than the pooled di-value 
unless the residual log-likelihoods are pairwise 
perfectly 'correlated'. The size of the grid can 
therefore as well be controlled by the 'correlations' 
between the residual log-likelihoods from differ- 
ent runs. It is also clear that  multiple likelihood 
imputations do not occur in case of exponential 
f(x;O), though the possibility should always be 
entertained otherwise. 

Meanwhile, the minimization of the &value is 
often simplified provided the residual likelihood 
can be factorized into 

k k 

I-I  L~j (0; xj ]yj ) oc I I  f (xj ; Olyj ), 
j = l  j = l  

where (Yl ,  . . . ,  Yk) : ( Y l ( X l ) ,  . . . ,  Yk(Xk) )and  
both xj and yj, 1 <_ j <_ k, can be vectors 
themselves. That  is, conditional to y, the com- 
plete data can be partitioned into independent 
Xl, ..., xk. The &value is then given as 

k k 

E Covh(/r,, Irj) - E 5(x* 
i , j = l  i , j = l  

,x~), 

where 5(x*, x~ ) is called the (i, j)-th cross 5-value 
for 1 <_ i , j  < k. Clearly, therefore, we can min- 
imize the cross &values involving x~ at given x~ 
(j 7~ i) and iterate. This breaks the di-equation 
into smaller pieces, and generates a sequence of 
imputations decreasing in their 5-values by con- 
struction. 

3.  E x a m p l e s  

3.1 G e n e t i c  l inkage  m o d e l  (Rao ,  1965, p 
368-9) 

Suppose n = 197 animals (y) are divided into four 
categories, with counts (yi, ..., y4). Augment the 
data to obtain the latent x = (xi, ..., xs) such that  
yl = Xl + x2, y2 = x3, y3 = x4 and y4 = x5, which 
are multinomially distributed according to the 
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Figure 1" Genetic linkage model. The solid observed log-likelihood 11 (0; y) against the dot ted imputed  
complete log-likelihood/(~; x*) and the dashed effective (imputed) complete log-likelihood (m/n)l(O; x*) 
after vertical shifts. (The left plot based on y - (125, 18,20,34) and the right one y - (14, 0, 1, 5).) 
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probability vector Px - (1/2, 0/4, (1 - 0)/4, (1 - 
0)/4, 0/4).  

Suppose first y - (125, 18, 20, 34). We search 
through ~* - {x~;0 < x~ < YI } over O0.95 = 
(0.52,0.72), i.e. for any grid evenly spread out 
over O0.95 we calculate the Monte Carlo 5-value 
for each x~ E ~*. The corresponding Monte Carlo 
likelihood imputat ion is given by the x~ with the 
smallest Monte Carlo 5-value. The result settles 
already for small grid sizes (say, d - 5), which 
yields the likelihood imputat ion x~ - 96 and the 

m.l.e, based on this 0* - 0.6238. The EM- 
est imate in this case is 0 - 0.6268 (Dempster et 
al., 1977) where the E-step treats  the data  as if 
they were continuous. The procedure was sim- 
ilarly carried out for another more extreme data  
set y - (14, 0, 1, 5) over Oh -- (0.833, 0.950) which 

is the range of 0* conditional to y the sample 
is too small for the asymptot ic  results on Oz to 
apply. The Monte Carlo likelihood imputat ion 
settles on x~ - 10, giving ~* = 0.9 as compared 

to the EM-est imate  0 -  0.903. (See Figure 1 
the scaling factor m / n  is discussed in Sec. 4.) 

Alternatively, t reat ing the data  as if they 
were continuous and solving for the 5-equation, 
we obtain the likelihood imputat ion as x~ = 
Covh[Yl log(2 +O),logO]/Yarh(logO). Taking the 
nearest integers, we have [x~] - 29 for y - 
(125, 18, 20, 34) and [x~] - 4 for y - (14, 0, 1, 5), 
which are the same as above. 

Meanwhile, conditional to Y1 - yl,  X~ can 
be considered as, say, the total  success among yl 
i.i.d. Bernoulli trials, denoted by (Zi ~, ..., Zy 1) and 
Xx. _ y~,yXi=l zi*, to which the iterative algori thm 
applies. Tha t  is, at each iteration, we minimize 
Y'~i 5(z~, z]) for j - 1, ..., yl in succession. For 
instance, let y - (125, 18,20,34) and set z~ = 
• .. = z~25 - 0. The algorithm returns z~ - 1 
for j up to 96, upon which it converges since it 

• which is the same as its initial returns zero for z97 
value. Setting z~ . . . . .  z~25 - 1, the algori thm 
returns z~ - 0 up to j - 29 at which convergence 
is reached. Indeed, due to the binary domain of 
Z~, the convergence can be reached within the 
first i teration for any initial values of (z~, ..., zy~). 

3.2 Linear  r e g r e s s i o n  w i t h  r i g h t - c e n s o r e d  
d a t a  

Schmee and Hahn (1979) studied the motore t te  
da ta  (Table 1) to which they fitted a linear re- 
gression model, i.e. 

xi - /30  + ~lvi + aei i - 1, ..., 40, 

where ei ~ N(0,  1) and ( t e m p e r a t u r e +  2 7 3 . 2 ) v i -  
1000. Denote by 0 the parameter  vector 
(/30, ~1, a),  whose residual log-likelihood Ir is 

23 

-  [log + l o g H j  + (z;  - 
j--1 
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Table 1" The motorette data (Schmee and Hahn, 1979). Each row corresponds to different temperatures 
at which the motorettes were tested, which shows the time to failure on the logl0-scale, where a star- 
superscript indicates that the observation was right-censored. 

3.907* 3.907* 3.907* 3.907* 3.907* 3.907* 3.907* 3.907* 3.907* 3.907* 
3.246 3.443 3.537 3.549 3.577 3.687 3.716 3.736* 3.736* 3.736* 
2.611 2.611 3.128 3.128 3.158 3.225* 3.225* 3.225* 3.225* 3.225* 
2.611 2.611 2.702 2.702 2.702 2.723* 2.723* 2.723* 2.723* 2.723* 

Monte Carlo likelihood imputation over the 95% confidence region. 
4.091" 4.094* 4.139" 4.157" 4.165" 4.234* 4.358* 4.410" 4.419" 4.516" 
3.246 3.443 3.537 3.549 3.577 3.687 3.716 3.836* 3.877* 4.070* 
2.611 2.611 3.128 3.128 3.158 3.225* 3.270* 3.427* 3.721" 3.842* 
2.611 2.611 2.702 2.702 2.702 2.729* 2.854* 2.887* 3.088* 3.174" 

where, for the j - th  right-censored observation, 
#j - ~o +/~lvj and Hj - 1 - O{(yj - # j ) / a ) .  
This allows us to solve the 5-equation iteratively. 

Data augmentation (Tanner, 1993, p 65), with 
m - 100 chains and running for 10 iterations, has 
been used to locate the approximate 95% confi- 
dence region O0.95. (We are not particularly both- 
ered with the convergence of the data augmenta- 
tion, i.e. the accuracy in O0.95.) Evaluating the 
cross ~-values at d - 1000 points, we obtained 
one Monte Carlo likelihood imputation (Table 
1), based on which 0* - (-6.017,4.315,0.268) 
and ~ - (4.179,3.719,3.299,2.732) for ~ - 
(150,170,190,220). The corresponding EM- 
estimates (Tanner, 1993, p 43) are (-6.019, 4.311, 
0.259) and (4.164, 3.707, 3.284, 2.719). For 
comparison, the Monte Carlo likelihood impu- 
tation ^generated over the approximate O0.5o, 
gives 0* - (-6.071, 4.335, 0.272) and t~ = 
(4.172, 3.710, 3.288, 2.719), which seems to indi- 
cate the robustness of the likelihood imputation 
towards the choice of O n. 

It is worth noticing that the variation in the 
imputed values here results directly from a min- 
imization procedure. This happens because the 
likelihood imputation aims at the 'right' latent 
likelihood, i.e. the 'right' latent sufficient statis- 
tics, which in turn requires variability in the im- 
puted data at fixed temperatures. In contrast, 
the estimated conditional means are (4.239, 3.933, 
3.455, 2.928) depending on the value of vi but 
is the same at a given temperature, which is 
not only unnatural but also misleading giving 
~* - 0.225. 

4. D i s c u s s i o n  

An imputor, i.e. a function of the observation 
Y taking range in the sample space consistent 
with Y, can be said to be likelihood consistent 
if it yields likelihood consistent imputations; it 
is so asymptotically if the standardized, imputed 
residual log-likelihoods, i.e. 4 / n ,  converge to a 
constant independent of the parameter in prob- 
ability. In case the likelihood imputor fails to 
satisfy asymptotic likelihood consistency, the im- 
puted residual information Jr - J (O* ) - j l  (0" ) 
does not vanish in probability, which in turn in- 
dicates the amount of information that has been 
imputed. Now, restoring public data bases us- 
ing single imputation very much depends on how 
successful we can summarize this imputed infor- 
mation in a concise, robust manner. The ~-value 
can only be used comparatively; whereas )r  ap- 
parently too dependent on the parameterization. 

Under the repeated sampling, improvements 
can always be achieved by applying a concept of 
effective sample size in connection with the likeli- 
hood imputation. In short, instead of the actual 
sample size n, we use the effective sample size, 
say, m and base inference on (m/n)l(O;x*) in- 
stead of l(O;x*). This implies to minimize the 
variation of the effective residual log-likelihood 
( m / n ) l ( O ; x * ) -  l l (O;y) instead of the proper lr. 
Notice the difference resulted from minimizing m 
posterior to the likelihood imputation or simul- 
taneously with it. Notice also that  the extent of 
the improvement is nevertheless not independent 
of the model assumed, i.e. whether it leads to 
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favourable shapes of the log-likelihoods. This is a 
criticism, within the relevance of restoring public 
data  bases, shared by all model-assistant imputa- 
tion techniques single as well as multiple. The 
genetic linkage model again provides a simple il- 
lustration. 
E x a m p l e :  G e n e t i c  l inkage  model~ c o n t ' d .  
Suppose y - (125, 18, 20, 34). The standard de- 
viation of 0 is 5.146 × 10 -2 derived from )1, and 
4.805 × 10 -2 from )* at x~ - 96. Minimizing 
Varh[(m/n)l(O; x* ) - 11 (0; y)] towards m / n  with 
x~ fixed at 96 gives m / n  - 0.871, i.e. [m] - 172. 
Treat this as the 'effective' sample size and de- 
rive the adjusted standard deviation of 0 from 
(m/n)l(O; x*) gives us 5.148× 10 -2. Whereas min- 
imizing towards m / n  and x* simultaneously gives 
[x~] = 95 and m / n  = 0.865, i.e. [m] = 170, and 
the adjusted standard deviation 5.151 × 10 -2. 

Suppose y - (14, 0, 1, 5) instead. The stan- 
dard deviation of 0 derived from )1 is 9.363 × 10 -2, 
and 9.232 × 10 -2 from )* with x~ - 10. Mini- 
mizing Yarh[(m/n)l(~; x * ) - l l  (0; y)] towards m / n  
with x~ fixed at 10 gives m / n  - 0.9999, leading 
practically to no adjustment; whereas minimiz- 
ing towards m / n  and x* simultaneously gives us 
[x~] - 10 and m / n  - 0.967, i.e. [m] - 19, with 
the adjusted s tandard deviation 9.389 × 10 -2. (~ 

The conditional-mean imputation carries little 
information on the model in addition to what is 
summarized in 0, whereas the likelihood imputa- 
tion depends on an entire high-likelihood region so 
that  a series of likelihood imputations constructed 
over variously chosen likelihood regions are able 
to cast light on the likelihood as a whole; and we 
outline briefly one way in which such information 
can be gained. 

The latent structure entails loss of degree of 
freedom in data, so that  restrictions on the di- 
mension of 0 sometimes becomes necessary. Since, 
technically, the likelihood imputation can be gen- 
erated regardless of such restrictions, one may 
compare, at least around the local maxima of 
ll, the full-model likelihood imputation with the 
restricted ones, even when the full paramater  is 
not identifiable. In case they differ considerably 
from each other, which basically indicates that  the 
quadratic approximation to 11 no longer remains 
appropriate under the full model, reconsideration 
of the restrictions made would seem prudent. 

The kind of sensitivity analysis described here 
is only made possible by the likelihood imputa- 

tion. Its potentials in this area, however, have 
by no means been exhausted, especially once we 
start  to consider alternative quantifications of the 
difference in information contents with other per- 
haps more specific inferential purposes on mind. 
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