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1. Introduction 
Survey questions that ask respondents to report 

financial amounts -- particularly dollar values for income, 
assets, and liabilities -- are subject to high rates of item 
missing data. Researchers are using special questionnaire 
formats to address the missing data problem for these 
f'mancial variables. Loosely termed "bracketed response 
questions," these question formats collect an interval-scale 
observation whenever a respondent is unable or unwilling 
to provide an exact response to a f'mancial amount 
question (Heeringa, 1993; Kennickell, 1996). Bracketing 
question sequences reduce the rate of completely missing 
data for net worth variables; however, the resulting 
measures are a coarsened mixture of single valued 
responses, "bracketed" or interval-censored responses, 
and completely missing data. 

The purpose of the paper is to investigate methods 
of imputing amounts for bracketed net worth variables, to 
empirically compare the distributional properties of data 
imputed by the alternative methods and to estimate the 
imputation variance that each method adds to the 
completed data set. 

2. HRS Net Worth Variables: Bracketing and Missing 
Data Rates 

Table 1 presents rates of bracketing and missing data 
for 12 of 23 variables needed to compute total household 
net worth for households interviewed in Wave 1 of the 
Health and Retirement Survey (HRS) (Juster and Smith, 
1994). The left-hand panel of Table 1 identifies the 
individual net worth component variables. The central 
panel, labeled "Does item apply?", provides estimates of 
the percentage of HRS Wave 1 sample households 
(unweighted) that reported having each asset or liability 
(i.e., a nonzero amount value is assumed). For households 
that report owning a particular asset or having a particular 
type of debt, the right-hand panel of Table 1 describes the 
distribution of response types: actual value, bracketed 
value or missing data value. Clearly the use of bracketed 
response questions reduces the loss of information due to 
item nonresponse. 

3. Model and Method for Multivariate Imputation of 
Net Worth Components 

We assume in this and the following sections that 
conditional on the observed data, responses to specific 
HRS net worth variables are coarsened at random (CAR; 
Heitjan and Rubin, 1991). Therefore, we are concerned 
here with the data model and not the probability 
mechanism that generates the missing values or interval 
censoring of the multivariate data. We begin by defining 
the survey data: 

Yi = (Yo ..... YO) : survey values o f  

/= 1 .... p net worth variables for  the ith case; 

{ 1, i f  Yq > 0 
Ti" TO = 0, i f  Yq 0 

(assumed known here); 

1, i f  Yq observed 

Ri" Rij = 0 i f  Yo missing. 

If R = 0 (missing data) the bracketed response y 
question sequence also provides upper and lower limits 
for the value of the missing amount. 

One feature of the multivariate vector of net worth 
component measures that proves to be problematic in 
def'ming the data model is that the univariate distribution 
of each variable contains a significant point mass at the 
zero value. Tobin (1958) coined the label "limited 
variables" to describe observations of this type. Table 2 
illustrates the multivariate nature of the problem by 
presenting the bivariate distribution of zero/non-zero 
values for two net worth components. We propose an 
extension of the general location model (Olkin & Tate, 
1961) to such multivariate data with f'mite probability of 
zero values ("limited" data). To illustrate, we consider 
the mixed normal model for the bivariate case: 

(Z, I T, ¢s) ~ Jv2(~t(,), E(, )) 

Yt = 

(Zu,Z,2) if T, = (1,1) 

(z,~,0) if I ,  - (1,0) 

(0,Z,2) if Tt = (0,1) 

(o,o) V T, = (0,0) 

We use {s} to denote sets of patterns defined by the 
vectors T. (There are four such pattems in the bivariate 
example of Table 2.) 
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Table  1 
H R S  W a v e  I Net  W o r t h  C o m p o n e n t s  

Dis tr ibut ion  of  Responses  by Response  Type  (n - 7607 respondent  households)  
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Real Estate(not home) 
Vehicles, Pers Prop 
Business 
IRA, Keogh 
Stock, Mutual Funds 
Checking, Savings 
CDS, Savings Bonds 
Bonds 
Other Valuables 
Other Debt 
Home value 
I st Mortgage 

100% I 23.1% 76.3% 
100% I - - 
100%1 16.1% 83.4% 
100%1 37.1% 62.2% 
100% I 26.5% 72.6% 
100% I 77.5% 21.5% 
100% I 24.6% 74.3% 
100% I 5.9% 93.2% 
100% I 15 .0% 83.9% 
100% I 38.2% 60.8% 
100% I 68.0% 31.9% 
100% I 43.6% 56.0% 

i 

0.6% 

0.5% 
0.7% 
0.9% 
1.0% 
1.1% 
0.9% 
1.1% 
1.0% 
0.1% 
0.4% 

1759 100% 
7607 100% 
1226 100% 
2825 100% 
2015 100% 
5895 100% 
1870 100% 
445 100% 

1143 100% 
2908 100% 
5176 100% 
3314 100% 

74.7% 
87.4% 
68.2% 
73.7% 
67.4% 
73.3% 
70.6% 
69.7% 
72.1% 
90.4% 
95.4% 
92.4% 

21.0% 
10.6% 
26.0% 
21.5% 
26.6% 
21.5% 
22.6% 
19.8% 
21.6% 
5.7% 
1.2% 
0.8% 

3.4% 
1.9% 
5.8% 
4.9% 
6.0% 
5.2% 
6.8% 

10.6% 
6.4% 
3.9% 
3.4% 
6.8% 

The complete data log likelihood for the mixed 
normal model is: 

In L(~t{s},~{s}/Z, T) 

,=1" 2 21n(2~)+lnl~{s}l] + (Z~-g{~}) ~ 2 - 1 _  {~}(Zj-g{~}) r _  

The general form of the mixed normal model permits the 
means and variances/covariances for all non-zero valued 
variables within each pattern set, {s}, to vary 
independently of those in other sets. Reduced forms of 
this model arise through various assumptions conceming 
common means and variances/covariances for net worth 
variables across different patterns of zero/non-zero value 
observations. The general location model is one such sub- 
model that assumes common variances/covariances across 
all patterns, E (s) = ~ (Olkin and Tate, 1961; Little and 
Schluchter, 1985; Little and Su, 1987; Heeringa, 1995; 
Schafer, 1996). The general location model cannot be 
applied directly to the Y's, since the assumption of a con- 
stant covariance matrix is untenable -- for example, the 
variance of a component Y.. is zero when T.. =0.  This tj q 
motivates the introduction of the Z's, with components 
Zq that are treated as missing in cells where T.. = 0 (see 

I J . .  

also Little and Su, 1987). The Z's can be legmmately 
modeled via the general location model, with means of the 
unobserved components of Z in cells with 
T - 0  constrained to avoid superfluous unidentified ,j 

parameters. Maximum likelihood and Bayesian estima- 
tion and imputation under the mixed normal model for 
limited data treat the Z.. as unobserved (missing) • q 
whenever Y. is zero, missing or known to lie inside a q 
bracket. 

A multivariate extension of Tobin's (1958) left- 

censored normal distributional model, which we term the 
truncated normal model, is an alternative for multivariate 
data with zero values. This model makes the same 
distributional assumptions for the Z's but different 
assumptions relating the Z's to the Y's, namely: 

y ~  - "  

(Zu,Z~2) if Zu>O, Zn>O 

(Zu, O) if Zu>O,Z~2~O 
(0,Z n) if Zu <O, Zn>O 
(0,0)  if Zu <_ O, Z~2<_ O 

This set of assumptions leads to truncated normal 
distributions for the non-zero assets, rather than normal 
distributions as in the mixed normal model. We do not 
discuss the truncated normal model further here since the 
mixed normal model for the log asset amounts provides a 
better fit to the HRS net worth data. 

Our ongoing research is aimed at the development 
of ML and Bayes algorithms for the mixed normal models 
for the net worth data. Meanwhile, we have applied an 
existing multivariate imputation algorithm to the HRS 
Wave 1 net worth data. We describe here a general 
purpose algorithm that has been developed at the 
University of Michigan Survey Research Center for 
multivariate imputation of mixed categorical and 
continuous variables. Details of the algorithm and the 
SAS-based software program are described elsewhere 
(Raghunathan, 1997). The basic strategy is to create 
imputations through a sequence of univariate regressions. 
The type of regression model used depends on the 
variable (continuous, binary, multinomial) being imputed 
and the covariates include all other variables observed or 
imputed on that individual. The imputations are def'med 
as draws from the predictive distribution specified by the 
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Table 2 
HRS Wave 1 Net Worth Components  

Patterns of  Zero/Non-Zero Values 
Business and Stock Values 

Pattern Business Stock n % 

1 >0 >0 496 6.5 

2 >0 0 717 9.4 

3 0 >0 1532 20.2 

4 0 0 4862 63.9 

Total - - 7607 100.0 

above-mentioned regression model with a noninformative 
prior for the regression parameters. The iterative algo- 
rithm will produce correct draws from the Bayes' 
predictive posterior distribution of the missing data under 
the general location model when the mixed categorical 
and truly continuous data conform to a pattern of missing 
data where the categorical variables are more observed 
than the continuous. Unmodified application of the algo- 
rithm to the net worth component variables with their 
"limited" zero/non-zero continuous values can produce 
only approximate draws from the true Bayes' posterior 
under the mixed normal model described in this section. 

The program provides for variables (like assets and 
liabilities) that have a finite probability of being zero and 
a continuous distribution for cases that have non-zero 
values. These variables are declared to be of mixed type 
and a two-phase logistic/normal regression procedure is 
used in imputation. Here, the zero amounts are presumed 
to be known constants and not reimputed. Only the 
normal regression estimation cycle of the iterative 
algorithm is used to estimate the conditional distribution 
of the non-zero amounts. Imputation of missing and 
bracketed amounts is performed by taking random draws 
from the estimated conditional distributions. The 
algorithm is adapted to take into account bracketing 
information and conditions on the information (complete 
or incomplete) in other asset items and hence is truly 
multivariate. 

4. An Empirical Comparison of Alternative 
Imputation Methods 

The HRS Wave 1 public use data set includes 
imputations of holding status and missing amounts for 23 
net worth variables. The imputation of holding was not 
repeated for this empirical exercise but fixed at the actual 
and imputed values in the public use data set. Likewise, 
the values of 11 of the 13 non-bracketed housing equity 
and debt items were not reimputed in this exercise but 
were fixed at the actual values or hot deck imputations 
that are contained in the HRS Wave 1 public use data set. 

The remaining 12 major net worth components listed in 
Table 1 were reimputed using two deterministic 
imputation methods and two stochastic imputation 
approaches. Each imputation method made full use of the 
bracketing information that was available. Results 
presented in this paper are based on imputations 
performed on the natural log transformation of the 
positive values for each of the net worth component 
variables. To assess the uncertainty associated with the 
imputation of the bracketed and missing data, the two 
stochastic imputation processes were independently 
replicated a total of 16 times. At the completion of each 
imputation pass for the 12 selected variables, the total net 
worth for each household was calculated by computing 
the appropriate sums (assets) and differences (liabilities) 
of its 23 net worth components. 

The following are brief descriptions of the 
alternative imputation methods that are examined in this 
empirical comparison. 
1) Complete Case Analysis: A total of 4566 (60.0%) of 

the 7607 cooperating HRS Wave 1 households provided 
complete information on holding and amounts for each of 
the 23 asset and liability components. (Zero values count 
as non-missing values.) Using only these 4566 complete 
cases, estimates of the distribution of total household net 
worth can be computed and compared to the distributions 
that result from the imputation methods. 
2) Mean~Median Substitution: Substitution of the 
observed mean or median value of a characteristic has 
also been used as a simple method of imputing missing 
data in continuous variables. A modification of this 
method that can be applied to univariate imputation of the 
HRS net worth variables is to impute the mean or median 
of observed values that fall within the known bounds for 
bracketed observations. If an observation was completely 
missing (no bracket information), the overall mean or 
median of the observed cases was imputed to the case. 
3) Hot Deck Method: Each asset and liability component 
is imputed separately by classifying observed and missing 
cases into adjustment cells based on the available 
bracketing information and covariate information 
including the age, race, sex and marital status of the 
household head. Each missing value is then imputed 
using the value of a randomly selected observed case 
within the same hot deck cell. 
4) Approximate Bayes'method: This method creates 16 
multiple imputes of the missing values using the 
approximate Bayes' algorithm (Section 3) applied to the 
multivariate distribution of the 12 net worth components 
that were reimputed in this exercise. Three variations of 
the multivariate imputation method are applied: (i) an 
essentially unrestricted version that limits the imputed 
log-amount for cases to be no more than 18.42 (the log- 
transformed equivalent of $99,999,999); (ii) a restricted 
version that limits the imputed log-amount for cases in the 
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highest bracket to be no greater than the highest observed 
value in the data set; and (iii) a version applied to the data 
ignoring bracketing information. 

5. Results from Application of Imputation Methods to 
the HRS Wave 1 Net Worth Data 

Table 3 presents results of the empirical comparison 
of descriptive analysis of household net worth based on 
HRS Wave 1 complete cases and data sets imputed using 
the four imputation methods described in Section 4. Each 
analysis computes the population weighted estimate of the 
mean, standard deviation, median and other selected 
quantiles of the distribution of net worth in U.S. 
households represented by the HRS Wave 1 sample. The 
estimates of these descriptive statistics were computed 
using SAS PROC UNIVARIATE (SAS, 1990). 
Population weighted estimates of the quantiles of the net 
worth distribution were obtained by specifying the 
integer-valued HRS analysis weight variable as the 
parameter of the FREQ keyword of the UNIVARIATE 
procedure. Distributional statistics for the hot deck and 
approximate Bayes' method are the multiple imputation 
estimates (averages) based on 16 independent 
replications. The standard errors reported for the 
distributional statistics are correct standard errors 
estimated using the Jackknife Repeated Replications 
(JRR) method that reflect the influences of the analysis 
weighting as well as the stratification and clustering of the 
complex multistage sample design for the HRS. Table 3 
also includes estimates of the imputation variance for 
estimates based on the stochastic hot deck and 
approximate Bayes' imputation methods. The 
proportional increase in variance from imputation 
uncertainty is estimated and is included in the columns of 
Table 3 labeled the "imputation effect." 
Complete case analysis: Complete case analysis appears 
to markedly underestimate the distribution of household 
net worth for HRS households, yielding lower estimates 
of the overall mean, standard deviation and percentile 
values. The apparent underestimation that occurs in 
complete case analysis can be explained by the fact that 
HRS respondents' propensity to use brackets increases 
with the value of the net worth component. 
Mean~Median substitution methods: Compared to 
stochastic imputation alternatives, mean and median value 
substitution imputation methods also appear to lead to 
underestimation of the mean and percentiles of the full net 
worth distribution. The standard deviation of the imputed 
household net worth distribution produced by these 
deterministic imputation methods is attenuated compared 
to standard deviation in net worth amounts imputed by the 
stochastic hot deck and approximate Bayes' alternatives. 
Approximate Bayes' Algorithm with Restrictions vs. the 
Hot Deck Method: Since the hot deck method can never 
impute an asset value greater than the largest observed 

value, the closest comparison is between the hot deck 
method and the "restricted" application of the 
approximate Bayes' algorithm. Comparing results for 
these two methods in column sets (4) and (6) of Table 3, 
there is very little difference in the imputed distributions 
of household net worth. There is slight evidence that the 
hot deck method results in some shrinkage from the tails 
of the distribution to the overall mean. The explanation 
for this minor difference in results may lie in how 
bracketed and completely missing data are treated under 
the two imputation alternatives. In cases of completely 
missing data-- from 2% to 12% of all cases depending on 
the net worth component, the hot deck method performs 
a random draw from the full empirical distribution of 
observed cases. The expected value of these draws is the 
overall mean of the observed amounts for the variables. 
The corresponding treatment of completely missing 
amounts under the multivariate approximate Bayes' 
procedure is to make draws from the estimated 
conditional distribution of the variable in question. The 
expectation for these draws is not the overall mean but is 
conditional on the observed or imputed values of other net 
worth variables. 
Approximate Bayes' Without Restrictions: Relaxing the 
restrictions on the maximum values that may be imputed 
by the multivariate algorithm has the expected effect. 
From column (5) of Table 3, the distribution based on 
unrestricted net worth component imputations has a 
higher estimated mean, standard deviation and maximum 
value. Relaxing the restrictions on the possible ranges for 
imputed values produces far greater instability in the 
estimates of these statistics. The estimated quantiles Q25, 
Q50, Q75, Q90, Q95 and even Q99 are very similar for 
the restricted and unrestricted imputations. 
Approximate Bayes ' Ignoring the Bracketing 
Information: The importance of the bracketing 
information to the multivariate imputation of net worth 
components is clearly seen in a Column (7) of Table 3. 
The mean, median and other quantiles of the HRS net 
worth distribution appear to be seriously underestimated 
in comparison to the imputation approaches that use the 
bracketing information. In fact the imputed distribution 
bears a close resemblance to that estimated from complete 
cases alone. 

We explain this result as follows. Lacking 
bracketing information, the approximate Bayes' 
imputations are unconstrained draws from a conditional 
distribution defined by regression of the variable to be 
imputed on the remaining components and covariates. 
The explained variance (R 2) of the regression that defines 
this conditional distribution for each individual 
component can be very low in which case the expected 
value of the conditional posterior will be very close to the 
overall mean of the variable for the observed cases. The 
algorithm therefore converges to a joint distribution that 
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T a b l e  3 

HRS Wave 1 Net Worth Imputations 

Estimated Distribution for Total Household Net Worth Under Imputation Alternatives 

Complete Data 

Estima~ 

Mean Substitution Median Substitution Hot Deck Method A-Bayes' Method-Unrestricted A-Bayes' Method-Restricted 

4,566 

A-Bayes' Method-No Brackets 

Estimate 
Std. 

Error 
Std. 

Error 

7,607 

213,538 7,661 Mean 186,825 9,146 

Std 
Dev 

417,288 27,468 443,665 29,399 

Q25 15,300 2,787 28,398 2,024 

Q50 78,000 3,254 97,314 4,393 

Q75 195,500 10,018 218,000 7,021 

~Q90 408,500 15,312 471,571 23,578 

Std. MI MI Std. Imp. MI Std. Imp. MI MI Std. Imp. 
Estimate Error Estimate Error Effect MI Estimate Error Effect Estimate Error Effect 

7,607 7,607 7.607 7,607 

195,850 7,280 232,480 9,421 1.202 249,536 13,315 1.41 240,279 9,450 1.15 

412,971 29,308 491,073 42,836 1.746 695,735 227,289 2.56 526,446 41,325 1.36 

27,800 2,847 29,515 2,440 1.023 28,381 2,140 1.012 28,442 2,117 1.008 

90,220 2,339 100,847 5,023 1.013 99,393 4,634 1.013 99,276 4,603 1.017 

203,330 6,706 240,443 8,606 1.039 241,097 9,954 1.029 241,066 9,816 1.029 

424,000 29,715 514,968 30,895 1.021 538,814 23,815 1.039 537,546 24,447 1.038 

697,275 27,923 839,781 56,599 1.137 897,342 59,209 1.073 895,904 59,662 1.086 

1,837,000 133,056 2,317,818 215,996 1.405 2,576,533 246,483 1.360 2,505,904 229,494 1.382 

8,632,275 402,275 9,644,756 3,070,000 1.915 24,458,054 15,700,000 8.803 10,907,357 2,951,000 1.485 

Q95 663,000 27,982 779,561 33,155 

Q99 1,995,000 107,074 2,142,131 62,035 

Max 6,202,000 322 ,000  9,096,500 469,445 

MI MI Std. Imp. 
Estimate Error Effect 

7,607 

191,314 7,711 1.031 

421,807 30,841 1.179 

23,928 2,262 1.020 

86,318 3,631 1.021 

202,933 8,306 1.020 

416,706 21,510 1.038 

657,020 27,643 1.047 

1,857,447 261,327 1.065 

8,844,044 2,005,492 1.025 



resembles the complete data and despite its iterative 
nature is incapable of correcting the bias in the imputation 
since it is not supplied the most informative "predictors" 
-- the bracketing information. 
Imputation variance: Imputation variance effects for 
most distributional statistics are relatively modest. For 
example, the estimated increase due to imputations (that 
reflect bracketing information) in variance of estimates of 
the 25th percentile ranges from .8%- 2.3%. Imputation 
variances for estimates of percentiles increase gradually 
moving from left to right in the distribution. Total 
variance for imputed estimates of the 95th percentile 
amounts are from 8.6% to 13.7% greater than the 
estimated variances that ignore the imputation uncertainty. 
Imputation variance effects are clearly greatest for the 
estimated means, standard deviation, Q99 and maximum 
value -- those statistics that are influenced by the 
uncertainty in imputations for values in the upper tails of 
the component asset and liability distributions. 

6. Summary and Conclusions 
The results of this empirical comparison show that 

complete case analysis and simple deterministic 
imputation by mean or median substitution appear to 
result in a serious underestimation of the mean and 
percentiles of the distribution of household net worth. If 
a simple methodology is needed, a more sensible 
approach would be to use the univariate hot deck method. 

The estimated distributions of net worth that result 
from hot deck univariate imputation and approximate 
Bayes' multivariate imputation of bracketed and missing 
values for the net worth component variables are very 
similar. The similarity of the distributions that result from 
these two very different imputation methods can be 
explained by the fact that each makes efficient use of the 
highly informative bracketing information when this 
information is available. The results of the empirical 
comparison suggest that the hot deck method may produce 
a small amount of shrinkage of the distribution -- a likely 
result of the weak predictive power of the univariate hot 
deck method when no bracketing information is available. 
In contrast, the multivariate method draws predictive 
strength from the other variables to impute completely 
missing observations. 

The importance of the bracketing information to 
imputation and estimation of composite household net 
worth is clearly seen throughout this empirical 
comparison. When bracketing information is available for 
some but not all missing data for the net worth component 
variables, the choice of a stochastic imputation method 
may depend more on how completely missing data are 
imputed than in the handling of imputations for bracketed 
missing values. Here the multivariate imputation method 
has the advantage since it makes full use of the 
information (including bracketing) that has been provided 

for the conditioning variables that define the predictive 
distribution for the imputation draws. 
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